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In recent years there has been a remarkable increase in research focusing on deficits
of pitch production in singing. A critical concern has been the identification of “poor
pitch singers,” which we refer to more generally as individuals having a “vocal pitch
imitation deficit.” The present paper includes a critical assessment of the assumption
that vocal pitch imitation abilities can be treated as a dichotomy. Though this practice
may be useful for data analysis and may be necessary within educational practice, we
argue that this approach is complicated by a series of problems. Moreover, we argue
that a more informative (and less problematic) approach comes from analyzing vocal
pitch imitation abilities on a continuum, referred to as effect magnitude regression, and
offer examples concerning how researchers may analyze data using this approach. We
also argue that the understanding of this deficit may be better served by focusing on
the effects of experimental manipulations on different individuals, rather than attempt to
treat values of individual measures, and isolated tasks, as absolute measures of ability.

Keywords: poor-pitch singing, vocal imitation, music performance, musical deficits, singing assessment

Introduction

The past decade has witnessed a surge in research on individual differences in singing from a cogni-
tive science perspective (for recent reviews see Pfordresher and Mantell, 2009; Dalla Bella et al.,
2011; Tsang et al., 2012; Berkowska and Dalla Bella, 2013). A core issue within this research has to
do with how to set the boundary that defines which singers are considered “accurate” or “good,”
and which singers may be “inaccurate,” “poor,” “tone-deaf;” et cetera (e.g., Pfordresher et al., 2010;
Hutchins and Peretz, 2012; Hutchins et al., 2012; Berkowska and Dalla Bella, 2013; Dalla Bella,
2015). Typically, these categories are treated as discrete, although there is agreement that more
than one kind of internal deficit may push an individual into the “poor” category (e.g., Hutchins
and Peretz, 2012). The standard practice (by our assessment) in recent literature has been to use this
grouping variable as one factor in an analysis of variance (ANOVA), which may be dichotomous
(e.g., Pfordresher and Brown, 2007; Moore et al., 2008; Wise and Sloboda, 2008; Hutchins and
Peretz, 2012; Berkowska and Dalla Bella, 2013) or may have three levels that include an intermedi-
ate category (e.g., Joyner, 1969; Killian, 1991; McCoy, 1997; Price, 2000; Demorest and Clements,
2007; Moore et al., 2007).

Although the use of discrete categories is expedient for statistical analysis and is cognitively
efficient, we here suggest that the field may be better served by changing course. We propose an
approach that evaluates how pitch imitation performance varies on a continuum, which we refer
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to as effect magnitude regression. We suggest that this approach
may prove more informative than the standard approach, while
avoiding some important complications. The article begins by
discussing the complications, including the inherent potential for
oversimplification that comes from the use of discrete categories,
variability in how an individual may be assessed using different
measures or tasks, and difficulty identifying separate groups from
distributions of performance. We go on to demonstrate how two
specific effects, first demonstrated using the standard practice,
may be better evaluated using a regression-based approach that
examines each effect on a continuum.

As a matter of terminology, we contextualize singing as one
manifestation of a more general ability involved in the vocal
imitation of pitch. As such, in this paper we will refer to “vocal
pitch imitation” rather than “singing”, and will refer to indi-
viduals as having a “vocal pitch imitation deficit” (VPID) as
opposed to “poor-pitch singers.” There are two reasons for the
present terminology. First, the kind of singing tasks we address
are those that involve replication (imitation) of a specific stan-
dard (which may be one pitch or a melody), and the analyses
we present focus on vocal pitch accuracy. Thus, we are not
addressing aspects of singing that bear on features other than
pitch accuracy (e.g., rthythms, expressive nuances), nor are we
addressing forms of singing that do not involve the intention
to replicate a specific ideal pitch pattern (e.g., improvisation).
Second, although the tasks we discuss here do involve singing,
recent research suggests that most individuals who fail to match
pitch while singing exhibit similar deficiencies when imitating
spoken intonation (Mantell and Pfordresher, 2013).

The Trouble with Dichotomies

Categories help simplify the complexity of stimuli in our environ-
ment, and as such the tendency to form categories and hierarchies
of categories is prominent in human and animal cognition (e.g.,
Harnad, 2003; Ashby and Maddox, 2005). However, because cate-
gories simplify the physical environment, it is worth treating
discrete categories of individuals with caution.

Whether or not categorization of individuals into groups
constitutes over-simplification depends in part on how research is
directed. Some scientific questions, for instance, may be oriented
toward a better understanding of how the listener perceives
subjectively “good” or “bad” quality singing (Sundberg et al.,
1996, 2013; Vurma and Ross, 2006; Larrouy-Maestri et al.,
2013b, 2014), or the performance characteristics that lead to self-
assessment in discrete categories (e.g., self-declared “tone deaf-
ness,” Wise and Sloboda, 2008). In applied settings, categorization
into groups may be necessary based on practical demands, as
in the case of a choir director who must either accept or reject
singers based on an audition. However, for those of us wanting
to understand mechanisms of vocal imitation in their own right,
we suggest that the tendency toward use of discrete categories is
problematic.

