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In the present paper, we will attempt to gain hints regarding the nature of tactile
awareness in humans. At first, we will review some recent literature showing that an
actual tactile experience can emerge in absence of any tactile stimulus (e.g., tactile
hallucinations, tactile illusions). According to the current model of tactile awareness, we
will subsequently argue that such (false) tactile perceptions are subserved by the same
anatomo-functional mechanisms known to underpin actual perception. On these bases,
we will discuss the hypothesis that tactile awareness is strongly linked to expected rather
than actual stimuli. Indeed, this hypothesis is in line with the notion that the human brain
has a strong predictive, rather than reactive, nature.
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Introduction

The notion of predictive brain is progressively coming to the forefront of cognitive neuroscience.
According to it, the human brain should be conceived not only as a passive receiver of sensory
information but also as an active predictor of incoming signals. The brain would continuously
generate internal representations of future states in terms of short-term estimations of upcoming
events, or long-term guesses about the likelihood of events in the very far future. Then, these
predictions wouldbe constantly compared with actual perceived states. Such process would also
allow a continuous update of prior knowledge and would let possible to learn from previous
experiences (Friston, 2005; Friston et al., 2006). Accordingly, terms as foresight, expectation or
anticipation are largely employed to pinpoint predictive processes within distinctive cognitive
domains: motor control (Wolpert et al., 1995), self-recognition (Apps and Tsakiris, 2014), motor
awareness (Blakemore and Frith, 2003), body ownership (Ferri et al., 2013), social interactions
(Brown and Brüne, 2012), perception (Friston and Kiebel, 2009) and learning (Schultz and
Dickinson, 2000). Additionally, it has been suggested that the malfunctioning of these predictive
processes may partly explain the symptomatology of a number of psychiatric and/or neurological
disorders: autism (Pellicano and Burr, 2012; Lawson et al., 2014), schizophrenia (Picard and Friston,
2014) and unawareness of motor (Garbarini and Pia, 2013; Fotopoulou, 2015) or tactile (Pia et al.,
2014a,b) deficits.

In the present paper, we will focus on the somatosensory domain, specifically on touch. We will
briefly review scientific evidence coming from both intact and damaged central-nervous-system
suggesting that predictive processes have a key role in the subjective experience of touch.
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Touch as a Pure Mental Content

The experience of touch is subjectively felt as coherent and self-
evident because there is often a strict correspondence between
the actual presence (or absence) of a stimulus, and the actual
presence (or absence) of its subjective counterpart. However,
sometimes we can have a tactile experience in absence of any
physical stimulation. Most of us, for instance, have experienced
the (false) belief of touch during the transition from wakefulness
to sleep or vice-versa. Most importantly, recent behavioral,
physiological, and neuropsychological findings have reported
several conditions in which the sensation of touch is clearly only
in the mind of the beholder.

One of the most common situation in which touch does not
correspond to physical stimulation is the false tactile perception
(i.e., tactile hallucination), in which people may experience
touch sensation in absence of any kind of external stimulus
(for a review see Berrios, 1982). Hallucinations have been
reported in different neurological and psychiatric disorders:
psychotic states (Lewandowski et al., 2009), Parkinson’s disease
(Fénelon et al., 2002), dementia (Fénelon and Mahieux, 2004),
phantom limb (Ramachandran and Hirstein, 1998) and drug
abuse (Morani et al., 2013). However, the most convincing
evidence about the predictive nature of touch comes from
the illusory experience of tactile perception generated by an
external stimulus delivered in a different sensory modality. It
is worth noticing that tactile illusions differ in nature from
those conditions in which tactile perception, rather than being
illusory, is boosted by stimuli presented in a different sensory
modality (i.e., visual enhancement of touch; see Halligan et al.,
1997; Rorden et al., 1999; Taylor-Clarke et al., 2002; Longo et al.,
2008).

The vast majority of tactile illusions have been reported with
stimuli presented in the visual domain. An actual experience
of touch entirely triggered by a visual stimulus can be a
relatively common phenomenon even in healthy population. For
instance, it has been shown that under certain circumstances
people can produce false tactile alarms following a purely
visual stimulation (Lloyd et al., 2011; McKenzie et al., 2012).
Such a visual dominance over touch is more evident in those
pathological conditions in which tactile perception is prevented
because a physical damage has directly affected tactile processing.
For instance, some brain-damaged patients with a complete
loss of contralesional tactile perception (hemianesthesia) may
report of being still able to perceive touch, showing what is
known as anosognosia for hemianesthesia (Vallar et al., 2003;
Marcel et al., 2004; Bottini et al., 2009; Pia et al., 2014a,b).
Crucially, they may also report a tactile sensation when they
see a tactile stimulus delivered to their anesthetic body parts,
where tactile processes cannot occur (Pia et al., 2014a,b). Such
a response seems to reflect a real tactile experience rather than
a mere verbal confabulation and/or an ‘‘as if’’ situation. Indeed,
these patients show a normal anticipatory skin conductance
response to the incoming tactile stimuli (Romano et al., 2014).
Another interesting instance of tactile illusions can be observed
in synesthesia, that is a pathological condition in which a
stimulation in one sensory modality automatically induces a

