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We present a complete framework for time-frequency parametrization of EEG transients,

based upon matching pursuit (MP) decomposition, applied to the detection of sleep

spindles. Ranges of spindles duration (>0.5 s) and frequency (11–16 Hz) are taken

directly from their standard definitions. Minimal amplitude is computed from the

distribution of the root mean square (RMS) amplitude of the signal within the frequency

band of sleep spindles. Detection algorithm depends on the choice of just one

free parameter, which is a percentile of this distribution. Performance of detection is

assessed on the first cohort/second subset of the Montreal Archive of Sleep Studies

(MASS-C1/SS2). Cross-validation performed on the 19 available overnight recordings

returned the optimal percentile of the RMS distribution close to 97 in most cases, and the

following overall performance measures: sensitivity 0.63± 0.06, positive predictive value

0.47 ± 0.08, and Matthews coefficient of correlation 0.51 ± 0.04. These concordances

are similar to the results achieved on this database by other automatic methods.

Proposed detailed parametrization of sleep spindles within a universal framework,

encompassing also other EEG transients, opens new possibilities of high resolution

investigation of their relations and detailed characteristics. MP decomposition, selection

of relevant structures, and simple creation of EEG profiles used previously for assessment

of brain activity of patients in disorders of consciousness are implemented in a freely

available software package Svarog (Signal Viewer, Analyzer and Recorder On GPL) with

user-friendly, mouse-driven interface for review and analysis of EEG. Svarog can be

downloaded from http://braintech.pl/svarog.

Keywords: sleep spindles, matching pursuit, EEG transients, time-frequency, sleep, Svarog, open source, free

software

1. Introduction

Sleep spindles are defined in Rechtschaffen and Kales (1968); Ibert et al. (2007) as a train of distinct
waves with frequency 11–16 Hz (most commonly 12–14 Hz) with a duration ≥ 0.5 s Detection of
these structures by human experts, trained in visual analysis of EEG, constitutes a gold standard.
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Unfortunately, the inter-expert agreement in scoring sleep
spindles is limited. This drawback undermines the idea of
repeatability of experiments, which lies at the foundations of hard
sciences: the same study of sleep spindles on the same dataset
may yield different results, because of differences in the visual
selections done by human experts.

Explosion of the applications of computerized signal
processing methods resulted in a multitude of automatic
detection algorithms. The most effective so far are based upon
a common framework, introduced in Schimicek et al. (1994),
reviewed e.g., in Warby et al. (2014):

1. EEG is band-pass filtered in the frequency range related to
sleep spindles.

2. Signal from the previous step is subjected to amplitude
thresholding in the time domain.

3. Epochs exceeding the threshold are filtered in the time domain
to select those corresponding to sleep spindles.

Contrary to the visual detection by human experts, who
concentrate directly and separately on relevant transient
structures visible in EEG, each step of this sequential procedure
implements only one aspect of the definition, and accumulates
the bias from the previous steps. This drawback is the
consequence of separate application of filters in the frequency
and time domains. This turns our attention to the time-frequency
methods of signal processing.

Classically, methods like short-time Fourier transform (STFT)
and wavelet transform (WT) are used to compute the distribution
of signal’s energy in the time-frequency plane (Durka and
Blinowska, 1997). Regions of increased energy correspond
directly to signals transients, but their automatic selection still
requires some kind of thresholding. Bias resulting from a priori
choices of thresholds and further postprocessing becomes even
more difficult to assess than in the spectral methods. Also, results
depend significantly on prior choices of parameters like the
duration of the time window in STFT or choice of the mother
wavelet in WT.

Algorithm adapting the parameters automatically to the local
content of the analyzed signal was introduced in Mallat and
Zhang (1993). Matching pursuit algorithm (MP, Section 2.1)
is an iterative procedure explaining the signal as a sum of
Gabor functions (Figure 1), chosen optimally from a large and
redundant set. Comparing to WT and STFT, analysis window
and partly also the mother wavelet in this approach are chosen
individually for each local transient structure present in the
analyzed signal. Another unique feature of MP is the explicit
parameterization of the structures fitted to the signal in terms of
their time and frequency centers, duration and phase. This allows
to perform detection directly in the space of these parameters in
one step.

