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Stroke is the leading cause of disability among adults. Motor deficit is the most common
impairment after stroke. Especially, deficits in fine motor skills impair numerous activities
of daily life. Re-acquisition of motor skills resulting in improved or more accurate motor
performance is paramount to regain function, and is the basis of behavioral motor
therapy after stroke. Within the past years, there has been a rapid technological and
methodological development in neuroimaging leading to a significant progress in the
understanding of the neural substrates that underlie motor skill acquisition and functional
recovery in stroke patients. Based on this and the development of novel non-invasive brain
stimulation (NIBS) techniques, new adjuvant interventional approaches that augment
the response to behavioral training have been proposed. Transcranial direct current,
transcranial magnetic, and paired associative (PAS) stimulation are NIBS techniques
that can modulate cortical excitability, neuronal plasticity and interact with learning and
memory in both healthy individuals and stroke patients. These techniques can enhance
the effect of practice and facilitate the retention of tasks that mimic daily life activities. The
purpose of the present review is to provide a comprehensive overview of neuroplastic
phenomena in the motor system during learning of a motor skill, recovery after brain
injury, and of interventional strategies to enhance the beneficial effects of customarily
used neurorehabilitation after stroke.

Keywords: stroke, motor learning, non-invasive brain stimulation, motor recovery, TMS, tDCS, neurorehabilitation

Background

Stroke is a leading cause of serious long-term disability (Kochanek et al., 2012) with growing impact
on actual and future health economy. It is estimated that an additional four million people in the
US will suffer a stroke by 2030, due to changes in demographic evolution (Heidenreich et al., 2011).
This increase in the aging population will result in more demands on health services as stroke in
older people often result in more severe functional loss (Baztan et al., 2007).

A large proportion of the focus of stroke research still remains on the acute management of stroke.
The development of thrombolytic therapy, determination of an individualized time window to apply
thrombolysis (Thomalla et al., 2011), and reduction in early post-stroke complications due to the
application of the stroke unit concept, has led to a significant decline of mortality rate after stroke
(Langhorne et al., 1993). On the other hand, a substantial proportion of stroke victims are left with
moderate to severe disability. Indeed, the resulting motor deficit, especially of the upper extremity,

Frontiers in Human Neuroscience | www.frontiersin.org 1

May 2015 | Volume 9 | Article 265


http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2015.00265
https://creativecommons.org/licenses/by/4.0/
mailto:f.hummel@uke.de
http://dx.doi.org/10.3389/fnhum.2015.00265
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00265/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00265/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00265/abstract
http://loop.frontiersin.org/people/204411/overview
http://loop.frontiersin.org/people/17356/overview
http://loop.frontiersin.org/people/17614/overview
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Wessel et al.

Enhancing skill acquisition after stroke

has a great impact on activities of daily life. Currently, recovery
of hand motor function in a large part of the survivors (55-75%)
is unsatisfying (Nakayama et al., 1994; Jorgensen, 1996; Jorgensen
et al., 1999).

Asaresult, there is a strong need for new innovative strategies to
improve stroke rehabilitation. Comprehensive evidence indicates
that motor learning mechanisms are operative during sponta-
neous stroke recovery and interact with rehabilitative training
(Krakauer, 2006). As a matter of principle, re-acquisition of skills
resulting in improved or more accurate motor performance is
paramount for recovery of motor function after a brain lesion.
Thus, to a significant degree, the success of neurorehabilitation
depends on the amount and effectiveness of rehabilitative training
to promote the re-acquisition of motor skill that were lost due to
the lesion. In this context, non-invasive brain stimulation (NIBS)
techniques have the appeal of being able to specifically and selec-
tively enhance adaptive patterns of activity, suppress maladaptive
patterns, and interact directly with the process of motor skill
acquisition by sharing synergistic impacts on synaptic plasticity
and network reorganization (Bolognini et al., 2009; Reis et al.,
2009a; Fritsch et al., 2010).

Here, we review basic principles of motor learning. Further,
we focus on modulation of its principles by NIBS and innovative
training regimes.

Principles of Motor Learning

Learning of a motor skill is commonly defined as a process of
increased spatial and temporal accuracy of movements with prac-
tice (Willingham, 1998). The learning process consists of differ-
ent temporal components; for illustration, please see Figure 1.
In principle, online and offline processes can be segregated.
Online learning refers to within-session, and offline learning to
in-between session improvement (Robertson et al., 2004a).

During online learning, a first fast learning phase is charac-
terized by rapid improvement usually within in a single train-
ing session. Whereas, in slow online learning further improve-
ments develop over multiple sessions (Doyon and Benali, 2005).
It is of note that the duration of both phases is highly depen-
dent on task complexity (Dayan and Cohen, 2011). Procedural
consolidation occurs after practice and incorporates two dis-
tinct processes offline-improvement and memory stabilization.
Offline-improvement refers to in-between training session skill
improvement. Memory stabilization results in diminished inter-
ference in memory encoding or retrieval by another consecutive
task (Robertson et al., 2004a). Long-term retention describes the
skill retention after a prolonged (e.g., 1year) post-training time
interval (Romano et al., 2010). An additional interesting concept
is the term savings. First described in the motor adaptation lit-
erature, it is defined as the impact of previous learning on faster
retraining in consecutive sessions (Landi et al., 2011).

The addressed learning components are represented by specific
neuroanatomical substrates. Increased activity of the premotor
cortex, supplementary motor area (SMA), parietal regions, stria-
tum, and the cerebellum and decreased activity in the dorsolat-
eral prefrontal cortex (DLPFC), primary motor cortex (M1), and
presupplementary motor area (pre-SMA) have been associated
with the fast learning progresses. Whereas, increased activation
in primary motor cortex (M1), primary somatosensory cortex,
SMA, and putamen and decreased activation in lobule VI of
the cerebellum have been implicated with the slow learning pro-
cess (Floyer-Lea and Matthews, 2005; Dayan and Cohen, 2011).
Explicitlearning has been shown to be sleep- and implicit learning
time-dependent (Robertson et al., 2004b). The role of the M1
in offline learning has been disentangled with inhibitory NIBS.
Inhibitory repetitive transcranial magnetic stimulation (rTMS)
of M1 interfered with early consolidation (Muellbacher et al.,
2002), but not with over-night improvements of a motor practice
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FIGURE 1 | Conceptual components in motor learning. The illustrated Consolidation — offline-improvement and memory stabilization. Long-term
learning curve indicates the increase in motor skill over time. retention — skill retention after a prolonged interval. Savings — impact of previous
Online — within-session learning. Offline — in-between-session learning. Fast learning on faster retraining, expressed in an increased slope f’(x) of the learning
learning — single-session practice. Slow learning — multiple-session practice. curve. For a detailed description, please see text.
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(Robertson et al., 2005). However, sleep-dependent motor con-
solidation has been associated with increased activation in the
striatum (Debas et al., 2010).