conscious sensory experience in a different modality (Watson
et al., 2014). Crucially, it has been reported the existence
of a mirror-touch form of synesthesia: there are people who
experience a tactile stimulation on a given part of their body
when they see another individual being touched on the same
body part (Blakemore et al., 2005; Banissy et al., 2009; Holle et al.,
2011).

Given that tactile perception is body-related, it has been
investigated whether and how visual representations of one’s
own body play a role in the emergence of tactile illusions. A
number of studies have demonstrated that around 30% of normal
subjects report tactile sensations on their own hand when a
fake (rubber) hand is located very close/superimposed to one’s
own hidden hand (Durgin et al., 2007). Additional evidence
comes from experimental manipulations in which the physical
constraints subserving body representation are manipulated. To
this respect, the most solid experimental paradigm is known as
the rubber hand illusion (Botvinick and Cohen, 1998; Ehrsson
et al., 2004; Tsakiris and Haggard, 2005). In brief, such paradigm
shows that synchronous touches onto a visible rubber hand
and onto the hidden participants’ hand induce a vivid feeling
of ownership of the fake hand both subjectively (as assessed
by a self-report questionnaire) and objectively (the location of
one’s own hand is reported as being shifted towards the rubber
hand). Recently, a modified version of this paradigm employed
approaching visual stimuli, that is each stimulus did not touch
the rubber hand (Ferri et al., 2013). Results show that people
still experience the illusion, exactly as in the classical version
in which stimuli are actually delivered to the rubber hand.
The subjective report of the illusion can be considered as a
veridical experience of touch since it was accompanied with
compatible skin conductance responses to the incoming tactile
(seen) stimulus. The rubber hand illusion paradigm has been
employed also in patients with traumatic spinal cord injury, a
pathological condition in which processing of tactile information
can be lost. Tidoni and coworkers (Tidoni et al., 2014), for
instance, reported a patient who was still capable to experience
the rubber hand illusion for the deafferented body parts due
to a massive effect of vision. Such a strong influence of vision
upon touch is confirmed by the fact that tactile awareness in a
complete insentient finger contiguous to a sentient finger can be
improved by the rubber hand illusion (Lenggenhager et al., 2012,
2013). Interestingly, this datum is suggestive of the presence of
a remapping effect, induced by the illusion, which could trigger
a normal body representation of an otherwise numb body part.
A sort of permanent rubber hand illusion can also be seen in
a number of patients with a particular neurological syndrome,
that is patients who mistake someone else’s arm for their own
despite unambiguous evidence of the contrary (embodiment
phenomenon; for details see (Garbarini and Pia, 2013; Garbarini
et al., 2013, 2014, 2015; Pia et al., 2013a). Crucially, and in line
with the content of the delusion, tactile stimuli delivered to the
embodied body part are subjectively perceived as delivered on the
own body (Pia et al., 2013a; Garbarini et al., 2014). Additionally,
at physiological level the verbal report is accompanied by arousal
responses similar to those registered for the own hand in
healthy subjects (Garbarini et al., 2014). Since the prerequisite
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for the emergence of such tactile illusion is that the stimulus
must be seen, this monothematic delusion of body ownership
represents another instance of tactile experience induced by
visual stimulation. Finally, another kind of tactile illusion has
been demonstrated in phantom limb patients. These patients
may report pain modulation when they see their unaffected hand
superimposed on the amputated one in a mirror (Ramachandran
and Rogers-Ramachandran, 1996; MacLachlan et al., 2003) or
when they can control a virtual limb in immersive virtual
reality (Murray et al., 2007; Cole et al., 2009; Sato et al.,
2010).

A Predictive Account of Tactile
Awareness

The aforementioned evidence shows that veridical tactile
sensations can arise in the absence of any tactile stimulation.
In order to explain this phenomenon, we need to understand
which are the neurofunctional mechanisms subserving tactile
awareness.

