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Classic studies in human sensorimotor control use simplified tasks to uncover
fundamental control strategies employed by the nervous system. Such simple tasks are
critical for isolating specific features of motor, sensory, or cognitive processes, and for
inferring causality between these features and observed behavioral changes. However,
it remains unclear how these theories translate to complex sensorimotor tasks or to
natural behaviors. Part of the difficulty in performing such experiments has been the
lack of appropriate tools for measuring complex motor skills in real-world contexts.
Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by
enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks
with varying complexity—from simple tasks such as those in classic studies to highly
complex tasks such as a surgical procedure—can be studied using RAS platforms.
Finally, RAS includes a diverse participant population of inexperienced users all the
way to expert surgeons. In this perspective, we illustrate how the characteristics of
RAS systems make them compelling platforms to extend many theories in human
neuroscience, as well as, to develop new theories altogether.

Keywords: robot-assisted surgery, motor learning, sensorimotor control, robotics, control of movement, sensory
integration, teleoperation, human-robot interaction

Introduction

Humans are capable of exquisite behaviors. We move our bodies and seamlessly interact with tools
and our environment to achieve desired outcomes. In general, humans generate motor commands,
sense their actions and the environment, and estimate their internal state when trying to achieve
a desired task (Figure 1A). Understanding such human behavior is essential to combating disease
and injury and may be beneficial for designing systems with physical human-robot interactions.

However, it is very challenging to understand human behavior in natural environments.
As a consequence, to uncover fundamental theories, researchers have developed techniques and
methods to study human sensorimotor control that use basic tasks, such as: point-to-point reaching
movements (Morasso, 1981; Flash and Hogan, 1985; Shadmehr and Mussa-Ivaldi, 1994; Krakauer
et al., 2000; Shadmehr and Wise, 2005), reversal movements (Scheidt and Ghez, 2007), via-point
movements (Flash and Hogan, 1985; Flash et al., 2013), drawing predefined shapes (Flash et al.,
2013), manipulation of objects (Dingwell et al., 2002; Svinin et al., 2005; Leib and Karniel, 2012;
Nasseroleslami and Sternad, 2014), throwing objects (Cohen and Sternad, 2009), lifting objects
(Johansson and Flanagan, 2009; Mawase and Karniel, 2010), and bimanual reaches (Diedrichsen
et al., 2010). To measure movements, robotic devices or other sensors may be used. Using a robotic
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FIGURE 1 | (A) Schematic of normal human interactions with the
environment—the subject (green) interacts directly with her
environment (blue) through sensorimotor channels. (B) Schematic of
interactions in user-in-the-loop systems—the subject’s actions and/or
senses are augmented by a control system and/or tools (orange)

while interacting with her environment. (C) Schematic of robot
assisted surgery—a form of a tele-operative (user-in-the-loop) system.
The surgeon’s sensorimotor system is intimately tied to the
teleoperative system through the controls, tools, and feedback
modalities.

device particularly advantageous because the robot can
simultaneously measure movements and apply forces to the
arm of the user as part of an experimental perturbation plan
(Shadmehr and Mussa-Ivaldi, 1994; Karniel and Mussa-Ivaldi,
2002; Diedrichsen et al., 2005; Lackner and Dizio, 2005).
However, adding a robotic device changes how the human
interacts with his environment (Figure 1B). In this user-in-the-
loop setting, a human’s actions are filtered by the robotic device,
affected by its dynamics, and possibly controlled by different
strategies altogether (Desmurget et al., 1997). In addition, virtual
or augmented environments are often used to explore the
response of the sensorimotor system to artificial modifications.
Several examples include visuomotor rotations (Krakauer et al.,
2000), force perturbations (Shadmehr and Mussa-Ivaldi, 1994),
or delayed feedback (Pressman et al., 2007; Nisky et al., 2008).
Additional, comprehensive reviews of state-of-the-art studies
on sensorimotor control and learning can be found elsewhere
(Shadmehr and Wise, 2005; Krakauer and Mazzoni, 2011;
Shadmehr and Mussa-Ivaldi, 2012; Sigrist et al., 2013; Leukel
et al., 2015).