These neurobehavioral concepts depend on neuroplastic
changes within the brain. Motor learning is incorporated in
molecular, cellular, and systemic substrates. An association with
de novo protein synthesis has been shown (Luft et al., 2004).
Several cellular mechanisms, for instance, modulation of synaptic
efficacy (Rioult-Pedotti et al., 2000), change in neuronal mem-
brane excitability (Halter et al., 1995), and anatomical changes like
spine formation (Greenough et al., 1985) and axonal sprouting
(Toni et al., 1999), among others have been described. Moreover,
during motor skill learning, changes in its cortical representation
have been demonstrated (Pascual-Leone et al., 1995).

Also on the systems level, neuronal networks undergo plas-
tic changes. Influential integrative models have been proposed
(Hikosaka et al., 2002; Doyon and Benali, 2005). Doyon and
Ungerleider hypothesize in their model that in early learning,
cortico-striatal and cortico-cerebellar networks are recruited.
Interactions of these structures shape the acquired motor memory
traces during the learning process (Ungerleider et al., 2002; Doyon
et al., 2003).

Neuroplastic Changes Observed After
Stroke

Neuroplasticity after stroke and motor learning in the healthy
brain share several common mechanisms. Described common
neurobiological phenomena are axonal sprouting (Carmichael
etal.,2001), dendritic remodeling (Brown et al., 2010), and reorga-
nization of motor maps (Nudo and Milliken, 1996), among others.
Furthermore, animal models could prove that rehabilitative train-
ing can influence the reorganization in the adjacent intact cortex
(Nudo et al., 1996). For review, please see Hosp and Luft (2011)
and Hallett (2001).

The neural correlates of stroke recovery have been described in
several cross-sectional and longitudinal studies using functional
neuroimaging (fMRI and PET) and TMS (Johansen-Berg et al.,
2002; Ward et al., 2003; Gerloff et al., 2006; Lotze et al., 2006;
Grefkes et al., 2008). Most of these studies revealed abnormal
patterns of activation/excitability immediately after stroke and
during the recovery process. Movement of the affected hand elicit
a bilateral neural recruitment within motor areas in patients with
subcortical lesions, which cannot be found in healthy subjects or
when patients move the unaffected hand (Ward et al., 2003). In
this regard, patients with good functional outcomes demonstrated
a more lateralized neural activation pattern, while those patients
whose motor deficit remained more severe recruited motor areas
in both hemispheres (Ward et al., 2004). The significance of more
widespread neural activation within the motor network during
motor performance of the affected hand is still under debate. As
recently discussed (Hummel et al., 2008a), the notion that the
unaffected hemisphere has a non-beneficial effect on the lesioned
hemisphere and consecutive behavior does not apply to all groups
of patients. This fact might relevantly depend on lesion location,
time after stroke, size, and integrity of the corticospinal pathway,
among other factors (Lotze et al., 2006; Bradnam et al., 2011).

Patients, who suffered a stroke, exhibit changes in motor corti-
cal excitability in both hemispheres (Shimizu et al., 2002; Cicinelli
etal., 2003). Moreover, abnormal levels of inter-hemispheric inhi-
bition from the unaffected to the affected motor cortex, result-
ing in an imbalanced inter-hemispheric interaction influence the
function of the paretic hand (Murase et al., 2004) [for details
regarding this concept, please see Schulz et al. (2013), Hummel
and Cohen (2006), and Nowak et al. (2009)].

Following the concept of imbalanced inter-hemispheric inhibi-
tion, two main strategies for NIBS have been proposed: (1) NIBS
is used to inhibit the motor cortex of the unaffected (contrale-
sional - cM1) hemisphere to reduce the abnormal inhibitory drive
toward the lesioned hemisphere. (2) An alternative approach is
to facilitate the motor cortex of the affected (ipsilesional — iM1)
hemisphere (Hummel and Cohen, 2006).

Additionally, neuroimaging studies have shown that premotor
areas of the affected hemisphere are commonly more active during
hand movement with the paretic hand after stroke, suggesting
that non-primary motor areas of the same hemisphere are utilized
when M1 is affected (Gerloff et al., 2006).

Techniques for Non-Invasive Brain
Stimulation

Non-invasive brain stimulation techniques can be used to influ-
ence cortical excitability, neuroplasticity, and behavior [for
review, see Nitsche et al. (2008), Hummel and Cohen (2005)].
Excitatory or inhibitory plastic changes can be induced, depend-
ing on the used mode. Transcranial direct current stimulation
(tDCS), transcranial magnetic stimulation (TMS), and paired
associative stimulation (PAS) are the most common and widely
used techniques (Hummel and Cohen, 2005).

By using tDCS small sub-threshold currents (1-2mA) deliv-
ered via scalp electrodes are capable of influencing neuronal
excitability by increasing or decreasing the respective trans-
membrane potentials. The induced changes are polarity specific.
Anodal stimulation facilitates and cathodal stimulation inhibits
motor cortex excitability (Nitsche et al., 2008). Advantages of
tDCS are its simplicity and relative low cost. Limitations are its
rather moderate temporal and focal resolution (Gandiga et al.,
2006).

By adjusting the electrode placement (electrode montage), dif-
ferent cortical areas can be modulated. An active (target) electrode
is placed over the target area and a reference (return) electrode
over another cephalic or extracephalic region. The scalp position
of electrode placement is usually defined by anatomical land-
marks, the TMS hotspot, the 10/20 EEG system, or via stereotac-
tical neuronavigation (Moos et al., 2012). It is important to note
that the reference electrode is not physiologically inert (Nitsche
et al., 2008). Recently, a framework for the categorization of tDCS
montages has been proposed (Nasseri et al., 2015). Most tDCS
studies in stroke rehabilitation so far used a bilateral bipolar non-
balanced or balanced montage. In addition, first modeling studies,
using finite element realistic head models, were able to calculate
cortical current density distributions considering brain lesions
(Wagner et al., 2007) and multifocal stimulation (Ruffini et al.,
2014). This could help to find revised montages for future studies.
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Transcranial magnetic stimulation uses the principle of electro-
magnetic induction. With a sufficient induced electrical field, it
is possible to depolarize neurons. When the magnetic pulses are
applied in a repetitive mode (rTMS), this results in excitability
changes outlasting the duration of stimulation (Rossi et al., 2009).
Conventional rTMS applied at a low frequency (0.2-1 Hz) results
in inhibition. When it is applied at high frequency (>5Hz), it
leads to excitation (Hallett, 2007). Recently, novel patterned rTMS
protocols have been developed, the so-called theta-burst stimula-
tion (TBS) (Huang et al., 2005). In the theta-burst protocol (TBS),
three stimuli at 50 Hz are repeated at 5 Hz. In a continuous mode,
this results in inhibition, in an intermittent mode in excitation
(Hallett, 2007). Advantages of rTMS are its good spatial and
temporal resolution, disadvantages are the relative complex and
expensive setup and the rare but apparent occasion of relevant side
effects, in particular seizures (Gandiga et al., 2006).