It is known that tactile information reaches the primary
somatosensory cortex through the thalamic nuclei. BA3b, a
sub region of the primary somatosensory cortex, represents
the first stage of tactile processing and it is able to detect
stimulus intensity and even nociception. The second stage
occurs in BA1. Subsequently, both BA3b and BA1 transmit
information to BA2, the third stage of tactile processing in
which visual, auditory and somatosensory signals are integrated.
From the primary somatosensory cortex, the information is sent
through reciprocal connections to the secondary somatosensory
cortex, the fourth level stage of information processing. The
current neurocognitive model of tactile awareness in humans
(e.g., Gallace and Spence, 2008) states that when the reciprocal
integration between primary/secondary somatosensory cortices
and higher order structures is achieved, conscious awareness can
start to arise. It is worth noticing that only higher processing
stage activities (e.g., BA2, SII) are present when touch is observed
on another person (Keysers et al., 2004). Hence, it is possible
that earlier stages of somatosensory operations (e.g., BA3b) are
involved only in the processing of signals coming from one’s own
body, whereas later processing stages alone could be activated
when we observe other people being touched (Schaefer et al.,
2009). At this point, signals are progressively integrated with
the involvement of several higher order areas as parietal cortex,
insula and even motor areas.

The aforementioned model of tactile awareness (Gallace and
Spence, 2008), allows a clear-cut prediction: tactile awareness
can in principle arise even in absence of any tactile stimulus
delivered to one’s own body. The literature reviewed above is
consistent with this notion. Indeed, tactile hallucinations (Huber
et al., 1984; Shergill et al., 2003), false alarms in healthy subjects
(Lloyd et al., 2011), false beliefs of perceiving actual tactile
stimuli in anosognosia for hemianesthesia (Pia et al., 2014b)
and synesthetic touch (Blakemore et al., 2005) are, in a way
or another, linked to activities of at least earlier somatosensory
cortices (but even higher order areas), but in absence of any
physical (tactile) counterpart.

A further issue concerns the nature of the processes leading
to tactile awareness. It is known that the human brain has
a multisensory signature. In other words, when an incoming
input has a high certainty in one given sensory modality, it
can modulate perceptual consequences in a different modality
(Driver and Spence, 2000). However, the nature of tactile
illusions requires a mechanism responsible for triggering tactile
awareness in absence of tactile stimulation, but in presence of a
stimulus in another modality (suggestive of a possible incoming
tactile simulation). According to the notion of the predictive
brain mentioned above Bar (2007), such a mechanism could
be conceived in terms of a predictive model. Since biological
systems must face the uncertainty of the environment in which
they live, the most adaptive responses are those who succeed
in minimizing the cost of the surprise effect. The best way to
achieve this is developing a system capable to anticipate the
most probable events in a certain context. This, in turn, would
allow the selection of the optimal behaviors, namely those which
improve the subsequent stimulus detection (e.g., Brunia and
van Boxtel, 2001; Bausenhart et al., 2006) and its processing
(Desimone and Duncan, 1995). With respect to touch, former
studies on the anticipation of tactile stimuli reported activations
in somatosensory cortices, in the same areas that subserve tactile
perception (Drevets et al., 1995; Carlsson et al., 2000). More
interestingly, a recent fMRI study (Langner et al., 2011) has
tried to isolate the activation related to pure expectancy. The
authors analyzed the functional activations only in those trials in
which the cue indicating the modality of the upcoming target was
not followed by any stimulus. Results show that explicit tactile
expectations are underpinned by an anticipatory increase of the
baseline activity within relevant primary/higher order sensory
cortices (i.e., primary and secondary somatosensory cortices),
and a decrease within irrelevant primary/higher order sensory
cortices (primary and secondary visual and auditory cortices).
For our purpose, the key finding is that the human brain can
represent in advance tactile-specific information not only within
tactile-specific areas but also in non-tactile areas. This finding
suggests that early sensory cortices, traditionally regarded as
unisensory, can also process multisensory information. It is
worth noticing that this latter idea is in line with the notion that
stimulation in a given modality also induces activities in early
sensory cortices specific for other modalities (Meyer et al., 2011;
Vetter et al., 2014; Smith and Goodale, 2015).