The sense that individual differences in vocal imitation accu-
racy may not be as discrete as one might think has already been
expressed in Dalla Bella and Berkowska (2009), who proposed

different “phenotypes” of VPID based on the fact that individ-
uals differ with respect to the inaccuracy they exhibit on various
tasks. Along similar lines Hutchins and Peretz (2012) proposed
different varieties of VPID based on whether participants show
sensitivity to the timbre of a pitch they attempt to match. We see
these directions as useful, but propose taking things a step further.
Why not dispense with discrete categories altogether, and address
how individuals differ on a continuum of performance?

Recent evidence suggests some basic problems with the reli-
ability and validity of participant categories. Past attempts to
determine frequencies of VPID have yielded highly variable esti-
mates based on the criterion. Pfordresher and Brown (2007)
reported a frequency of VPID around 15%, which has been repli-
cated in some other research (Dalla Bella et al., 2007; Pfordresher
et al., 2010), but has also been questioned on highly reason-
able grounds (e.g., Hutchins and Peretz, 2012). As it stands, the
frequency of individuals who fit the VPID category may range
from 2 to 78% depending on which task or measure of production
one uses (Berkowska and Dalla Bella, 2013; Loui et al., 2015).

Even when the research question directly involves the percep-
tion of discrete categories in vocal imitation performance,
complexities arise. Take for instance the degree of deviation
between a sung pitch and the target pitch one attempts to match
that is necessary to categorize the note as an “error.” The stan-
dard measurement unit for musical pitch is cents, in which
100 cents is the difference between two adjacent pitch classes
in equal tempered tuning (i.e., two adjacent keys on a standard
keyboard). On the surface, any sung deviation outside a window
of 100 cents around the target pitch (from 50 cents sharp to
50 cents flat) is an error. However, how errors are perceived may
be a different matter. Some studies have found that deviations
around 10-45 cents start to affect interval perception, suggest-
ing better acuity than one might assume (Moran and Pratt, 1926;
Ward, 1954; Rakowski and Miskiewicz, 1985; Rakowski, 1990;
Vurma and Ross, 2006; Larrouy-Maestri et al., 2013a). However,
other studies show greater tolerance for mistuning, between 50
and 70 cents (Lindgren and Sundberg, unpublished, quoted by
Sundberg, 1979, 1982), or beyond a semitone (Rakowski, 1976;
Siegel and Siegel, 1977; Burns and Ward, 1978; Halpern and
Zatorre, 1979; Sundberg et al., 1996; Schellenberg, 2001). In
addition, recent evidence suggests that listeners’ tolerance for
mistuning is higher (a greater deviation is necessary to be heard
as an error) for vocal timbres than for violin (Hutchins et al.,
2012). Moreover, most of these studies have focused solely on
short sequences or on the final tone of a sequence, leaving the role
of surrounding context still under question (Larrouy-Maestri,
unpublished doctoral dissertation). In conclusion, the way in
which listeners categorize singers is still in itself an area of vigor-
ous exploration, making the application of categories to research
on production questionable.

The Trouble with Measurement

The use of a broad array of tasks in a “battery” to measure
musical abilities is longstanding (e.g., Seashore, 1919). Several
standardized listening tests have been proposed (for a review, see
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Vispoel, 1999). Recently, researchers have proposed batteries that
focus specifically on singing, often with the goal of identifying
deficient individuals (e.g., the Sung Performance Battery, SPB,
Berkowska and Dalla Bella, 2013; the AIRS test battery, Cohen
et al., 2009; the Seattle Singing Accuracy Profile, SSAP, Demorest
et al., 2015).

Generally speaking, a good test is designed to sample the
domain of interest broadly. As such, existing batteries include a
range of tasks including matching a single pitch, singing a pair
of pitches that forms a melodic interval, imitating short unfa-
miliar melodies, and singing familiar melodies from memory (or
via imitation). Details on these tasks can be found in the orig-
inal papers; our focus for the present is on how tasks influence
categorization of individuals. Performance on batteries is usually
summarized through a composite score that incorporates all the
tasks or a subset of the tasks that seem most predictive. What if
different subscales lead to different classifications of individuals?
Such is the case for singing. In a thorough investigation of the
SPB, Berkowska and Dalla Bella (2013) found that a single perfor-
mance measure could yield highly divergent counts of VPID
individuals in tasks that involve single pitch matching (58%) vs.
the imitation of a novel melody (78%). 'We reflect more on how
different tasks influence distributions of performance scores in
the next section.

Other factors related to performance batteries likewise can
have a strong effect on performance, and thus on the percent
of the population who may be said to exhibit VPID. Previous
evidence suggests an advantage for vocal timbres over non-
vocal timbres (Moore et al., 2007, 2008; Nikjeh et al., 2009;
Hutchins and Peretz, 2012; Lévéque et al., 2012), and the timbre
of one’s own voice over the voice of another individual (Moore
et al., 2008; Hutchins and Peretz, 2012; Pfordresher and Mantell,
2014). Another potentially important factor may be whether
one is accompanied while singing, manipulations of which have
led to variable outcomes (Petzold, 1969; Goetze and Horii,
1989; Pfordresher and Brown, 2007; Wise and Sloboda, 2008;
Hutchins et al., 2010; Nichols, unpublished doctoral disserta-
tion). Finally, the extent of VPID is enhanced when partici-
pants are asked to imitate pitches that are far from the center
of their range, as opposed to pitches that are more comfort-
able for them to sing (Sims et al., 1982; Small and McCachern,
1983; Green, 1989; Pfordresher and Brown, 2007; Hutchins et al.,
2014).