Paired associative stimulation is capable of inducing heterosy-
naptic plasticity. This is achieved by combining low-frequency
peripheral nerve stimulation (PNS) with TMS to the motor cor-
tex. The underlying concept is based on the idea that if both
stimuli arrive at the same time (synchronous) at the cortex, an
excitation will be induced. By contrast, asynchronous stimulation
leads to inhibition (Stefan et al., 2000). Repetitive synchronous
stimulation results in LTP-like effects, asynchronous stimulation
in LTD-like effects. Advantages of PAS are that the protocol was
directly developed on the basis of LTP/LTD-plasticity protocols
of basic research and that many of its physiological properties are
well studied. Disadvantages are its rather complex setup, its inter-
individual variability, and that effects of protocol variation have
not been systematically studied (Ziemann et al., 2008).

Recently, the repertoire of NIBS techniques has been enlarged
by transcranial alternating current stimulation (tACS), transcra-
nial random noise stimulation (tRNS), and more complex rTMS
protocols (quadri- and octapulse rTMS). These methods have not
been widely applied to enhance functional recovery after stroke,
for detailed descriptions of these techniques, please see Antal
and Paulus (2013), Terney et al. (2008), and Hamada and Ugawa
(2010).

Non-Invasive Brain Stimulation and Motor
Learning in Healthy Subjects

First studies in healthy volunteers provided evidence that NIBS
can cause transient behavioral effects in motor function (Wasser-
mann et al., 1996; Boggio et al., 2006). Following this concept, first
studies were designed to investigate whether NIBS can also mod-
ulate motor learning. The main target of most studies conducted
so far was M1. In a first study by Nitsche et al. (2003), anodal tDCS
applied to the contralateral M1 improved learning of an implicit
task (Nitsche et al., 2003). By using an isometric-pinch task, Reis
et al. (2009b) were able to demonstrate improved learning after
five consecutive days of training with tDCS compared to sham,
primarily driven by an offline (consolidation) effect. tDCS not
only led to significant greater total learning but also the behavioral
improvement remained superior in the tDCS group compared
to sham even up to 3 months after training (Reis et al., 2009b).
Anodal tDCS applied concurrently with practice demonstrated

to enhance encoding and retention of a motor memory on a
shorter time-scale. More recently, Tecchio et al. (2010) reported
an improvement of early motor memory consolidation accom-
plished by anodal tDCS over the M1 in a serial finger-tapping
task (Tecchio et al., 2010). Overall, there is accumulative evidence
that tDCS is effective in promoting long-term plastic changes
associated with learning and memory formation when increased
excitability and changes in synaptic efficacy co-occur. It is of note
that the facilitatory effect of anodal tDCS on learning might be
task specific, depending on the state of cortical activation induced
by the motor task (Bortoletto et al., 2014).

Furthermore, PAS modulated plasticity in healthy young sub-
jects. PAS was paired with rapid thumb abduction movements, a
basic model of motor learning; this led to the prevention of PASeyn-
induced LTP-like plasticity. Moreover, when PAS,s, was paired
with this basic motor learning paradigm, subsequent PAS,sn-
induced LTD-plasticity was enhanced (Ziemann et al., 2004). This
provides evidence that PAS can induce use-dependent plasticity in
healthy subjects and interacts with motor learning.

A revealing model to study altered motor learning networks is
healthy aging. In a promising study, anodal tDCS applied to M1
concurrently to an explicit motor learning task resulted in sub-
stantial improvements during training (Zimerman et al., 2013).
Furthermore, the anodal stimulation group showed superior per-
formance at the 24-h follow-up compared to sham.

Non-Invasive Brain Stimulation and Motor
Learning in Stroke

The promising results of the discussed conceptual studies in young
and old healthy subjects led to the interesting hypothesis of testing
NIBS as an adjuvant therapy in neurological disorders. A resulting
question was whether transient behavioral effects could be repro-
duced in stroke patients. The main conceptual target was to use
NIBS for normalizing imbalanced inter-hemispheric inhibition.
Following proof-of-principle studies demonstrated that anodal
tDCS applied to iM1 and cathodal tDCS applied to cM1 improved
transiently motor performance of the affected upper limb (Fregni
et al., 2005; Hummel et al., 2005, 2006). Complementary rTMS-
studies revealed that modulation of transcallosal inhibition with
inhibitory 1 Hz rTMS to cM1 (Mansur et al., 2005; Takeuchi et al.,
2005) and excitatory 20 Hz rTMS to iM1 improved motor function
in chronic stroke patients (Yozbatiran et al., 2009).

As discussed in greater detail above, motor learning is essential
for neurorehabilitation (Krakauer, 2006). In this regard, a pivotal
question was whether NIBS could facilitate motor learning in
patients. First studies investigated the effect of NIBS on motor
learning in chronic stroke patients. For instance, cathodal tDCS
applied to the cM1 during the performance of explicit motor
learning task enhanced fast online acquisition yielding to a bet-
ter task retention after 24 h. Interestingly, there was an associ-
ation between tDCS-induced improvement during training and
GABAergic intracortical changes in the affected motor cortex
(Zimerman et al., 2012). Moreover, it could be shown that exci-
tatory 10 Hz r'TMS applied to iM1 immediately before each block
of a sequential finger-tapping task, enhanced its acquisition in
chronic stroke patients (Kim et al., 2006).
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The main objective for translational research is to combine
NIBS with repetitive occupational therapy, which uses principles
of motor learning, in a clinical setting. For instance, Kim et al.
paired 10 sessions of tDCS in a double-blind parallel design
with occupational therapy of the upper limb in sub-acute stroke
patients. Cathodal tDCS to cM1 resulted in superior motor func-
tion, assessed with the Fugl-Meyer Score, in a 6-month follow-up
(Kim et al., 2010). In addition, excitatory rTMS to iM1 as add-on
to normal physical therapy over 10 consecutive days in sub-acute
stroke patients improved patients’ motor scores when compared
to sham (Khedr et al., 2005). Bolognini and collaborators paired
bihemispheric tDCS (cathodal stimulation to ¢cM1 an anodal
stimulation to iM1) with constraint-induced movement therapy
(CIMT) over 10 treatment sessions in chronic stroke patients.
Patients in the active group showed superior gains in hand func-
tion, measured with the Jebsen Taylor Hand Function Test (JTT),
Handgrip Strength, Motor Activity Log Scale, and Fugl-Meyer
Motor Score. Beyond that, as a neurophysiological correlate, the
authors could identify a reduction in inter-hemispheric inhibi-
tion from the intact to the affected hemisphere, measured with
double-pulse TMS (Bolognini et al., 2011). Another interesting
concept, especially for patients with severe upper limb paresis,
is the combination of tDCS with robot-assisted arm training.
However, first promising results of a pilot study from Hesse et al.
(2007) could not be replicated in a subsequent larger trial (Hesse
etal, 2011). A possible explanation could be that the majority of
the recruited patients had large cortical lesions and were severely
affected. In a secondary analysis, patients with pure subcortical
lesions improved significantly more after cathodal stimulation of
the cM1 than patients with cortical involvement, pointing toward
a need of individual patient stratification.