Despite revealing many characteristics of the human
sensorimotor system, these studies remain distant from
representing natural behaviors during complex tasks (Wolpert
et al., 2011). The movements in these studies are simple or
abstract (although they may be building blocks of more complex
movements Mussa-Ivaldi et al., 1994; Mussa-Ivaldi and Bizzi,
2000; Tresch and Jarc, 2009). Furthermore, users optimize these
movements over hundreds of trials whereas natural behaviors
take months, years, or a lifetime to master.

Complementary to basic research, more natural behaviors
such as cello bowing (Verrel et al., 2013), stone knapping (Rein
et al., 2013), tool-making (Faisal et al., 2010), golf swinging

(Glazier, 2011), or baseball pitching (Chaisanguanthum et al.,
2014) have been studied. One primary challenge with these
studies is unobtrusively measuring subject behavior in their
normal environment. Often, the sensors can adversely affect the
behavior or fail to capture sufficient information. In addition, it
can be difficult to draw strong parallels between studies of natural
behaviors and studies that use abstract tasks.

Human neuroscience research would benefit from an
experimental platform that: (1) spans basic to complex tasks;
(2) extends to real-world applications; and (3) includes users
of different levels of expertize. With such a platform, theories
generated under basic conditions could be examined as task
complexity increases to determine where and how they might
break down or where new theories emerge (Fernandes and
Kording, 2010). Furthermore, user populations with diverse
levels of skill make it possible to examine learning during
short training sessions (i.e., tens to hundreds of trials) or over
prolonged timescales (Ericsson, 2004; Leukel et al., 2015).

Here, we seek to highlight robot-assisted surgery (RAS)
as a promising experimental platform for basic neuroscience
research, as well as, applied clinical and technical research. RAS
is a teleoperated system and its user interface is similar to many
setups used for conventional motor learning and adaptation
studies (Figures 1C, 2D). Importantly, RAS meets the three
main objectives to serve as a useful experimental platform—it
encompasses many levels of task complexity, system realism, and
user expertize.

RAS as an Experimental Platform

RAS is a widely used technology with thousands of surgeons
performing operations each year (over 500,000 annual
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procedures using the da Vinci® Surgical System (Intuitive
Surgical, Inc., Sunnyvale, CA) alone). The success of RAS
as well as other new, emerging technologies is grounded
in their ability to treat patients safely and effectively while
reducing invasiveness. Given that a surgeon interacts with
a robot to perform surgery, compelling opportunities exist
for neuroscientists not only to advance our understanding of
sensorimotor behavior, but also to improve RAS technology,
surgeon training paradigms, and, ultimately, the experiences of
patients who are treated with RAS.

During RAS, a surgeon sits at a console, views the operative
field in three-dimensions, and uses master manipulators to
control instruments inside a patient. The components of RAS
are illustrated in Figure 1C. The surgeon’s motor system
generates commands which cause hand movements (along with
an efference copy). Her hands interact with master manipulators
which serve as the input to the teleoperation system that controls
the instruments or an endoscope held by a robotic arm. The
instruments or endoscope then interact with the environment
(i.e., the tissue of the patient). At each step, the surgeon senses
various aspects of her behavior and the robotic system using
visual, haptic, and auditory information channels. These, in turn,
are combined with internal representations of the environment
and efference copies to provide the surgeon with state estimates
to drive subsequent actions, including online corrections and
new movements, as well as to make strategic decisions about the
upcoming steps of the surgical procedure. For example, to repair
cancerous lymph nodes, a surgeon uses instruments to carefully
palpate, dissect, and remove unhealthy tissue without damaging
nearby structures.

RAS includes multiple parallel feedback loops around the
motor system of the surgeon (Figure 1C). Each of these
parallel loops is an opportunity to measure surgeon behavior
or to apply structured perturbations. Many experimental
paradigms require these measures or perturbations, such as
cognitive reasoning, movement control, sensory processing,
learning, and adaptation. During RAS, surgeon behavior can
be measured at multiple stages, including hand movements,
instrumentmovements, and the operative field of view. Similarly,
perturbations can be applied to the surgeon by altering
the movement or force applied to the master manipulators,
the movements of the surgical instruments, or the visual
feedback.