Sources of variability like this are fairly standard in the test-
ing of abilities. Indeed, it is to be expected that some tasks
will be more complex than others. The problem as we see it
emerges when one is required to commit to a specific score
that acts as a dividing line separating groups. In such cases
there must be some “ground truth” to a specific task, but what
task is best? Ecologically minded individuals no doubt would
favor the imitation of melodies over matching single pitches, but
what melodies? Does it make sense to choose pitches that are as
comfortable as possible for a participant when real-world singing

!t is important to note that the issue we raise here does not have to do with intrin-
sic properties of batteries, but instead with the use of batteries to form discrete
groups. Indeed, we consider the use of standardized performance batteries to be of
great use to research on VPID.

may not offer such opportunities? Finally, even if a task can
be identifiably ideal over others, there is another measurement
related issue: the way in which one measures “accuracy.”

The most common way accuracy is measured is through the
difference between sung and target pitch for individual notes after
transforming each into cents (a scale in which 100 cents = 1 musi-
cal semitone, the difference in pitch between two adjacent piano
keys). The magnitude of these deviations across trials can be used
to assess the magnitude of one’s average deviation from target
notes.

When singing accuracy is measured in this way, researchers
typically use absolute values of each deviation score for each note,
and then use the average value as a summary statistic. This prac-
tice is convenient and intuitively appealing because it disregards
the sign of the deviation (sharp vs. flat), which is usually not
of central interest, and prevents differently signed errors from
canceling each other out (few if any would say that a person who
sings half her pitches 100 cents sharp and the other half 100 cents
flat a “good” singer). Nevertheless, this practice conflates a
distinction that historically has been important in motor control
(e.g., Schmidt and Lee, 1999), and has roots in statistical esti-
mation (e.g., Winer et al., 1991). Specifically, the mean signed
difference between a participant’s sung pitches and the vari-
ous target pitches he or she attempts relates to what in motor
control is called “accuracy,” but in an intuitive sense reflects
a general response bias in performance. This is distinct from
another measure of performance known as “precision” in motor
control, which essentially reflects random variability in perfor-
mance. These measures may reflect different components of what
listeners experience as being “accuracy,” and may identify differ-
ent varieties of VPID (cf. Pfordresher et al., 2010). Importantly,
whereas an individual’s signed pitch deviations reflect accuracy
in the formal sense used in statistics and motor control, taking
a mean from the absolute values of these deviations reflects both
accuracy, and precision.

Because of this, means for the absolute values of pitch devia-
tion scores are higher in magnitude than the absolute value taken
from the mean of signed deviation scores, as will be demonstrated
in the next section. Thus, from the standpoint of using a single
value as a criterion that separates accurate from VPID imitators,
merely taking the absolute value can have significant influences. It
is also worth noting that the practice of converting pitch deviation
scores into dichotomous error scores (e.g., calling any sung note
with a deviation outside a window of £50 cents) is comparable to
using the mean of absolute deviation scores.

Such measures are, of course, limited to singing tasks that
involve specific target pitches (e.g., imitation of sung sequences
immediately after hearing a model singer). However, when
singing a familiar song from long-term memory, it may not
be appropriate to assume that an individual is attempting to
sing specific absolute pitch classes (though people may do
this when recalling popular music, Levitin, 1994). For such
tasks, one must focus on relative pitch content in production.
This can be done by comparing pairwise differences in sung
melodic intervals to matched pairwise differences in the target
melody. In addition to the comparison of consecutive notes,
one can also estimate the pitch stability (Dalla Bella et al,
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2007), or the tonal center deviation (Hutchins et al., 2014;
Larrouy-Maestri and Morsomme, 2014) by choosing specific
notes along the tonal sequences. Such measures will reflect devi-
ations in relative but not absolute pitch; a participant who
imitates the interval C to G by singing D to A may be
100 cents sharp for each sung note but will be perfectly accu-
rate with respect to relative pitch (both intervals are a perfect
Sth).

For the purpose of this paper what matters most is the fact
that measuring accuracy of intervals may lead to different catego-
rization of individuals than categorization based on the accuracy
of individual notes. The mean absolute value of interval devi-
ation scores tends to be far lower than scores based on indi-
vidual notes (Vurma and Ross, 2006; Pfordresher and Brown,
2007; Berkowska and Dalla Bella, 2013). For example, whereas
Berkowska and Dalla Bella (2013) identified 78% of their samples
as VPID for a melody imitation tasks when a 50-cents criterion
was applied to notes (mentioned earlier), this count dropped to
34% of the sample when the same criterion and task was used but
the measurement was of interval deviation rather than deviation
of notes.

The Trouble with Distributions

However performance is analyzed, the result is a distribution of
scores that varies across individuals. The formation of discrete
categories involves separating this distribution at some point.
A simple way to segment a distribution of scores is when the
scores cluster noticeably, by revealing a “break” in a frequency
distribution, or (even better) two modes. A decisive outcome like
this was published in a study on Absolute Pitch (the ability to label
a musical pitch outside of a musical context). Although variabil-
ity in performance on labeling tasks can be found for participants
labeled as having or not having this ability, the distribution of
scores on two similar tasks both revealed a dip in the frequency of
scores, demonstrating a bimodal separation between the groups
(Athos et al., 2007).