Further evidence that lesion location might have a crucial
impact on the response to stimulation comes from a study con-
ducted by Ameli et al. (2009). In their study, patients with sub-
cortical stroke improved in dexterity after 10 Hz rTMS to iMI.
This beneficial effect was not apparent in patients with additional
cortical strokes (Ameli et al., 2009).

A compelling approach is dual-tDCS stimulation (anodal elec-
trode over iM1 and cathodal electrode over cM1). Lefebvre et al.
(2012) used this montage in chronic stroke patients with moder-
ate deficits while training a complex visuomotor skill. A single-
session of dual tDCS enhanced the online learning, leading to
superior long-term retention (Lefebvre et al,, 2012). Although
promising, there is so far no clear scientific evidence that bifo-
cal stimulation is more efficient than monofocal, or for which
patients’ bifocal or monofocal might lead to more improvements.
These are important questions, which have to be addressed in
upcoming larger trials. Recently, novel training regimes, like vir-
tual reality motor training, have been paired with tDCS in sub-
acute stroke patients and have shown beneficial effects (Kim et al.,
2014a).

In addition, first studies evaluated the feasibility of PAS in
stroke patients. PASgy, resulted in a significant facilitation of the
extensor carpi radialis (ECR) MEP amplitude of the paretic side
after 5 months following subcortical stroke. Partly, the facilitation
was still present 12 months after the stroke. Furthermore, the neu-
rophysiological changes were accompanied with improvements in

the wrist section of the Fugl-Meyer motor scale and wrist force
(Castel-Lacanal et al., 2007, 2009).

To date, a number of sham-controlled studies have been
performed to investigate stimulation-associated enhancement of
motor recovery after stroke (for detailed overview, please see
Table 1). To evaluate the potential beneficial effects of NIBS,
further multicenter clinical trials are needed. In this regard, the
NETS-trial (Neuroregeneration Enhanced by Transcranial Direct
Current Stimulation (tDCS) in Stroke, ClinTrialGov NCT009097
14) has been initiated. In the on-going study, anodal tDCS to iM1
combined with standard occupational therapy is applied in 10
consecutive sessions in sub-acute stroke patients.

Potential Strategies and Underling
Mechanisms to Increase the Effect of
Non-Invasive Brain Stimulation

Effect sizes in the range between 8 and 30% of functional improve-
ment in stroke patients have been reported for NIBS (Hummel
etal., 2008b). In the next section, underlying principles and strate-
gies to increase the effectivity are discussed (for illustration, see
Figure 2; Table 2).

Where to Stimulate?

Most studies conducted so far have focused on motor cortical
stimulation. Both the iM1 and cM1 have been evaluated as targets.
The advantage of stimulating iM1 is the possibility to directly
enhance its reduced participation in the incompletely recovered
motor network after stroke (Hummel et al., 2008b). Disadvan-
tages are that the lesioned motor cortex might be more prone
to adverse effects, for example, induction of excitotoxicity in
the penumbra in the acute phase and the shunting of electrical
current. Advantage of stimulating the cM1 is that NIBS is applied
to intact cortical areas, especially relevant in patients with large
almost complete lesions of iM1, thus the cM1 could here be used
as a “window” to influence the motor system (Hummel et al,
2008b). A disadvantage is that inhibitory stimulation might also
impair complex motor function of the paretic and the intact
hand (Lotze et al., 2006). An alternative approach could be the
stimulation of secondary sensorimotor areas, basal ganglia and
cerebellum; for a conceptual review, please see Plow et al. (2014).
First proof-of-principle studies provided promising results for
SMA (Vollmann et al., 2013) and cerebellar (Galea et al., 2011;
Wessel et al., 2015) stimulation combined with motor learn-
ing paradigms in healthy volunteers. In addition, recent studies
demonstrated that inhibitory rTMS stimulation over cPMd (Wang
et al., 2014) and the cerebellum (Kim et al., 2014b) improved
motor function in stroke patients. Furthermore, excitatory rTMS
over the ipsilesional primary sensory cortex (iS1) in chronic
stroke facilitated learning of a Serial Tracking Task (Brodie et al.,
2014).

When to Stimulate?

In addition, the timing of the stimulation is most likely crucial for
efficacy in motor rehabilitation. Since NIBS and motor learning
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TABLE 1 | Summary of the sham-controlled studies performed with non-invasive brain stimulation in motor recovery after stroke.