This approach has been successfully applied for the detection
and parameterization of EEG transients including sleep spindles
in different paradigms, mostly at the University of Warsaw.
Additionally, MP-based detection of several types of EEG
transients can be efficiently combined into an automatic sleep

stager, based explicitly upon the accepted criteria for stages
(Malinowska et al., 2009). However, in spite of almost 20 years of
publishing results (c.f. Durka and Blinowska, 1995; Żygierewicz
et al., 1999; Malinowska et al., 2013 and many more) and
free software for MP decomposition (our versions of the MP
algorithm have been freely available since 2001, Durka et al.,
2001), this approach to EEG analysis has been seldom applied
outside our group. One of the reasons may have been a relative
technical complexity of the whole procedure. To cope with
this problem, this paper introduces a user-friendly and freely
available multiplatform software for detection of sleep spindles
(and other transients) inMP decompositions of EEG. This plugin
is embedded in Svarog—Signal Viewer, Analyzer and Recorder
On GPL.

Detection of sleep spindles presented in this paper relies on the
correspondence of their shape (waxing and waning oscillations)
to the Gabor functions used in MP decomposition (Figure 1),
so finding corresponding structures among the Gabor functions
fitted by the MP to EEG time series is straightforward and
consists of setting the limits on their frequency centers, durations
and amplitudes. Duration and frequency are taken literally from
the definition of sleep spindles. As for the minimal amplitude,
which is not directly defined, we adapt the common approach,
which relates this parameter to the RMS of the signal filtered in
the sigma band.

2. Materials and Methods

2.1. Matching Pursuit Algorithm (MP)
2.1.1. Matching Pursuit (MP)
MP was proposed by Mallat and Zhang (1993) as a suboptimal,
iterative solution to the intractable problem of an optimal
representation of a signal x in a redundant dictionary D,
containing dense set of functions gγ . In plain English, the gist
of the MP procedure can be summarized as follows:

1. We start by creating a huge, redundant set D (called a
dictionary) of candidate waveforms for representation of
structures possibly occurring in the signal. For the time-
frequency analysis of signals we use dictionaries composed
of sines with Gaussian envelopes, called Gabor functions,
which reasonably represent waxing and waning of spindle
oscillations.

2. From this D dictionary we choose only those functions, which
fit the local signal structures. In such a way, the width of
the analysis window is adjusted to the local properties of the
signal. Local adaptivity of the procedure is somehow similar to
the process of visual analysis, where an expert tends to separate
local structures and assess their characteristics. Owing to this
local adaptivity, MP is the only signal processing method
returning explicit time span of detected structures.

3. The above idea is implemented in an iterative procedure: in
each step we find the “best” function, and then subtract it from
the signal being decomposed in the following steps.

As for the mathematical description, denoting the function fitted
to the signal x in the n-th iteration of MP as gγn , and the
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FIGURE 1 | Examples of Gabor functions, defined as Gaussian envelopes modulated by sinusoidal oscillations.

residual left after n-th iteration as Rnx, we can describe the
procedure as:







R0x = x
Rnx = 〈Rnx, gγn〉gγn + Rn+ 1x
gγn = argmaxgγi∈D |〈Rnx, gγi〉|

(1)

where 〈·, ·〉 denotes the inner product of signals and | · | the
absolute value. As a result we get an approximate expansion:

x ≈
M−1
∑

n=0

〈Rnx, gγn〉gγn (2)

where M equals the number of iterations of Equation (1). For
a time-frequency analysis of real-valued signals, dictionary D is
usually composed from Gabor functions:

gγ (t) = K(γ )e−π( t−u
s )

2

cos
(

ω(t − u)+ φ
)

(3)

where γ is a set of parameters such that γ = (u, ω, s) and K(γ )
is a normalization constant such that ||gγ || = 1.