Where do singing abilities stand? Figure 1 shows a distribu-
tion of singing accuracy measures from a large sample of data
from our lab (N = 228), pooled across four published studies
(Pfordresher and Brown, 2007, 2009; Pfordresher et al., 2010;
Pfordresher and Mantell, 2014), and a sample of unpublished
data (n = 26). All tasks involved the imitation of four-note
isochronous, major-key sung sequences on a neutral syllable
(/da/). The complexity of sequences included here varied from
patterns including a single repeated pitch, to patterns with four
distinct pitches (ranging within a perfect 5th). Both panels show
frequency histograms relating to the deviation (in cents) of indi-
vidual sung pitches from their respective target pitch in the
sequence. Frequencies come from averages for each participant
across all sung notes and trials. Data in Figure 1A come from
the mean for each subject (across tasks) of the signed difference
between sung and target pitches, whereas Figure 1B plots the
mean of absolute differences for each subject. As mentioned in the
previous section, means from absolute differences are typically
larger in magnitude than signed differences.

18%
16% |
14%
12% -
10%
8%
6%
4%

2% J
ala t

0% ¥ Teer Ty t T

-400 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 350 400
Mean signed pitch deviation (cents)

% of individuals

T

12%
10%
8%
6%
4%

% of individuals

2%

LN N

0% ¢ 1 t 1
0 50 100 150 200 250 300 350 400 450 500 550 600

Mean absolute pitch deviation (cents)

¥

FIGURE 1 | Frequency distributions of scores for signed pitch
deviations (A) and absolute pitch deviations (B) when averaged across
a set of notes and trials for each individual. Vertical lines highlight
50-cents increments on the X axis.

Two points emerge from this analysis. First, neither panel
shows a clear division between groups. There is no hint of
a second mode or a clear gap in the frequency histogram.
Second, the distributions here replicate the problem discussed
in Berkowska and Dalla Bella (2013). If VPID singers are said
to be those whose mean signed deviation is greater than 450
or less than —50, the percent of VPID singers comes out to
be approximately 32%. However, taking the absolute value for
each measured score makes this figure surge to 59% using the
same criterion (an absolute value of 50 cents). Thus, differ-
ences in vocal imitation do not represent the clear distinction
that was found for AP abilities. To be fair, most human abil-
ities are continuously distributed, leaving the designation of a
cutoff criterion up to statistical principles (e.g., two SD from the
mean) or practical considerations (discussed before). However,
the joint effect of the present complication along with issues
brought in the previous section casts serious doubts on how
effectively researchers can establish fixed and general cutoff
criteria.

The second problem with distributions of this sort is statis-
tical. A major convenience in dichotomizing groups is that
“group” can be treated as a two-level factor in an ANOVA.
Interactions of experimental manipulations with this dichoto-
mous factor can be dealt with straightforwardly in simple effects
analysis and interaction contrasts. However, a major assump-
tion of ANOVA is homogeneity of variance and ANOVA is
less robust to violations of this assumption than to violations
of other assumptions (Keppel and Wickens, 2004). Using the
present data as a paradigmatic example, the ratio of variances
across groups (the metric used for the F-max test for homo-
geneity) is many orders of magnitude when using either a 50 or
100-cents criterion for either measure plotted in Figure 1 (See
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TABLE 1 | Group statistics based on different criteria for data plotted in
Figure 1.

Type of measure Signed deviation Absolute deviation

Type of criterion 50 cents 100 cents 50 cents 100 cents
M accurate 15.48 24.03 27.22 42.82

M VPID 188.66 267.75 173.87 233.37

% VPID 32% 19% 60% 38%

s2 Accurate 144.22 516 179.23 653.87

s2 VPID 29,229.47 31,701.43 19,659.14 21,333.46
Ratio 202.66 61.44 109.69 32.63

Table 1). The smallest ratio obtained is 32.6 (for a criterion of
100 cents applied to the data of Figure 1B), and the largest is 202.7
(criterion of 50 cents applied to the data of Figure 1A). Under
ideal circumstances this ratio should be 1 (perfect homogeneity)
and critical values for the F-max statistic (which one does
not want to exceed) are on the order of 1-3. Based on such
extreme differences, the convenience of dichotomizing groups
for use in ANOVA may be offset by questions of statistical
validity.

Issues summarized in this section are not uncommon in
the behavioral sciences, and on their own are not insurmount-
able. With respect to heterogeneity of variance, for instance, a
log transformation of the present data for instance remedies
the problem (e.g., variance ratio for 50-cents criterion, abso-
lute deviation becomes 1.23). For us, however, the problems
detailed here add to the series of complications for standard
practice that we have summarized so far. This brings us to
our recommendations for a possibly more fruitful way to
understand VPID.