Number Cortical/ Ischemic/ Severity Stroke Motor Concomitant Study NIBS Number Follow-ups Result
of subcortical hemorrhagic of stroke duration assessments therapy design Intervention of
patients and outcomes sessions
Khedr et al. 52 Cortico- Ischemic Moderate to  5-10days SSS, NIHSS, Bl Standard Randomized, 3Hz rTMS over  10days 10days Pos
(2005) subcortical severe physical therapy parallel groups iM1
Mansur et al. ~ Stroke 10, Cortico- Ischemic Mixed <12months  sRT, cRT, PP, FT NA Randomized, 1HzrTMS over  One NA Pos
(2005) healthy 6 subcortical Cross-over cM1 and cPM
Takeuchi 20 Subcortical Ischemic Mixed 26.95months  FM, PA NA Randomized, 1Hz rTMS over  One NA Pos
et al. (2005) parallel groups cM1
Fregni et al. 15 Cortical 1, Ischemic Mild to 44.05months MRC, ASS, JTT, NA Randomized, 1Hz rTMS over  5days 2 weeks Pos
(2006) subcortical 13, moderate sRT, cRT, PPT parallel groups cM1
cortico-
subcortical 1
Kim et al. 15 Cortical 5, Ischemic 12, Mild to 16.7months PP, GF, FT FT Randomized, 10Hz rTMS One NA Pos
(2006) subcortical 10 hemorrhagic 3 moderate cross-over over iM1
Liepertetal. 12 Subcortical (2 NM Mild 7.3 days MRC, GF, NHPT NA Randomized, 1HzrTMS over One NA Pos
(2007) pons) Cross-over cM1
Malcolm 20 Cortico- Hemorrhagic 1 Mixed 45.6months ~ WMFT, BBT, MAL CIT Randomized, 20Hz rTMS 10days 6months Neg
et al. (2007) subcortical parallel groups over iM1
Talelli et al. 6 Cortical 3, Ischemic Mild to 31 months Bl, NIHSS, ARAT, NA Randomized, iTBS over iM1, One NA Pos
(2007) subcortical 3 moderate 9HP, GF, sRT, cRT Cross-over cTBS over cM1
Dafotakis 12 Subcortical Ischemic Mild 1.88months  MRC (4-5), NIHSS,  Grasping and Randomized, 1HzrTMS over One NA Pos
et al. (2008) ARAT, grip-lift task  lifting Cross-over cM1
Mally and 64 Cortical, large Ischemic, Severe 129.6 months Spasticity score NA Randomized, 1Hz rTMS over 7 days 3months Pos
Dinya (2008) hemorrhagic 18 parallel groups cM1 and iM1
Nowak etal. 15 Subcortical Ischemic Mild 1.93months  ARAT, MRC (4-5), NA Randomized, 1HzrTMS over One NA Pos
(2008) FT, reach to grasp Cross-over cMA1
Takeuchi 20 Subcortical Ischemic Mixed 29.9months  FM, acceleration PF training Randomized, 1HzrTMS over  One 1 week Pos
et al. (2008) and PF parallel groups cM1
Ameli et al. 29 Cortical 13, Ischemic Mild to 5.5 months MRC, ARAT, MRS, NA Randomized, 10Hz rTMS One NA Mix
(2009) subcortical 16 moderate NIHSS, index finger Cross-over over iM1
and hand tapping

Khedr et al. 36 Cortical 19, Ischemic Mild to 0.57months  MRC, NIHSS, B, NA Randomized, 1Hz rTMS over  Five 3months Pos
(2009) subcortical 17 moderate tapping, PP parallel groups cM1, 3Hz over

iM1
Takeuchi 30 Subcortical Ischemic Mixed 28.8months  FM, acceleration Motor training Randomized, 1HzrTMS over  One 1 week Pos
et al. (2009) and PF (pinching task) parallel groups cM1, 10Hz over

iM1, bilateral

rTMS
Changetal. 28 Cortical 11, NM Moderate to  13.4days MI, FM, GF, BB Reaching and Randomized, 10Hz over iM1 10 3months Pos
(2010) subcortical 17 severe grasping parallel groups

exercises
(Continued)
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TABLE 1 | Continued

Number Cortical/ Ischemic/ Severity Stroke Motor Concomitant Study NIBS Number Follow-ups Result
of subcortical hemorrhagic of stroke duration assessments therapy design Intervention of
patients and outcomes sessions
Emaraetal. 60 Cortical 43, Ischemic Mild to >1month FT, mRS, Al Standard Randomized, 5Hz rTMS over  Ten 12 weeks Pos
(2010) subcortical 17 moderate physical therapy parallel groups iM1, 1Hz rTMS
over cM1
Grefkes etal. 11 Subcortical Ischemic Mild 1.91months  MRC (4-5), ARAT, NA Randomized, 1HzrTMS over  One NA Pos
(2010) NIHSS, whole hand Cross-over cM1
fist task
Avenanti 30 Cortical 3, Ischemic 20, Mild 31.47 months JTT, NHPT, BB, PF Standard Randomized, 1HzrTMS over 10 3months Pos
et al. (2012) cortico- hemorrhagic 10 physical therapy parallel groups cM1
subcortical 1,
subcortical 26
Changetal. 17 Cortical 2, Ischemic 14, Mild to >3 months JTT, SFTT SFTT Randomized, 10Hz rTMS 10 1 month Pos
(2012) subcortical 15 hemorrhagic 3 moderate parallel groups over iM1
Conforto 30 Subcortical 16, Ischemic Mild to 0.92months  MRC, NIHSS, JTT,  Standard Randomized, 1Hz rTMS, over 10 1month Pos
et al. (2012) cortical 14 severe PF physical therapy parallel groups cM1
Seniow et al. 40 Cortical 16, Ischemic 35, Moderate <3months WMFT, NIHSS, FM  Standard Randomized, 1Hz over cM1 3weeks 3months Neg
(2012) subcortical 14 hemorrhagic 5 physical therapy parallel groups
Wang et al. 28 NM NM Moderate >6months FM, WP Task-oriented Randomized, 1HzrTMS over  Ten NA Pos
(2012) training parallel groups cM1
Etoh et al. 18 Cortical 1, Ischemic 13, Severe 29.9months  FM, ARAT, MAS Physical or Randomized, 1HzrTMS over  Ten 4 weeks Pos
(2013) subcortical 17 hemorrhagic 5 occupational Cross-over cM1
therapy
Higginsetal. 11 NM NM Mild to >3 months BB, WMFT, MAL, Task-Oriented Randomized, 1Hz TMS over Eight NA Neg
(2013) severe GF, PF, SIS Training parallel groups cMi1
Sasakietal. 29 Subcortical Ischemic 13, Mild to 0.58months  NIHSS, GF, FT Standard Randomized, 10Hz rTMS Five NA Pos
(2013) hemorrhagic 16 moderate physical therapy parallel groups over iM1, 1Hz
rTMS over cM1
Sung et al. 54 Cortical 35, Ischemic 35, Severe 3-12months  GF, FM, WMST, RT  NA Randomized, 1HzrTMS over 20 NA Pos
(2013) subcortical 19 hemorrhagic 19 parallel groups cM1/iTBS over
iM1
Brodieetal. 15 Cortico- NM Mild to >6months STT, 2PD, WMFT, STT Randomized, 5Hz rTMS over  Five 1day Mix
(2014) subcortical 5, moderate BB, GF parallel groups iS1
subcortical 9
Rose et al. 19 NM Ischemic Moderate >6months WMFT, FM, ARAT, Functional Task ~ Randomized, 1HzrTMS over 16 30days Neg
(2014) GF, PF, MAS, MAL  Practice parallel groups cM1
Motamed 12 NM NM Severe >2months Bl, FM Standard Randomized, 1HzrTMS over 10 NA Pos
Vaziri et al. physical therapy parallel groups cM1
(2014)
Wang et al. 44 Cortical 16, Ischemic 29, Moderate to  3-12months  MRC, FM, WMFT Standard Randomized, 1HzrTMS over 10 NA Pos
(2014) subcortical 28 hemorrhagic 15  severe physical and parallel groups cM1, 1Hz rTMS
occupational over cPMd
therapy