The procedure is generic. The only major settings
correspond to:

• quality of the decomposition, regulated mainly by the size
of the dictionary D, which controls the parameterization
accuracy of detected structures.

• number of iterations M, which regulates the accuracy of the
overall approximation, the number of low energy structures
included in the decomposition increases withM.

In both cases, higher settings result in higher accuracy.

2.1.2. Size of the dictionary D
Size of the dictionary D determines the number of candidate
waveforms that will be fitted to the signal, and hence the
resolution of the resulting decomposition. The resolution goes
up with the number of functions in the dictionary. To make
this setting independent of the size of the signal, we introduced
one parameter regulating the density of the dictionary, related to
the maximum distance between the dictionary’s waveforms. This
parameter is called in the Svarog interface (Figure 2) “energy

error” ǫ, since it relates to the maximum error that MP can make
in a single iteration, as explained in details in Kuś et al. (2013)1.

This special construction of the dictionary, ensuring a uniform
distribution in the space of inner products, imposes non-uniform
distribution of dictionary’s functions in the space of their time
positions, widths and frequencies (Kuś et al., 2013). For example,
setting of ǫ = 0.04 used for MP decompositions in this paper
gives, for the frequency range of sleep spindles, possible time
widths 0.53, 0.8, 1.21, and 1.82 s. That means that a spindle—or
even a perfect Gabor function—with a width 1.5 s will bematched
by a Gabor function from the dictionary with width either 1.21
or 1.82 s, and the leftover energy will be accounted for in the
remaining iterations or will be left as a residual modeling noise
if not accounted by the firstM functions.

2.1.3. Number of iterations M
Number of iterations M is easier to assess, since the gγn in
Equation (2) are ordered by decreasing energy. That means that
in two different decompositions differing only in the setting of the
number of iterations, say 50 and 100, the first 50 waveforms will
be the same (with small exceptions if stochastic decomposition
was chosen), and iterations 51–100 will contain only structures
of energy smaller than contributed by gγ50 .

Increasing the number of iterations will not improve the
quality of fit of any single waveform, so if we are interested in
structures of relatively high energy, as is usually the case when
looking for structures which are also visible for human expert, it
makes no sense to increase M above the number which can be
determined heuristically for a given problem and class of signals.

Described above MP decomposition is a purely mathematical
procedure. In relation to EEG analysis, bad news are:

1 ǫ relates to the maximum distance between two neighboring functions available

for decomposition. The distance between two Gabor functions g1 and g2 from

the dictionary D, proposed in Kuś et al. (2013), is measured in the space of inner

products 〈g1|g2〉 related to the energy as

d(g1, g2) =
√

1− 〈g1|g2〉 (4)

Dictionary is constructed in such a way that this distance is kept uniform across

the neighboring functions. When fitting the dictionary’s functions to a signal,

the maximum error occurs when a signals structure falls exactly in between two

functions available in the dictionary. In such a dictionary, this error will not exceed

the distance between neighboring functions from the dictionary. In energy units it

will be d(g1, g2)
2—the (maximum) “energy error” ǫ.
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FIGURE 2 | Svarog window for setting the parameters of the MP

decomposition, presenting values used in this study. Decreasing the

parameter “Energy error”—in the text referred as ǫ—increases resolution and

the number of functions in the dictionary and usage of RAM, calculated

automatically in the lower panels. For explanation of other parameters see

Kuś et al. (2013).

1. Computation of the MP decomposition of a signal is relatively
time-consuming even on a modern PC.

2. Settings of the energy error and number of iterations may
require some consideration in case of limited computational
resources, as discussed above in Sections 2.1.2 and 2.1.3.

Good news are:

1. Unlike most of the time-frequency methods of signal
processing, setting of parameters is not a tradeoff between
different aspects of the quality of decomposition, but a tradeoff
between the quality and speed.