RAS research can be conducted using three classes of
systems—simulators, research platforms, and clinical systems.
As mentioned above, all of these classes meet three crucial
objectives to serve as good experimental platforms for human
neuroscience research—task complexity, system realism, and
user expertize. Two of the three objectives are illustrated in
Figure 2A. When compared to a robotic manipulandum, a
common device for many neuroscience studies (see Shadmehr
and Mussa-Ivaldi, 1994; Herzfeld et al., 2014; Wu et al., 2014b;
Pekny and Shadmehr, 2015), all forms of RAS extend to more
complex tasks (x-axis in Figure 2A) and have additional real-
world applications (y-axis in Figure 2A). Here, we discuss
each type of RAS system and its capacity to serve as a useful
experimental platform for neuroscience research.

RAS Simulators
RAS simulators can be simple haptic devices, replica systems
(dVTrainer™, (Mimic Technologies, Inc., USA), RobotiX
Mentor™ (3D Systems, Inc.), RoSS™ (Simulated Surgical Systems,
LLC), etc.), or the actual surgeon console (da Vinci Skills
Simulator™, Intuitive Surgical, Inc.) that all interface with a
simulated environment (Figure 2B). The simulated environment
can consist of abstract tasks (e.g., virtual dots for reaching tasks),
simple tasks (e.g., ring transfer), or more complex tasks (e.g.,
suturing). Many of these tasks are formal training exercises
used by surgeons to develop their skills prior to performing
surgery (Stegemann et al., 2013; Smith et al., 2014). Recently,
procedure-specific simulations have been created; however, this
remains a research effort due to challenges simulating human
tissue and its interactions with surgical tools (Cover et al., 1993;
Misra et al., 2008, 2010; Jin et al., 2014). Evidence from validity
studies of surgical simulations suggest high realism (McDougall,
2007; Kenney et al., 2009; Hung et al., 2011; Finnegan et al., 2012;
Abboudi et al., 2013; Liss and McDougall, 2013), but realism
tradeoffs are currently an open research question, and may
depend on the fidelity of the simulation and the similarity of
the master manipulator dynamics to the clinical system. Here,
we place them just above classic, robotic manipulandum on the
realism scale to highlight that an off-the-shelf haptic device may
be converted into a surgical simulator if appropriate simulation
software is used (Figure 2B; Coles et al., 2011; Ruthenbeck and
Reynolds, 2013; Wu et al., 2014a).

RAS Research Platforms
RAS research platforms are components of a surgical system
(master manipulators and patient-side robotic arms) either
designed for research, such as the RAVEN system that is depicted
in Figure 2C. (Hannaford et al., 2013), or harvested from
decommissioned clinical systems, such as the daVinci Research
Kit, (Kazanzides et al., 2014). They aim to be flexible to meet
needs of researchers from diverse areas of RAS. Here, we
emphasize that RAS research platforms can be used for human
neuroscience research during tasks of various complexities,
excluding only live human surgery. The realism of these systems
depends on the fidelity of the teleoperation controllers, but the
behavior of the system may be configured to mimic the clinical
system or entirely different experimental designs. For example,
constraints may be imposed experimentally to elicit a smooth
transition between classic studies and complex scenarios, such as
initially constraining themaster manipulator to two-dimensional
movement.

Clinical RAS Systems
Clinical systems are used by surgeons to perform surgery on
patients (i.e., da Vinci Si Surgical System; Figure 2D). Although
less flexible, they do offer levels of access through an application
program interface on the system (DiMaio and Hasser, 2008),
or equipping the system with external sensors for recording
the master manipulator movements (Nisky et al., 2014a,c) or
the patient-side manipulator movements (Tausch et al., 2012).
Clinical systems can be configured for simple tasks (e.g., perform
a dry-lab exercise; Jarc and Curet, 2014) while recording the same
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FIGURE 2 | (A) Robot-assisted surgery offers a common test platform to
study human sensorimotor control across many degrees of task complexity.
Typical motor learning tasks utilize robotic manipulanda and basic tasks to
understand the nervous system that cannot easily extend to more complex
tasks (note the void in the bottom right of the figure). Various types of RAS
systems offer increased exposure to more complex tasks while remaining

suitable for many basic tasks, including clinical systems which can extend
fully into complex human surgery (see top row in orange that spans task
complexity). Note that surgical simulation extends to complex tasks (surgical
procedures) but this remains an active research area (dashed outline).
Examples of a RAS simulator (B), research platform (C), and clinical system
(D) are shown. Note: Image from www.intuitivesurgical.com.

data during surgery. The powerful aspect of clinical systems is
continuity—surgeons operate the same device for all types of
tasks.