(Continued)
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TABLE 1 | Continued

Number Cortical/ Ischemic/ Severity Stroke Motor Concomitant Study NIBS Number Follow-ups Result
of subcortical hemorrhagic of stroke duration assessments therapy design Intervention of
patients and outcomes sessions
Fregni et al. 6 Cortico- NM Mild to 27.1months  MRC, ASS, JTT NA Randomized, ctDCS over cM1  One NA Pos
(2005) subcortical moderate double-blinded,  and atDCS over
Cross-over iM1
Hummel 6 Subcortical 5, Ischemic Mild 44.4months  MRC, FM, ASS, NA Randomized, atDCS overiM1  One 10days Pos
et al. (2005) cortico- JTT double-blinded,
subcortical 1 Cross-over
Hummel ihl Subcortical Ischemic Mild to 41.8months  MRC, FM, ASS, NA Randomized, atDCS over M1 One NA Pos
et al. (2006) moderate sRT, PF double-blinded,
Cross-over
Boggioetal. 9 Subcortical NA Mild to 40.9months  MRC, JTT, ASS NA Randomized, ctDCS over cM1  5days 2 weeks Pos
(2007) moderate double-blinded, and atDCS over
Cross-over iM1
Kim et al. 18 Cortical 5, Ischemic Mixed 25.6days MRC (2-5) and FM  Occupational Randomized, ctDCS over 10 6 months Mix
(2010) subcortical 9, (16-60), FM, BI therapy parallel groups cM1, atDCS
cortico- over iM1
subcortical 4
Lindenberg 20 Cortico- Ischemic Severe 35.4months  FM (20-56), WMF Occupational Randomized, Bilateral tDCS Five 1 week Pos
et al. (2010) subcortical therapy parallel groups
Bolognini 14 Cortical 9, Ischemic 12, Moderate to  35.21 months FM, BI, JTT, HG, CIT Randomized, Bilateral tDCS 10 4 weeks Pos
etal. (2011) cortico- hemorrhagic 2 severe MAL parallel groups
subcortical 5
Hesseetal. 96 Mixed cortico- Ischemic Severe 0.93months  BI, FM (<18), BB, Robot-assisted  Randomized, ctDCS over cM1 30 (Bweeks)  3months Neg
(2011) subcortical MAS, MRC arm training parallel groups,  and atDCS over
multicenter iM1
Madhavan 9 Cortico- NA Lower 130.8months  FM-LE, dorsiflexion  Tracking Randomized, atDCS over iM1, One NA Pos
and Stinear subcortical extremity and plantar flexion  dorsiflexion and  cross-over atDCS over cM1
(2011) movements plantar flexion
task
Nair et al. 14 Cortical 9, NA Moderate to 31 months FM (30.1) Occupational Randomized, ctDCS over cM1  Five 1 week Pos
(2011) subcortical 5 severe therapy parallel groups
Tanakaetal. 8 Subcortical NA Mixed, lower 21.1months  SIAS, knee Force knee Randomized, atDCS overiM1 One NA Pos
(2011) extremity extension, GF extension cross-over
Stagg et al. 17 Cortical and Ischemic 16, Mixed 37.9months  FM, GF, response NA Randomized, ctDCS over cM1  One NA Pos
(2012) subcortical hemorrhagic 1 time task double-blinded,  and atDCS over
Cross-over iM1
Zimerman 12 Subcortical Ischemic Mild 30 months MRC, FM, ASS, FT  SFTT Randomized, ctDCS over cM1  One 3months Pos
etal. (2012) double-blinded,
Cross-over
(Continued)
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TABLE 1 | Continued

Number Cortical/ Ischemic/ Severity Stroke Motor Concomitant Study NIBS Number Follow-ups Result
of subcortical hemorrhagic of stroke duration assessments therapy design Intervention of
patients and outcomes sessions
Danzl et al. 8 NM Ischemic 6, Moderate 1.1- 10 MWT, TUG, RGO-locomotor  Randomized, atDCS over M1 12 1 month Pos
(2013) hemorrhagic 2 11.6years BBS, FAC, SIS training double-blind,
sham-controlled
Giacobbe 12 NM NM Moderate >6 months MRC Robotic motor Block- atDCS over iM1 Four NA Mix
et al. (2013) practice randomized,
sham-controlled
Khedr et al. 40 Cortical 18, Ischemic Moderate Anodal NIHSS, OMCASS,  Occupational Single-center, atDCS over iM1, 6days 1-8months  Pos
(2013) cortico- 13.8+5.8, BIl, MRC therapy within randomized, ctDCS over cM1
subcortical 8, cathodal 1h after double-blind,
subcortical 14 12.31+4.4, stimulation sham-controlled
sham
126+
4.6days
Lefebvre 18 Cortical 11, Ischemic 16, Moderate 2.6+ PP, GF Visuomotor Randomized, Dual-tbCS One 1 week Pos
et al. (2012) subcortical 7 hemorrhagic 2 1.5years learning task Cross-ove,
sham-
controlled,
double-blind
Rossi et al. 50 Cortical 3, Ischemic Moderate to  2days FM, NIHSS NA Single-center, atDCS over iM1 Five 5days, Neg
(2013) cortico- severe randomized, 3months
subcortical 35, double-blind,
subcortical 12 sham-controlled
Sohn et al. 11 Subcortical Ischemic 4, Severe 63.00 & Static postural NA Randomized, atDCS over iM1  Two NA Mix
(2013) hemorrhagic 7 17.27 days stability, isometric Cross-over,
strength sham-controlled
Au-Yeung 10 NM Ischemic 8, Mild to 8.3+ PP, Stroop test NA Double-blind, atDCS over iM1,  Three NA Mix
etal. (2014) hemorrhagic 2 moderate 3.2years sham- ctDCS over cM1
controlled,
randomized,
Cross-over
Fusco et al. ihl NM Ischemic Mixed <30days CNS, BI, 9HPT, Rehabilitative Double-blind, ctDCS over cM1 10 30, Neg
(2014) FM, TUG, 10MWT,  training randomized, 75-110days
6MWT, RMI, FAC sham-controlled
Lefebvre 19 Cortical 8, Ischemic 17, Moderate 4 4 2years PP, PG NA Randomized, Dual-tDCS One NA Pos
et al. (2014) subcortical 11 hemorrhagic 2 Cross-over,
sham-
controlled,
double-blind
O’'Sheaetal. 13 Cortical 6, Ischemic 12, Moderate 1.56-5.8years sRT, FM, WMFT NA Cross-over, atDCS over iM1, One NA Mix
(2014) subcortical 7 hemorrhagic 1 sham- ctDCS over
controlled, cM1, Dual-tDCS
single-blind
(Continued)
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TABLE 1 | Continued