A New Way Forward

We suggest an alternate approach we refer to as effect magni-
tude regression that is designed to measure how the strength
of an experimental effect varies across individuals based on
each person’s overall accuracy. Specifically, we propose using
measures of pitch imitation performance in a continuous rather
than discrete way, as a predictor (X) variable. The Y variable
is then a measurement of some experimental effect defined
for each individual on this continuum. In this context, the
X variable is the same kind of measure that may be used
in a performance battery, cited earlier. The critical differ-
ence here is that the analysis focuses on the continuum of
X-values, rather than using a specific value as a cutoff crite-
rion. The Y variable measures the magnitude of an experimental
effect for each individual and thus involves the kind of treat-
ment variance that can also be measured in an ANOVA. In
addition to avoiding conceptual and statistical problems, we
think this approach more genuinely reflects the distribution of
individual performance (continuous, rather than bimodal) and
that it offers more information about the nature of individual
differences.

Although this approach is not dominant in the literature,
examples exist. For instance Granot et al. (2013, Figure 3) report a

regression in which a predictor variable related to musical sophis-
tication (OOT), is correlated with a Y variable measuring the
difference in singing performance between imitating a live model
(audio and visual) and the imitation of a recording (audio only).
Participants scoring higher on the sophistication measure exhib-
ited a larger advantage for the live model (i.e., a larger raw effect
size), and thus a larger Y-value. Of course, the authors could have
subjected the same data to an analysis that followed the standard
practice. Such an analysis would have involved separating partic-
ipants into dichotomous “low” and “high” sophistication groups
and enter that as a quasi-experimental factor into an ANOVA or
t-test. However, we think that the analysis reported by the authors
is both more valid and more informative.

It is important to note that the effect magnitude regression
we propose here is distinct from simpler bivariate regression
that is reported in many papers (e.g., Dalla Bella et al., 2007,
2009; Hutchins and Peretz, 2012; Larrouy-Maestri et al., 2013b).
Whereas bivariate regression can address relationship of two vari-
ables, it cannot speak to the influence of some manipulation
(Y), as a function of some predictor variable (X). Ultimately
we see bivariate regression and effect magnitude regression as
complementing each other, as we will discuss in more detail later.

We now present two examples of effects from previous
data sets that were originally presented using a dichotomous
“group” variable ANOVA (the “standard” approach). These
examples illustrate the possible pitfalls of the standard approach
and demonstrate the proposed analysis using effect magnitude
regression.

Example 1: Effect of Chorused Feedback on
Singing

The first example we choose concerns the effect of singing along
with the correct melody (chorused, or augmented feedback),
vs. singing solo (normal feedback), as reported by Pfordresher
and Brown (2007, Experiment 1). Contrary to our initial intu-
itions, accuracy among VPID participants diminished rather
than improved when these individuals experienced chorused as
opposed to normal feedback, whereas the opposite was found
for accurate imitators. This result suggests that VPID partic-
ipants may not be able to generate an appropriate “efference
copy” of their motor plan in order to minimize error between
the additional feedback (the “chorus”) and feedback from oneself
(Wolpert and Kawato, 1998; Pfordresher, 2011). Other stud-
ies have reported designs that partly replicated this procedure,
but did not replicate the result. Hutchins et al. (2010) reported
a null effect of chorused feedback when comparing congeni-
tal amusia with normal controls, and Wise and Sloboda (2008)
reported improvement from chorused feedback among indi-
viduals who self-identify as “tone deaf.” Taken together, one
wonders whether the initial effect was an artifact, or some
kind of selective interaction based on how one defines group
differences.

A re-analysis of the original data set reveals the effect to
be highly sensitive to where one sets the criterion for dividing
groups, which may partly account for variability across studies.
Figure 2 plots the interaction of group with feedback (normal or
chorused) using four different criteria for distinguishing groups.

Frontiers in Human Neuroscience | www.frontiersin.org

May 2015 | Volume 9 | Article 271


http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive

Pfordresher and Larrouy-Maestri

Categorizing pitch imitation deficits

500 Criterion = 30 cents

z
c 400
8
- 350
‘2' 300 4 O Normal
E 250 - O Chorused
s 200
S 1
L 150
5 I
o 100 -
a2
O I N
] 0
s

Accurate VPID

Group
Accurate N =44
VPIDN =34
n%,=.02

500 - Criterion = 100 cents

450

z

€ 400

[T

T 51 Gnomal

g 300 orma [

z 250 O Chorused

° ]

S 200 l

] 150

=]

S 100

(7]

] 0

s

Accurate VPID
Group
Accurate N =68
VPIDN =10

%, =.19

FIGURE 2 | Plots of the group x feedback interaction effect using data from Pfordresher and Brown (2007) based on different criteria for separating
groups. Error bars display 95% confidence intervals. Note that the upper error bars in the lower-right plot extend beyond the visible boundary of the Y-axis, and are

equal in size to the lower error bars.

500 Criterion =50 cents

—_ 450 -
)
c 400
5
g 350
g 300 - ONormal
; 250 - IZ|ChorusedI
e 200 I
g2 1% i |
=]
° 100
2
] 0
[
2 Accurate VPID
Group
Accurate N =54
VPIDN =24
n?,=.10

500 - Criterion = 250 cents

450
400
350 -
300
250
200
150

100
50

Accurate

ONormal
OcChorused

Mean absolute note error (cents)

VPID
Group

Accurate N=74
VPIDN=4
n%,=.20

More “liberal” criteria categorize more participants as VPID, and
use a lower pitch deviation score as a cutoff. By contrast, more
“conservative” criteria lead to fewer participants being catego-
rized as VPID. As in Pfordresher and Brown (2007), we here used
signed pitch deviation scores for separating groups. As can be
seen, for more liberal thresholds (which categorize more partic-
ipants as inaccurate), the interaction is negligible in its effect
size,” whereas the interaction becomes increasingly large in its
statistical effect size and visually salient when a more conserva-
tive criterion is used. Thus, this interaction may be particularly
sensitive to the kind of criterion one uses.