2. MP decomposition is generic, and once performed, the same
decomposition of given epoch can be used to investigate the
presence of different structures (c.f. Figures 7, 8). That’s where
the weight is switched from mathematics to neuroscience.

2.1.4. Software implementation
Program computing the actualMP decomposition of given epoch
is implemented in C and compiled separately for each platform.
It is a command-line program, taking input from a config file and
writing output to a binary file containing parameters of the fitted
functions (a “book” ∗.b). To facilitate its application, we created
a wrapper/GUI module for Svarog, which is a multiplatform

EEG review system. After installation and configuration of the
system (Section 4.4), user can performMP decompositions of the
epoch selected by mouse, setting the decomposition parameters
in tabs of the window displayed in Figure 2. Svarog then writes
the selected (referenced and filtered) epoch to disk and calls the
MP binary, which computes its decomposition and saves results
to disk. These results can be then explored as an interactive time-
frequency map as shown in Figure 3, or used for construction of
summary reports on selected structures, as discussed in Section
3.3. For those who want to design their own post-processing, we
provide scripts for reading the results of MP decomposition in
Matlab and Python (Section 4.4).

2.2. Experimental Data
Data comes from the first cohort/second subset of the Montreal
Archive of Sleep Studies (MASS-C1/SS2) (O’Reilly et al., 2014).
It includes whole-night recordings from 19 young and healthy
participants (8 male and 11 female; 23.6 ± 3.7 SD years old)
with expert scoring of sleep stages according to the rules of
Rechtschaffen and Kales (1968). For the gold standard, we
used scoring of spindles from expert #1 available on MASS
website. This scoring was performed for epochs of non-rapid eye
movement stage two sleep, on C3 channel (linked-ear reference),
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FIGURE 3 | Results of MP decomposition displayed as an interactive time-frequency map of signal’s energy density in Svarog. Clicking center of a blob

(marked by white cross) adds the corresponding function to the reconstruction (bottom signal). From Kuś et al. (2013)

and following AASM rules (Ibert et al., 2007). This database was
chosen as it is open for sleep research and therefore facilitate
reproducibility (see Section 4.4).

2.3. Measures of Performance of Detection
We based the assessment of efficiency of the detector on the
markings with the accuracy of the EEG sampling, as proposed
in O’Reilly et al. (in revision). In such an approach, at each
sample (in our case 256 samples per second), there are four
well-defined outcomes of comparison of expert’s and detector’s
scorings: spindle present according to both expert and detector
(true positives; TP), spindle absent according to both expert
and detector (true negatives; TN), spindle present according to
expert, but absent according to detector (false negative; FN),
spindle absent according to expert, but present according to
detector (false positives; FP). Counts of each type of outcome can
be used to formulate various measures of detector performance:

sensitivity =
TP

TP + FN
(5)

Positive predictive value2 (PPV):

2PPV is related to False Discovery Rate as: PPV = 1− FDR.

PPV =
TP

FP + TP
(6)

Matthews coefficient of correlation (MCC):

MCC =
TP∗TN − FP ∗ FN
√
P ∗ P′ ∗ N ∗ N′

(7)

where P = TP + FN, P′ = TP + FP, N = FP + TN,
N′ = FN + TN.
Cohens κ :

κ =
TN + TP
P + N − Pe

1− Pe
(8)

where Pe is the probability of random agreement defined as:

Pe =
P′P + N′N

(P + N)2
(9)

F1-score:
F1 = 2 ∗

PPV ∗sensitivity
PPV+ sensitivity

(10)

2.4. Detection of Sleep Spindles
Division between the purely mathematical MP decomposition of
signals and further neuroscience research is clearly reflectedin the
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structure of the Svarog software package. The first step, briefly
covered in Section 2.1, consists of a generic approximation of the
signal by a linear sum of Gabor functions. The second step, which
is selection of the structures corresponding to sleep spindles,
constitutes the main topic of this article.