Number Follow-ups Result

NIBS
Intervention

Study
design

Concomitant

Motor
assessments
and outcomes

Stroke
duration

Severity

of stroke

Ischemic/
hemorrhagic

Cortical/
subcortical

Number

of
sessions

therapy

of
patients

Bi-cephalic One NA Mix
tDCS

NA Double-blinded,
sham-

TUG

2-8 weeks

Cortical 6, Ischemic Moderate

14

Tahtis et al.
(2014)

subcortical 8

controlled,

parallel design

15 5 weeks Neg

atDCS over iM1

Randomized

Virtual reality
therapy

FM, WMFT, ASS,

Anodal
GF

Moderate

Ischemic 19,

NM

20

Viana et al.
(2014)

double-blind,

31.9418.2,
sham 35 £

hemorrhagic 1

sham-controlled

20.3months

10MWT, 10 Meter Walk Test; 2PD, 2-point discrimination; 6MWT, Six-Minute Walking Test; 9HF, 9-holepeg Test; Al, Activity Index score; ARAT, Action Research Arm Test; ASS, Ashworth Spasticity Scale; BB, Box and Block Test; BBS,

Berg Balance Scale; Bl, Barthel Index; CIT, constrain-induced therapy; cM1, contralesional motor cortex; CNS, Canadian Neurological Scale; cPM, contralesional premotor cortex; cRT, choice reaction time task; FAC, functional ambulation

category; FM, Fugl-Meyer Scale; FT, finger-tapping task; GF, grip force; iM1, ipsilesional motor cortex; JTT, Jebsen-Taylor Hand Function Test; MAL, motor activity log; MAS, Modified Ashworth Spasticity Scale;

I, motoricity index; Mix,

mixed result; MRC, Medical Research Council; mRS, modified Ranking Scale; NA, not applicable; Neg, negative result; NIHSS, NIH Stroke Scale; NM, not mentioned; OMCASS, Orgogozo’s MCA scale; PA, pinch acceleration; PF, pinch
force; PG, precision grip; Pos, positive result; PR, Purdue Pegboard Test; RMI, Rivermead Mobility Index; S1, primary sensory cortex; SFTT, sequential finger-tapping task; SIAS, Stroke Impairment Assessment Set; SIS, Stroke Impact

P, walking performance.

5

s

'MFT, Wolf Motor Function Test; Wi

Scale 16; sRT, simple reaction time task; SSS, Scandinavian Stroke Scale; STT, serial tracking task; TUG, Timed Up and Go Test; Wi

share in part similar mechanisms, it has been proposed that
simultaneous application could be more or perhaps only effective
(Hummel et al., 2008b; Bolognini et al., 2009). Stagg et al. (2011)
systematically addressed this issue focusing on tDCS. In their
study, anodal tDCS applied during an explicit sequence-learning
task was associated with faster learning, whereas cathodal tDCS
and anodal tDCS applied prior to the learning task was associated
with slower learning (Stagg et al., 2011). This concept might hold
true for stroke patients. In a recent single-center randomized,
double-blind, sham-controlled study anodal tDCS applied to iM1
without conjunctive motor training could not elicit significant
differences in Fugl-Meyer motor scores in-between stimulation
groups in 50 acute stroke patients (Rossi et al., 2013). In this
regard, it can be speculated that only concomitant combination of
motor training with NIBS leads to additive or even supra-additive
longer-lasting effects.

A remaining crucial question is in which state, acute, sub-
acute, or chronic phase of the recovery process NIBS should be
applied. To date, this issue cannot be answered sufficiently, but
some theoretical consideration can be drawn. A benefit of early
stimulation could be the enhanced adaptive plasticity in the acute
and sub-acute phase (Ward, 2004; Nudo, 2006; Hummel et al,,
2008b). Whereas, an advantage of late stimulation could be the
lower risk of interfering with rescue of critically nourished neu-
rons and of inducing neuronal toxicity after glial scar formation
in the chronic phase (Hummel et al., 2008b). Moreover, when
chronic patients show a more stable deficit, it is easier to evaluate
possible behavioral effects of NIBS protocols (Hummel et al.,
2008b). To conclude, more systematic studies are needed to find
the optimal time point for application of a plasticity-inducing
protocols.

How to Stimulate?

For methodological reasons, rTMS protocols, where subjects have
to sit still during the intervention and cannot perform intensive
motor training, are usually applied in an offline approach, utilizing
the induced after-effects in the order of 30-60 min (Ziemann et al.,
2008).

To increase effectivity, a promising complementary strategy
could be the application of NIBS in a multi-session design. The
magnitude of motor improvement in chronic stroke patients was
increased over time by repetitive daily rTMS sessions (Fregni et al.,
2006). In a complementary study, daily cathodal tDCS sessions to
cM1 resulted in an augmented motor improvement when com-
pared to a single-session design. Interestingly, this additive effect
was not apparent in a design with weekly sessions (Boggio et al.,
2007). An alternative compelling approach could be the use of
spaced stimulation patterns, with multiple daily sessions. This
might lead to prolonged after-effects via late-phase LTP/LTD-like
neuroplasticity (Goldsworthy et al., 2014).

Lindenberg et al. (2010) have tested the effect of multifo-
cal stimulation. In their study, they paired bihemispheric tDCS
(anodal to iM1 and cathodal tDCS to cM1) with simultaneous
occupational therapy (Lindenberg et al., 2010). Bihemispheric
real stimulation resulted in a significant greater improvement in
motor function when compared to sham stimulation. Although,
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FIGURE 2 | Proposed strategies to increase the effect of non-invasive premotor cortex; tDCS, transcranial direct current stimulation; rTMS, repetitive
brain stimulation (NIBS) in motor recovery after stroke. iM1, ipsilesional transcranial magnetic stimulation; TBS, theta-burst stimulation; PAS, paired
primary motor cortex; cM1, contralesional primary motor cortex; PMC, associative stimulation.
TABLE 2 | Pros and cons of potential strategies for increasing the effect of non-invasive brain stimulation.
Strategy Pros Cons
Stimulation of iM1 e Direct enhancement of the reduced participation in the e Higher risk of adverse effects due to induction of excitotoxicity
incompletely recovered motor network after stroke in the penumbra and shunting of electrical current
Stimulation of cM1 e Stimulation of intact cortical areas e Inhibitory stimulation might also impair complex motor function
Stimulation of secondary e Stimulation of intact cortical areas e More difficult to target
sensorimotor areas e Modulation of cortico-cortical connections to M1
Stimulation of the e Stimulation of intact cortical areas e More difficult to target
cerebellum o Alternative target within the motor learning network e Comparable high discomfort of cerebellar rTMS protocols
Simultaneous application of e Simultaneous modulation of LTP-/LTD-like mechanisms e Unfavorable homeostatic interactions