Figure 2 illustrates another important factor: sample size.
More conservative criteria lead to smaller VPID samples, making
the two groups highly imbalanced. These differences in sample
size likewise influence the precision of estimation. The error bars
in Figure 2 show 95% confidence intervals (the original paper
plotted SE), which are strongly influenced by sample size, given

2The interaction was statistically significant for all criteria except 30 cents.

that smaller sample size increases both SE of the mean and also
the criterion value of ¢. As such, when the interaction emerges,
we also find a dramatic expansion of confidence intervals among
inaccurate singers, suggesting that sample statistics lack relia-
bility. This statistical factor, along with sensitivity to criterion,
suggests that the ANOVA approach used in the original paper
may not be ideal.

As such, we turn to effect magnitude regression (the “new
way forward”) as an alternative way to explore the same
effect. In this analysis, effect magnitudes (Y) were computed
for each participant by using the difference in mean absolute
pitch deviation scores between chorused and normal feedback
(deviation_normal - deviation_chorused), with positive values
indicating an advantage for chorused feedback. As can be seen
in Figure 3, Y-values cluster at values slightly above zero (Y-
intercept = 23 cents, a slight advantage for chorused feedback)
for more accurate imitators, and grow increasingly negative for
VPID participants, indicating worse performance for chorused
than normal feedback. For consistency with the previous analysis
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FIGURE 3 | Scatter plot of the relationship between the absolute value
for the mean signed pitch deviation (X) and the difference in mean
absolute pitch deviation across Chorused and Normal auditory
feedback conditions (Y). The individual participant is the parameter.

(Figure 2), the X-axis is the absolute value of mean signed error
for participants. We focused on this measure because it was
used to separate groups in the original paper; a similar (though
weaker) relationship emerges if the X-axis is replaced by the
mean of absolute pitch deviations. This figure clearly shows
the gradual increase in effect size across participants. Moreover,
the regression parameters can be used to estimate the point
at which the chorused feedback starts to impair performance.
In this particular experimental context, the limit corresponds
to approximately 100 cents deviation score. It is worth noting
that most of the variance contributing to the regression lines
is found among the VPID participants, thus underscoring our
argument that treating this group as a single category is overly
limiting.

Example 2: The Attracting Effect of One’s
“Comfort Pitch”

Whereas Example 1 involves two conditions and therefore the
simplest kind of ANOVA effect (a 2 x 2 design), many exper-
imental effects involve more complex patterns defined across
multiple conditions. Thus, Example 2 is designed to show how
effect magnitude regression can be extended to more complex
designs. We turn to an effect (also reported in Pfordresher
and Brown, 2007, in Experiment 2) that involves a pattern
of results that is defined across five experimental conditions.
Participants first generated a single pitch that they considered to
be most comfortable for them. Then participants imitated four-
note monotone sequences comprising pitches that were above,
below, or equal to their comfort pitch. Analyses of signed pitch
deviation scores suggested an attractor effect of the comfort pitch
among VPID participants: target notes higher than one’s comfort
pitch were sung “flat} whereas target notes lower than one’s
comfort pitch were sung “sharp” (for a similar recent result, see
Hutchins et al., 2014).

The original effect was reported with a sample size that was
too small to complete the kind of analysis reported in Example
1 (N = 14). Thus, we re-analyzed data from a larger sample
(N = 135) reported in Pfordresher and Halpern (2013). That
study used the same design as Pfordresher and Brown (2007,
Experiment 2), although Pfordresher and Halpern did not test
the attracting effect of one’s comfort pitch. Figure 4 shows four
analyses based on dichotomous groups, using the same method
for dividing groups as in Example 1. As can be seen, although
the interaction is apparent for each criterion (and is statisti-
cally significant in each case), the effect size of the interaction
increases as the criterion becomes more conservative, up to a
criterion of 100 cents. Then the effect diminishes again for the
250 cents criterion, probably because many participants classi-
fied as “accurate” in this analysis are showing the attractor effect.
The apparent non-linearity of the change in effect size with crite-
rion level leads one to wonder what the effect may look like on a
continuum.

For this analysis, we defined effect magnitudes (Y) by comput-
ing a linear regression across trials for a single participant (i.e.,
regressing signed pitch deviation on the difference between target
and comfort pitches), using the slope of that regression as an esti-
mate of how strongly attracting the comfort pitch is. The more
negative the slope, the stronger the attracting effect. As can be
seen in Figure 5, most participants show an attracting effect, with
the few positive slopes being small in size (<75 cents). More
important, as singers grow increasingly inaccurate, the attractor
effect increases in size.