RAS platforms extend the continuum of task complexity
beyond what is possible with robotic manipulanda. Also, they
offer multiple levels of system realism from virtual environments
to real-world tasks. In addition to task complexity and system
realism, RAS platforms offer a subject pool that spans non-
surgical persons unfamiliar with the technology to actual

surgeons. The surgeon population consists of novices just
beginning to use RAS all the way to experts who perform
hundreds of cases per year. While an objective assessment of
where along the learning curve a particular participant belongs is
difficult (Ericsson, 2004), the immense subject pool offers unique
opportunities to studymany features of human neuroscience that
might be challenging on other platforms (e.g., the characteristics
of movement variability of novice surgeons over their first one
hundred surgeries).
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Relevant RAS Research

In this section, we review several research areas within RAS that
either directly relate to human neuroscience or motivate future
studies.

Examining Human Movement Control During
RAS
A thorough understanding of how surgeons coordinate
movement during RAS may reveal interesting aspects of
sensorimotor control, as well, as provide a foundation to
improve RAS technology. As a first step towards studying
human movement control in RAS, an experimental setup was
developed to compare simple planar point-to-point movements
and freehand movements of experienced surgeons and novice,
non-medical users tele-operating a clinical da Vinci Si Surgical
System (Nisky et al., 2014a,c). The results from one study
showed direction-dependent effects of tele-operation and level
of expertize on several characteristics of user motion, including
target acquisition error, movement speed, and movement
smoothness (Nisky et al., 2014c). These effects may be explained
via a dynamical model comprising the robotic manipulator, the
arm of the surgeon, and the control strategy employed by the
surgeon’s motor system, and may be adapted to within a single
experimental session consisting of several hundred movements.
A second study used the Uncontrolled Manifold framework
(Latash et al., 2007; Scholz and Schöner, 2014) to demonstrate
that experienced surgeons coordinated the variability of their
joint angles to stabilize hand movements more than novice
surgeons, especially during teleoperation (Nisky et al., 2014a).
These results are consistent with many recent studies that
suggest the motor system exploits redundancy to structure
motor variability to maximize performance while minimizing
control effort (Todorov and Jordan, 2002; Müller and Sternad,
2004; Cusumano and Cesari, 2006; Latash et al., 2007; Dingwell
et al., 2013; Scholz and Schöner, 2014). Similarly, the results
are consistent with studies suggesting that the ability to exploit
redundancy is related to skill (Müller and Sternad, 2004; Cohen
and Sternad, 2009) and task (Dingwell et al., 2013) or tool
dynamics (Yang et al., 2007).

Multisensory Integration on RAS Research
Platforms
A surgeon must integrate information from multiple sensory
channels in order to operate successfully using a RAS system.
In one study, researchers showed that active use of a virtual-
robotic (non-surgical) tool changed the spatial modulation of the
crossmodal congruency effects (vision and touch multisensory
integration), and that it did so in a manner comparable to
changes in the representation of peripersonal space observed
during real-world tool use (Sengül et al., 2012). In a second study,
the same researchers showed that the crossmodal congruency
effect was stronger after training with force feedback compared
to without force feedback and when training with immediate
force feedback compared to delayed force feedback (Sengül
et al., 2013). The authors concluded that virtual surgical tool-use
training with high-fidelity force feedback facilitated multisensory

integration of signals from the tool, and hence embodiment of the
tool.

Surgeon Performance Enhancement Through
Augmented Sensory Feedback
Current clinical RAS systems lack force feedback, and therefore
surgeons rely primarily on visual information. However, the
types of feedback that should be delivered to the user and
during which tasks remain unknown. Engineering solutions will
require thorough evaluation of surgeon behavior as additional
sensory modalities are added to RAS systems. One research
team has been examining how instrument vibrations could be
harnessed and displayed to the user either through auditory
or haptic feedback during RAS (McMahan et al., 2011; Bark
et al., 2013; Koehn and Kuchenbecker, 2014). A recent study
shows that both surgeons and non-surgeons prefer receiving
feedback of instrument vibrations (Koehn and Kuchenbecker,
2014). Interestingly, the subjects were divided roughly equally
in terms of whether they preferred haptic feedback alone or
haptic and audio feedback. Despite this preference, the literature
is inconclusive about performance differences with and without
feedback (Okamura, 2009; Weber and Schneider, 2014). It
remains an open research question as to how force feedback
might influence a surgeon’s performance, and which aspects of
force information might be critical to the surgeon. One might
hypothesize that force feedback contributes to forming more
accurate models of interactions with the external environment.
For example, the adjustment of grip force that our fingers
apply on hand-held tools in anticipation of the force that the
environment applies on the tool depends on having access to
force information (Danion et al., 2013; Gibo et al., 2014) or
possibly how the tool is incorporated into a user’s internal
model (Imamizu et al., 2000, 2003). Force feedback may also
influence how and in which coordinate frames these internal
models are represented, and consequently, how adaptation to
novel environments generalizes (Shadmehr and Mussa-Ivaldi,
1994; Gandolfo et al., 1996; Krakauer et al., 2000; Shadmehr
and Moussavi, 2000; Brayanov et al., 2012; Berniker et al., 2014;
Rotella et al., 2015).