MP offers explicit parameterization of signal structures
in terms of their time and frequency positions, widths and
amplitudes. Detection of sleep spindles within the proposed
framework can be perceived as filtering out irrelevant structures
from a database containing all the waveforms fitted by MP to
a given signal epoch. Settings of the filter can be directly based
upon the classical definition(s) mentioned in the Introduction.
We choose frequency range 11–16 Hz and duration exceeding
0.5 s. Duration and time center of each detected spindle are
returned explicitly by the MP algorithm, as parameters u and s
from Equation (3), which gives us the time extent of the spindle
from u − s/2 to u + s/2. Duration is taken here explicitly as the
half-width of the Gaussian envelope of the Gabor function, but
it can be adjusted by a multiplicative factor e.g., to optimize the
concordance with visual detection. In general, using the setting
window presented in Figure 7, one can easily test the procedure
with different settings adjusted e.g., to different definitions, like
frequency 12–14Hz as defined in Rechtschaffen and Kales (1968)
or slow (11–13Hz) and fast (13–16Hz) spindles separately.

Due to the lack of a precise definition of the minimum
amplitude for spindles, one can either adapt a fixed threshold
(e.g., Schimicek et al., 1994; Ventouras et al., 2005), usually
optimized for a given recording (which causes obvious problems
with generalization of the procedure to recordings from other
labs/cohorts), or compute a threshold based upon the properties
of the analyzed signal and in particular adapted to individual
subject (e.g., Huupponen et al., 2000; Ray et al., 2010), which
results in a more general procedure. We compute this threshold
in relation to the RMS distribution. Exemplary distribution for
one of the recordings is shown in Figure 4. To obtain the RMS
distribution we filter the signal in the frequency band of sleep
spindles (using 2nd order band-pass Butterworth filter with
the cutoff frequencies set to 11 and 16Hz). The RMS values
were evaluated in successive, non-overlapping time windows
with duration of 0.2 s. With this combination of bandwidth and
window duration, one window includes more or less one period
of oscillations of the filtered signal. Thus, in each window we can
assume an approximate relation between amplitude and RMS as
for a constant-amplitude sine wave. In such case peak-to-peak
amplitude relates to the RMS as:

A = 2
√
2PRMS (11)

where PRMS is the percentile of the mentioned RMS distribution,
chosen to maximize resulting MCC.

3. Results

3.1. Performance of Sleep Spindles Detection in
Individual Cases
As described in Section 2.4, the minimal amplitude of candidate
waveform is a free parameter in the proposed detector of sleep

FIGURE 4 | Exemplary distribution of RMS for one of the recordings.

The vertical line marks its 97th percentile.

spindles. In order to have a complete picture of the detector
performance on the current dataset, in Figure 5A we present the
sensitivity, PPV and MCC for a range of RMS percentiles.

Figure 5B shows the distribution of the optimal, in the sense
of maximizing MCC, percentiles for each of the recordings. The
median of this distribution is the 97th percentile.

3.2. Cross-validation
A common pitfall in the evaluation of the algorithms detecting
sleep spindles is their explicit optimization for a particular
dataset, often the same as the one used for presenting the
performance of resulting algorithm. It is also a common problem
in evaluation of detection algorithms, and the standard solution
used in machine learning is called cross-validation.

For the evaluation of performance of the proposedmethod, we
implement the following cross-validation procedure, related to
the only parameter not taken directly from the definition of sleep
spindles, which is the minimal amplitude expressed in terms of
the percentile of RMS distribution in the frequency range of sleep
spindles:

1. Randomly divide the available recordings in two disjoint
subsets, further called the training set and the validation set.

2. Compute the optimal percentile for the training set.
3. Evaluate the performance on the validation set.
4. Repeat steps (1–3).

By averaging resulting performance measures over different
random divisions of the available dataset we obtain an estimate
of the average performance of the procedure on “unseen” data.
This estimate tends to be a bit lower than the overall performance
computed and estimated on the whole dataset at once.