Evaluation of Effect Magnitude
Regression

We propose that effect magnitude regression allows one to see
in more detail how a specific experimental effect is reflected
across a continuum of vocal imitation performance, while avoid-
ing the problematic issue of how one may categorize participants
into discrete groups. This leads to a re-conceptualization of
vocal imitation “deficits” as being graded rather than discrete (a
point we will address further in the next section). However, the
regression-based approach raises two new concerns. Ultimately,
neither concern ends up posing a major problem for the approach
although researchers should take care to address each when
analyzing a given data set.

The first issue has to do with ambiguity, which was mentioned
earlier, and relates to the measure of effect size (Y). Consider the
use of difference scores, as in Example 1. It is unclear based solely
on Figure 3 whether the increase in Y with X is actually due to the
difference between feedback conditions, or may be attributable
solely to one condition (with the relationship between X and Y
being constant for the other). As mentioned earlier, the simplest
solution to this issue is to complement the effect size regres-
sion with simple bivariate regressions based on the scores being
used in the effect (see Pfordresher and Mantell, 2014, for an
example of this application). Figure 6 shows such a plot for the
effect of feedback from Example 1. Consistent with the regression
based on difference scores, the regression line associated with
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chorused feedback has a steeper slope (1.06) than the regression
line associated with normal feedback (0.78), although both lines
yield significant fits (p < 0.01 for each). In this respect, one can
assess the relative contribution of each association. Of course, the
second example above is more unwieldy to plot, being based on
five treatment conditions. In such cases, statistics for individual
conditions (parameters and r*-values) may be better positioned
in a table.

The second issue has to do with collinearity. Although it is
possible (and arguably ideal) to have an X variable that is inde-
pendent of measures contributing to Y (e.g., a separate screening
task), that is not the case for the examples detailed here. For
instance, in Example 1 (just discussed), each variable contribut-
ing to difference scores that make up the Y variable is a subset
of all the trials that lead to a participant’s X score. As such, one
would expect a strong relationship for the bivariate regressions
shown in Figure 6 (though a difference in slopes is not a foregone
conclusion). Does a similar collinearity cloud the interpretation
of effect magnitude regression?

We used Monte Carlo simulations to address whether
any inherent dependency between X and Y exists for the
effect magnitude regression approach. First, we randomly
sampled absolute pitch deviation scores from a Beta distri-
bution using the Matlab function “betarnd.” This distribu-
tion mimics the kind of skew one sees in actual data (e.g.,
Figure 1B). For our simulation we set parameters that led
to a distribution that maximized resemblance to data: a
mode at 75 cents, and a tail that extended to approximately
600 cents.

The simulation of Example 1, shown in Figure 7A, was done
by sampling data points at random and pairing independent
samples. These randomly selected pairs were used to simulate
an effect of feedback one might find if the true effect size in the
population was zero; any apparent effect would thus be an artifact
resulting from how the regression was constructed. One thou-
sand such pairs were generated randomly. Y-values in Figure 7A
are thus differences between paired values, and X is the mean
value for each pair. As can be seen, the slope relating the average
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across conditions to their difference is zero; thus the relation-
ship reported in Example 1 would not have emerged simply by
chance.

However, it is also worth noting that heterogeneity of vari-
ance, earlier discussed as an issue pertaining to standard ANOVA
designs (see The Trouble with Distributions) remains in the data,
here manifested in the fanning out of scores around the regres-
sion line as X increases. As a result, a mean of all Y-values
taken from the left side of the X-axis would have a substan-
tially lower variance than a mean of Y-values from the right
side of the X-axis. Why does this happen? Due to the fact
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FIGURE 7 | Scatter plots of data from Montecarlo simulations of the
regression plotted in Figure 3 (A) and Figure 5 (B).

that the beta distribution (like mean absolute pitch deviation)
is bounded at zero, difference scores leading to means near
zero (left side of the plot) are restricted in range relative to
points leading to high average X-values. Although this is a prob-
lem worthy of concern (which should be assessed empirically
for any data set), by our understanding the problem is not
as damaging within regression as it is within ANOVA for the
current research context. Whereas in ANOVA, variance hetero-
geneity can lead to false positives (Keppel and Wickens, 2004),
in regression the problem typically reduces the strength of asso-
ciation (Cohen and Cohen, 1983, pp. 128-129). More impor-
tant, the regression analysis does not depend on comparisons
between two portions of this regression line, but instead focuses
on the sign and magnitude of the slope relating predictor and
outcome variables, and this slope critically is not confounded
by the nature of the measurement (unlike ANOVA, in which
heterogeneity of variance can increase the likelihood of a type-I
error).
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We conducted a similar analysis to address whether the effect
magnitude regression for Example 2 was spurious. For this
simulation we used a Gaussian distribution (in Matlab, “norm-
rnd”) with a mean of zero and standard deviation of 50, to
approximate the distributional properties of signed pitch devia-
tion scores (Figure 1A). We generated 1,000 random samples for
each of the five conditions, and from these samples computed
1,000 regression lines using the X-values shown in Figure 4
(with the five values in each regression being grouped arbitrarily).
Figure 7B shows the regression of slope values (Y) on the average
of absolute value of the mean across these conditions (X). Again,
the resulting slope is zero, unlike what we found for Example 2.
Heterogeneity of variance is apparent again, though it appears
to be reduced relative to the Example 1 simulation, with a more
consistent spread of scores around the regression line across the
X-axis. In this case, variances are constrained for high values of X
(large mean error). This happens because when mean deviations
are high, extreme values of one sign tend to be counterbalanced
by the opposite sign. Again, the critical point is that the slope
from this simulation does not resemble the relationship found in
Example 2.