a motor training paradigm

Stimulation in the acute or
sub-acute phase

Stimulation in the chronic
phase

Multi-session stimulation
Multifocal stimulation

Sequential stimulation

Patterned rTMS protocols

e Not feasible for most rTMS protocols

e Enhanced adaptive plasticity e Higher risk of adverse effects

e More stable deficit e Reestablished growth/plasticity inhibition

o Lower risk of adverse effects

e Enhancement of plasticity, e.g., induction of late-phase e More complex and time-consuming
LTP/LTD-like neuroplasticity

e Modulation of multiple nodes of the motor network e Higher risk of adverse effects, e.g., shunting of current

e Induction of additive or supra-additive effects

e Time-dependent modulation of multiple nodes of the motor e More complex setup
network

e Shorter delivery time e Higher risk of adverse effects

e Proposed potent modulatory aftereffect e Need of a more complex and expensive setup

o Mixed results

an additive effect in motor function scores has been proposed, it Finally, a promising new interventional approach is the use
remains unclear whether the bilateral approach is superior to a  of patterned rTMS protocols, like TBS. Proposed advantages
unilateral due to lack of sufficient control conditions. Sequential  are shorter delivery time and potent modulatory after-effects
stimulation of different areas involved during the motor learning  (Edwardson et al., 2013). In a first small proof-of-principle study,
process could be an alternative strategy (Grimaldi et al., 2014). iTBS applied to iM1 improved motor function in chronic stroke
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patients (Talelli et al., 2007). In a larger semi-randomized clinical
trial, in which iTBS to iM1 was combined with physical therapy
over 10 days, this adjuvant effect of iTBS could not be replicated
(Talelli et al., 2012).

Lastly, we want to point out that despite its similarities, rTMS,
tDCS, and PAS differ in spatial and temporal resolution and the
underlying neurophysiological mechanisms (Gandiga et al., 2006;
Ziemann et al., 2008).

Enhancement of Motor Learning by
Innovative Training Regimes

In addition to adjuvant NIBS, stroke patients could potentially
benefit from the use of innovative training regimes.

In a standard neurorehabilitative training session, usually a
variety of different skills are practiced. The consolidation of the
learned skills is highly dependent on the practice protocols. Per-
formance during training is typically better, when the different
skills are trained in a sequential order - block design. A random,
intermingled training usually results in greater offline learning.
This effect is called contextual interference (Battig, 1972). Recent
fMRI studies provided evidence that random practice results in
greater neuronal activity in regions crucial for preparation and
production of learned motor skills at the end of training relative
to block practice. It has been suggested that this persistent active
preparation benefits offline learning (Wymbs and Grafton, 2009).
Schweighofer et al. (2011) investigated the contextual interference
effect in sub-acute stroke patients. In their study, patients with
normal visuospatial working memory showed less long-term for-
getting in a visuomotor task in the random training condition.
Whereas, patients with low visuospatial working memory exhib-
ited little long-term forgetting in both conditions (Schweighofer
etal, 2011).

It has been suggested that the feedback given on a training
session modulates its memory formation. This has been exten-
sively investigated in animal models using associative learning
paradigms. It was shown that reward of good performance and
punishment of bad performance can modulate its memory con-
solidation (Tempel et al., 1983). Abe et al. (2011) recently studied
this phenomenon in human motor skill learning in young healthy
subjects. Learning under reward conditions enhanced long-term
retention via significant offline memory gains. Whereas, train-
ing under neutral and punished conditions exhibited offline
memory losses (Abe et al., 2011). Proposed neuroanatomical sub-
strates of reward processing are dopaminergic neurotransmission
(Zald et al., 2004) and in interconnected network involving the
orbitofrontal cortex, amygdala, and ventral striatum (O’Doherty,
2004). Interestingly, a recent study provided evidence that high
reward can facilitate learning of an ankle robotics motor training
task in chronic stroke patients (Goodman et al., 2014).

Future Directions

Non-invasive brain stimulation techniques are a promising adju-
vant strategy for enhancing post-stroke recovery. However, many

open questions remain. Future studies have to investigate pos-
sible mechanisms, the optimal site, time point and type of
stimulation (Hummel et al., 2008b). Since stroke is a hetero-
geneous condition, it is very likely that patients will benefit
most from individually tailored stimulation protocols. This could
be achieved by patient stratification in regards to the clinical
deficit, lesion location, lesion size, comorbidities, time in the
recovery process, age, and gender (Hummel et al., 2008b). Also
standardized algorithms, e.g., the PREP algorithm recently pro-
posed by Stinear et al. (2012), could be useful for patient strat-
ification. Another promising strategy could be the combina-
tion of different stimulation techniques. For instance, the com-
bination of PNS and tDCS to iM1 in chronic stroke patients
resulted in superior performance in a sequential motor task com-
pared to unimodal stimulation or training alone (Celnik et al,
2009).

Opverall, there is a great need for the development and testing
of novel innovative interventional strategies individually tailored
to the patients’ prerequisites. To achieve these goals, mechanism
driven proof-of principle studies and large, multicenter, placebo-
controlled trials are still necessary. Furthermore, a close coopera-
tion between basic researchers and clinicians is needed to develop
the field and bring innovative ideas from bench to bedside into
daily clinical life.

Limitations of Non-Invasive Brain
Stimulation

In spite of the encouraging perspective of NIBS, limitations and
unresolved issues remain.

A recent study by Wiethoff and colleagues emphasized the high
in-between subject variability of tDCS protocols. They applied
10min of tDCS over M1 in 53 healthy subjects in a cross-
over design and assed the corticospinal excitability by measur-
ing the MEP amplitude. At group level, anodal tDCS facilitated
the MEP whereas cathodal tDCS showed no significant effect.
In inspection of the single subject data, only 36% showed the
expected facilitatory anodal and inhibitory cathodal effect, 21%
showed a reversed pattern, 38% showed a polarity independent
facilitatory, and 5% an inhibitory effect (Wiethoff et al., 2014).
In this regard, several factors, which influence the response to
plasticity-inducing NIBS protocols, like the history of synaptic
activity, genetic polymorphisms of neurotrophins, use of CNS-
active drugs, attention, age, gender, circadian rhythms, aerobic
exercise, among others have been identified (Ridding and Zie-
mann, 2010).

Itis of note that NIBS can potentially induce adverse effects, like
headache (occasionally), skin burning (rare), seizures (very rare),
and eyelid myokymia (very rare) (Brunoni et al., 2011; Wessel
etal., 2013).
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