We performed 100 iterations of the cross-validation
procedure, each time randomly choosing 14 recordings for the
training set used to compute the optimal RMS percentile. Then
these 14 percentiles PRMS, optimal for each of the recording
separately, were averaged. The resulting average threshold
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FIGURE 5 | (A) Measures of spindles detection quality as a function

of the percentile of RMS in the spindle frequency band computed

separately for each of the 19 overnight recordings and markd by

different colors. (B) Distribution (counts) of RMS percentiles which

maximize MCC shown in (A). Median of the distribution marked

with vertical line.

was applied to find the minimal spindle amplitudes for all the
remaining 5 recordings. Figure 6 shows the distribution of the
resulting performance measures averaged over the validation
sets. The summary statistics of performance are presented in
Table 1.

3.3. EEG Profiles
Proposed approach offers precise detection of time centers and
durations of sleep spindles and other transients. Apart from
these, MP decomposition provides also an explicit and high
resolution parameterization of their frequencies, amplitudes and
phases. This opens a simple access to detailed information on the
pattern of their occurrences across the whole analyzed recording,
including:

• exact time occurrences of each detected structure with
information about amplitude of each detected spindle.

• number of structures per epoch (in sleep analysis this is
traditionally 20 or 30 s).

• percent of the epoch’s time occupied by selected transients.

Although the last parameter has not been used for sleep spindles
so far, all these reports are presented for demonstration in the
three upper panels of Figure 8.

Sleep spindles are not the only EEG transients which can be
effectively detected and parameterized by means of proposed
approach. Another classic example of transient structures
crucial for assessment of the sleep process are slow waves
(Durka et al., 2005a). Figure 7 presents example parameters
allowing for selecting, from the same MP decomposition
of the same signal, structures corresponding to slow waves:
amplitude above 70 µV, frequency 0.2–4Hz, and time width
above 0.5 s.

Figure 8 presents these profiles for sleep spindles and slow
waves, computed in a fully automatic way without prior
removal of artifacts. Examples of time-frequency definitions of
structures in Svarog also include alpha, beta, theta and delta
waves, and K-complexes (Malinowska et al., 2009). As explained
in Section 4.1, all these profiles can be computed from the
same MP decomposition, and reports for different settings of
filters defining these structures, contrary to the underlying MP
decomposition, are computed in seconds.

These profiles can be used for investigating several features
of EEG, previously assessed by different specially constructed
algorithms, or by visual inspection. For example:

• Report in the lower panel of Figure 8, showing the time
fraction of each epoch occupied by slow waves, is crucial
for sleep staging, since stages 3 and 4 are defined directly in
terms of ranges of this parameter (Stage 3: 20–50%, Stage 4:
above 50%). This correspondence was explored inMalinowska
et al. (2009) for automatic construction of hypnograms, based
directly upon the classical criteria from Rechtschaffen and
Kales (1968).

• Profiles for these and other structures were used for assessment
of the brain activity of patients in different states of disorders
of consciousness (Malinowska et al., 2013).

4. Discussion

4.1. Computational Complexity of MP
As mentioned in Section 2.1, in each step of the MP algorithm we
compute inner products of all the functions from the dictionary
with the signal (or the residuum left from previous iterations).
Implemented directly, this would typically result in millions
of inner products, each computed on thousands of samples.
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FIGURE 6 | Gray-filled boxplots: distributions of the average

performance measures of spindles detection, defined in Section 2.3,

obtained from the cross-validation procedure, white-filled boxplots:

performance measures of the four detectors (color coded: red—RMS,

green—RSP, blue—Sigma, black—Teager) tested in O’Reilly et al.

(in revision) on the same data set.

TABLE 1 | Summary of cross-validation performance statistics.