On these bases, we believe that the previously mentioned
neurocognitive model of tactile awareness (Gallace and Spence,
2008) could be integrated with the concept of tactile expectancies
to explain most of the visually-triggered tactile illusions. This in
turn, would allow gaining further insight into the mechanisms
underpinning tactile awareness in humans. As noted above,
the brain continuously transforms relevant stimuli in tactile
expectancies in order to produce the best response under certain
circumstances. Such expectancies would be generated within
the complex interplay between low and higher order sensory
cortices and would represent the neural signals on which tactile
awareness would emerge (Figure 1, left part). It is worth noticing
that expectancies could be generated not only on the basis
of visual stimulation, but also on the basis of any sensory

Frontiers in Human Neuroscience | www.frontiersin.org 3 May 2015 | Volume 9 | Article 287

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Pia et al. Tactile awareness

information relevant for the emergence of sensory awareness.
For instance, it is known that mirror-touch synesthesia (Banissy
et al., 2009; Holle et al., 2011), delusional body ownership (Pia
et al., 2013a) and tactile illusions in spinal cord injury (Tidoni
et al., 2014) occur when observing touch delivered on the human
body but not on objects or dummies. This means that stored
internal representations impose constraints on the emergence
of a specific tactile experience. Since the human body receives
tactile stimuli also during actions, information arising from the
motor system should be included among the source of signals
for expectancy generation. The fact that in the normal wake state
it is nearly impossible to tickle oneself (Blakemore et al., 1998),
demonstrates that internal representations of willed actions do
affect tactile processing. Expectancies would then be compared
with the actual sensory feedbacks (Figure 1, middle part). The
detection of the match (stimuli are present)/mismatch (stimuli
are absent) between expected and delivered stimuli should lead
to a veridical tactile awareness (Figure 1, right lower part).
We suggest that visually triggered tactile illusions arise from
a defective detection of the mismatch between expected and
actual stimulations (Figure 1, middle part). Hence, in this case
tactile awareness would entirely relies on expectancies, with the
consequence of experiencing illusory touch in absence of an
actual tactile stimulation (Figure 1, middle lower part).

It is worth noticing that our model for tactile awareness is
similar to the one we proposed to explain the experience of
illusory movements in patients with anosognosia for hemiplegia
(Berti and Pia, 2006). In that case, the false belief of being still
able to move is seen as a failure to detect the mismatch between
intended and actually executed movements (e.g., Jenkinson and
Fotopoulou, 2010; Pia et al., 2013b; Piedimonte et al., 2015).

Additionally, the hypothesized role of predictive mechanisms
in building conscious awareness could be extended to sensory
domains other than touch. As regards vision, for instance,
there is evidence of functional interactions between visual and
prefrontal areas (Kveraga et al., 2007; Axmacher et al., 2008)
and prediction-based prefrontal modulations of early visual
processing has been described (Kveraga et al., 2007; Gamond
et al., 2011). Accordingly, it has been suggested that such
reciprocal connections might subserve the comparison between
actual and predicted visual stimuli. This predictive mechanism
would quickly enable the content of visual awareness, thus
reducing uncertainty (Panichello et al., 2013). This hypothesis
is line with evidence showing that predictions do affect the
perceptual content. It is known, for instance, that a visual prime
related to one interpretation of an ambiguous figure significantly
biases perception towards that interpretation (Goolkasian
and Woodberry, 2010). Similarly, successful perception of
fragmented object figures is more likely when the observer is
informed about the semantic category of the object (Reynolds,
1985). Moreover, when visual stimuli with altered/ambiguous
edges move smoothly in space, we tend to report their location
in advanced positions (Soga et al., 2009).

In conclusion, although we believe that the reported
evidence supports the notion of the predictive nature of
tactile awareness, further behavioral, physiological and anatomo-
functional evidence is still required. Indeed, this interpretation
is primarily based on the explanation proposed for tactile
illusions reported in anosognosia for hemianesthesia. These
patients, despite never referring of being touched on the
affected side during the standard neurological examination
with their eyes closed, they report touch when they see

FIGURE 1 | Represents a sketch of the proposed model of tactile awareness in humans.
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a stimulus delivered to their anesthetic body part. This
disturbance is explicitly interpreted as a neurologically-based
failure to detect the mismatch between visually-triggered tactile
expectancies and the actual absence of tactile stimulation
(Pia et al., 2014a,b). However, the role of residual bottom-
up tactile processing in the emergence of such illusory
experience of touch should be clearly excluded. In other words,
direct electrophysiological measures (e.g., somatosensory evoked
potentials), for instance, should confirm the complete absence of
touch-related electrophysiological activity from the periphery of
the somatosensory system. If this is the case, a clear prediction
can be put forward: the illusory perception of touch should be
subserved only by top-down activities triggered by the visual

modality in spared primary and/or secondary somatosensory
cortices Finally, a further issue concerns the investigation of
the evolutionary significance of predictive mechanisms. In
other words, it would be crucial to study the role of such
predictive mechanisms in an ontogenetic and/or phylogenetic
perspective.
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