Implications

Several new functional models of the underlying system have
accompanied the recent surge in empirical studies of vocal pitch
imitation (e.g., Berkowska and Dalla Bella, 2009; Dalla Bella
et al,, 2011; Hutchins and Moreno, 2013). Following the stan-
dard cognitive framework, these models have proposed that vocal
pitch information comes from the interaction of several basic
functions that connect to form a network (Pfordresher et al,
2015). The functions themselves are represented as modules
(though without an explicit commitment to modularity in the
classic sense), the implication being that specific deficits may
result from the malfunctioning of selected modules. Given that
we here suggest a new approach to conceptualizing VPID, one
may wonder if we are by association suggesting a move away from
these kinds of models.

As we see it, the proposals made here possibly argue for
a rethinking of how deficits are manifested in a particular
architecture, but not necessarily the structure of that architec-
ture itself. To use a simple example, consider the Linked Dual
Representation model (Hutchins and Moreno, 2013). In this
model, pitch perception links directly to both motor control and
a symbolic representation of pitch (three basic functions). The
symbolic pitch representation further connects to motor control.
Thus, vocal motor control may be guided by pitch perception
or a symbolic pitch code. Hutchins and Moreno (2013) suggest
that much of VPID may be based on a breakdown of the connec-
tion between pitch perception and motor control with a spared
connection from pitch perception to the symbolic code (result-
ing in accurate performance on perception tasks). Based on the
approach advocated here, it may be possible to re-conceptualize
deficits in this model as being based on the strength of the
connection, involving both the precision of connections between
perception, and production (how variable the link from one to the

other is) and their accuracy (whether there is a systematic bias in
connecting two components).

Another subtle, though important, implication has to do with
the use of terms. Throughout this paper we fall back on stan-
dard terminology that is in itself dichotomous (“accurate” vs.
“VPID” individuals), while at the same time arguing against the
use of dichotomies. Here we run into the problem of linguistic
convenience: it is far easier to talk in this dichotomous way than
to refer to differences in degree. Ultimately, though we have
indulged in dichotomous language we think that the two terms
we use represent poles on a continuum, with individuals generally
falling somewhere between the extremes.

Finally, the proposed approach focuses on effects of
experimental manipulations and supports the use of differ-
ent conditions to examine singing accuracy. Concretely, this
approach moves away from the categorization based on a
single task and is more akin to diagnosis tools used in
other domains. For instance, in language disorders, the iden-
tification of dyslexia and the decision of therapeutic lines
are based on the combination of different conditions (i.e.,
tasks) proposed in batteries (or tasks specifically chosen across
different batteries). In other words, the evaluation is not
simply based on the addition of performance scores at the
different tasks but on the observation of contrasted condi-
tions. Regarding vocal imitation deficits, we believe that our
“new way forward” represents a way to follow that direction.
Therefore, this approach could inspire statistical analysis (i.e.,
to examine the experimental effects themselves) of existing
singing batteries in order to identify specific vocal imitation
deficits.

Although the regression approach advocated here does ulti-
mately fall back on the use of a single measure to function as a
predictor (X) variable, the stakes associated with the choice of this
measure are not as great (we think) as when a measure is used for
categorization. Consider the two measures plotted in Figure 1.
A researcher who uses one measure or the other to form discrete
categories may yield substantially different group compositions
based on their choice of score, as well as their choice of task
(Berkowska and Dalla Bella, 2013). By contrast, the regression-
based approach is likely to be less sensitive to such differences.
Regression lines may differ slightly based on the choice of an X-
variable, but the significance and direction of an effect (which is
the most appropriate focus at this stage of the research) is less
likely to vary. In keeping with this it is worth mentioning that
the significance and direction of effect for both examples shown
here remains the same if we use the mean of absolute pitch devi-
ation scores (as opposed to the measures shown here) as the
X-variable.

Conclusion

In this article, we have advocated an approach to studying
VPID (a.k.a. poor-pitch singing) that focuses on individual differ-
ences across a continuum, rather than categorizing individuals
into discrete categories based on success or failure at vocal
pitch imitation. Conceptually, our proposal involves a change
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in perspective from treating vocal pitch imitation as represented
discretely across groups, to an assumption that this ability may
vary in degree across individuals. Methodologically, our proposal
involves a shift away from ANOVAs that incorporate quasi-
experimental group variables, to the effect magnitude regression
approach. We suggest that this change in perspective is more
faithful to the way vocal pitch imitation is represented in the
population, and that the change in methodology avoids poten-
tially contaminating pitfalls present in the standard approach.

At the same time, we do not wish to declare spurious all past
research efforts that have incorporated the standard approach,
nor do we wish to prejudge those whose research needs may
be better suited by the standard approach. Past research using
the standard approach (including our own) likely has valid-
ity; however, it is worth re-analyzing results as has been done
here with the two examples we presented. With respect to
research focus, we see the proposal here as being most valu-
able to those who are interested in the basic mechanisms of
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