Measure Median First quartile Third quartile Mean Standard deviation

Sensitivity 0.63 0.59 0.68 0.63 0.06

PPV 0.47 0.42 0.52 0.47 0.08

MCC 0.52 0.49 0.53 0.51 0.04

Cohen kappa 0.49 0.46 0.52 0.49 0.05

F1-score 0.54 0.51 0.56 0.53 0.04

Such massive computations impose a significant burden even
for modern computers. Fortunately, it is possible to decrease
it significantly with mathematical and programming tricks. The
former, implemented in the current version of the MP algorithm
used for computations in this article and available together
with Svarog from http://braintech.pl/svarog, are described in
Mallat and Zhang (1993) and Kuś et al. (2013). However, this
user-friendly software is still a research system, not aimed at
commercial applications. Since the speed of computations was
not the major goal here, not all the optimizations were explored
yet. Also, as discussed in Section 2.1.2, we used a relatively dense
dictionary, increasing significantly the computational burden:
with 50 iterations per epoch, decomposition of one overnight
recording took about 48 CPU-hours. Since the MP5 algorithm is
single threaded, we were able to run 11 concurrent instances on
a 12-core computer, thus decomposing in average one overnight
recording every 4h approximately. While this may still look like
a lot of computing time, let us recall that:

1. MP decomposition is performed only once per each analyzed
signal, and as such needs not to be interactive. Using one
such general decomposition, we can investigate any structures
potentially present in the signal (Section 4.3) in a comfortably
interactive mode. Results from one channel of an overnight
recording like the one presented in Figure 8 are computed in
seconds.

2. There is still room for significant speed improvements, in the
optimization of code (e.g., multithreading or using GPUs) as
well as in the adjustments of the decomposition parameters
to a particular problem. As an example of the latter we may
quote an online procedure for detection of epileptic seizures
in commercial EEG software by Persyst (http://persyst.com,
patent US 6735467), based on a previous version of our MP
algorithm (Durka et al., 2001).

4.2. Performance of Detection
Reported performance of sleep spindle detectors depends both on
the properties of the detector and on the quality of experts scores.
Therefore, the quantitative comparison of detectors is possible
only on the same database of EEG recordings and scorings,
otherwise the comparison is rather qualitative. It is especially
so if the parameters of the detector are tuned to maximize the
performance for a given dataset. Another problem in comparison
between the results reported in literature is that various authors
define the correct detection in different ways via the “window
based” type of comparison—mainly in respect to the criteria
defining the overlap between detectors and experts scores. We
used “signal-sample-based” assessment of performance, since we
find it much less ambiguous. In general, the values obtained in
“signal-sample-based” type of comparison are more conservative
than those obtained in “window based” comparison, as was
demonstrated in O’Reilly et al. (in revision). Unfortunately,
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FIGURE 7 | Svarog window for setting the parameters of filters defining the structures chosen from MP decomposition for the profile presented in

Figure 8. This functionality operates on the results of a previously computed MP decomposition (Figure 2).

“window based” comparison is the most common and for a long
time was the only one considered for assessing the performance
of spindles detection presented in literature. To give a general
background we cite below some of the results.

For example, one of the first automated detection method
with fixed amplitude threshold (Schimicek et al., 1994) showed
sensitivity of 89.7% and a specificity of 93.5%. Other sleep
spindles detection method using artificial neural networks
(Ventouras et al., 2005) presented the sensitivity of the network
ranges from 79.2 to 87.5% and specificity from 88.4 to 97%,
with the false detection rate (FDR = FP

FP+TP ) ranging from
2.1 to 21.5%. The methods where variability of sleep spindles
amplitude across subjects have been taken into account for
detection (e.g., Bódizs et al., 2009) reported sensitivity of 92.9
and 58.4% false detection rate. Another work (Huupponen
et al., 2007)3 testing four different detection methods reported
optimal sensitivity of 70% for a false detection rate of
32%. Ray et al. (2010) reported a sensitivity of 98.96% for
a specificity of 88.49%, with a corresponding 37.2% false

3One should be careful on reading of this paper since the authors call false-positive

rate what is usually referred to as false detection rate. False positive rate is generally

considered as FPR = FP
FP+TN and therefore, as for specificity, due to huge counts

of TN relative to other counts, is of little interest for characterizing sleep spindle

detectors.

detection rate in detection of sleep spindles in stage II with
the minimal amplitude adjusted individually and 3 s scoring
windows.

A more direct comparison of the detector presented in this
work can be made with the six automatic detectors, known
from publications, reimplmented and tested in Warby et al.
(2014) (cf. Figure 4). The authors presented “precision-recall”
plot obtained with “window based” comparison of the detectors4.
Our detector would be placed at point (recall = 0.63, precision
= 0.47) in that space, which is close to the middle of the
automated group consensus curve. Also the F1-score is close
to the maximum performance for the auto group consensus.
Such result would indicate that the proposed detector is well
balanced and close to optimal among the automated detectors,
but we have to keep in mind that we compare results for different
datasets.

The most meaningful and direct comparison can be made
with the four detectors tested in O’Reilly et al. (in revision),
since they were tested on exactly the same data set, with
same expert scoring, and using the same “signal-sample-based”
type of comparison. For the ease of comparison, in Figure 6,
we rearanged the original results presented in O’Reilly et al.

4Precision is another name for PPV and recall for sensitivity.
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FIGURE 8 | Exemplary EEG profile of sleep, computed automatically

without prior removal of artifacts, for the structures defined in

Figure 7; subject #4 of MASS-C1/SS2. Each of the red vertical lines is

positioned at the exact time center of a spindle or slow wave, and its height

represents the structure’s amplitude. Green lines are positioned in 20-s

intervals, and their height measures the number of structures detected in the

corresponding epochs. Cyan lines, like the green ones, relate to the

properties of 20-s epochs, and give the percent of each epoch’s time,

occupied by the given structures. This parameter is especially relevant for

slow waves, because (Rechtschaffen and Kales, 1968) defined sleep stages

3 and 4 explicitly by 20–50% and 50–100% ranges of this parameter

(Malinowska et al., 2009).

(in revision). These detectors were: RMS—based onmethodology
proposed in Schimicek et al. (1994), RSP—relative spindle power
detector based on Devuyst et al. (2011), Sigma—based on the
sigma index proposed by Huupponen et al. (2007), and Teager—
based on Teager energy operator, as in Ahmed et al. (2009).
Comparison of all four classifiers tested by O’Reilly et al. as
well as the MP-based classifier presented in this work, shown in
Figure 6, have the same range of performance measures, if one
takes into account the spread of the distribution of the measures,
which in fact is quite broad. In our opinion, this fact points to the

limitations of consistency of expert’s scorings which were used as
the “gold standard,” or to the existence of some characteristics
of the recording which affects the decisions of expert, but
which are not included in the currently used definition of sleep
spindles.

4.3. Universal Parametrization
In the context of a universal parameterization of EEG transients
(Durka, 2005) it is also worth mentioning that proposed
framework has a potential to solve a variety of important
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problems in EEG analysis. Apart from the above examples, it was
already shown to significantly improve the quality of EEG inverse
solutions if used as a preprocessing and automatic detection of
sleep spindles (Durka et al., 2005b), and sensitivity of estimates
used in pharmaco EEG (Durka et al., 2002).

We believe that the availability of the free software and
exemplary description of a framework for detection of sleep
spindles paves the way to novel and creative applications of
this high-resolution parametrization, to a large extent compatible
with the tradition of visual analysis.

4.4. Data Sharing
Complete software package (with source code) used in this study
for computing MP decompositions and generating Figure 8, as
well as scripts for reading the results of MP decomposition in
Matlab and Python (Section 2.1.4), are freely available from
http://braintech.pl/svarog. Source code of the Svarog interface (in
Java) and mp5 program for MP decomposition (in C) is available
from http://git.braintech.pl.

Polysomnograms and human scoring of sleep spindles
used in this study come from MASS database and can be
downloaded from http://ceams-carsm.ca/en/mass. Access to
polysomnographic recordings requires further accreditation
from an authorized Ethics Research Board.
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