Surgeon Skill Classification
Surgeon movement data and instrument movement and force
data during dry-lab tasks have been used extensively to quantify
the performance of surgeons. One particular approach attempted
to create a ‘‘language of surgery’’ by decomposing surgeon
movement into gestures called surgemes that could serve as
fundamental building blocks to more complex behaviors (Lin
et al., 2006). Note that surgemes strongly parallel the idea of
motor primitives (Mussa-Ivaldi et al., 1994; Mussa-Ivaldi and
Bizzi, 2000; Flash and Hochner, 2005). Other studies used
stochastic models (Megali et al., 2006; Rosen et al., 2006) and
movement trajectories (Judkins et al., 2009; Hofstad et al., 2013;
Lendvay et al., 2013) to classify a surgeon’s skill. In an effort to
encourage collaborations and idea generation, a surgical activity
dataset was made publicly available online [the JHU-ISI Gesture
and Skill Assessment Working Set (JIGSAWS; Gao et al., 2014)].
The dataset consists of kinematic data, video data, and manual
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annotations for eight surgeons with different levels of skill
performing five repetitions of three elementary surgical tasks on
a bench-top model using a da Vinci Surgical System. This dataset
could be useful for neuroscientists to begin to propose new
hypotheses and research studies related to human sensorimotor
behavior in more real-world settings, and complement other
publically available datasets such as the DREAM data set for
reach movements (Walker and Kording, 2013), the stiffness
probing dataset (Nisky et al., 2014b) and the gestures dataset
(Frolova et al., 2013). Furthermore, such data sharing initiatives
are imperative to research related to RAS since they enable
researchers to begin exploring questions without requiring an
experimental setup or a clinical system.

Research Opportunities at the Intersection
of RAS and Neuroscience

In summary, there exists an exciting opportunity to exploremany
research directions in human neuroscience by leveraging RAS
as an experimental platform. We highlighted several relevant
studies that spanned basic and applied research. Additional
research areas include eye-hand coordination (Mylonas et al.,
2008; Yang et al., 2008; Ahmidi et al., 2010), augmenting haptic,
visual, or auditory channels to drive learning (Reinkensmeyer
and Patton, 2009; Klein et al., 2012), or simplifying strategies
during fine motor tasks (Tresch and Jarc, 2009).

Furthermore, human neuroscience research using RAS
platforms could benefit from the existing user community.
Engineering teams explore new platforms, instruments, and
control features. Others develop new imaging modalities while
still others examine user experience and human factors as
they relate to RAS systems. Moreover, the clinical community
evaluates efficacy, safety, cost, and surgeon training as they
relate to RAS. Productive collaborations could be established
between these research groups and those interested in human
neuroscience, especially since the surgeon influences the final
system behavior (assuming non-autonomous, user-in-the-loop
setups). To foster collaborations, routine workshops are being
held for users of RAS research platforms.

Limitations of Using RAS as an
Experimental Platform

Although many compelling aspects of RAS were outlined, several
potential limitations and challenges to using RAS for human
neuroscience research exist. Firstly, the availability of RAS

systems is limited. For RAS research platforms, one solution
could be to have multiple research groups at an institution share
the equipment. For clinical RAS systems, strong collaborations
with clinical researchers and surgeons would improve the
likelihood of access to systems when they are not being used
for surgeries. Secondly, the cost of RAS research platforms
is significant. Despite this, many interesting questions can
be explored using simpler setups, such as inexpensive and
accessible haptic devices equipped with virtual reality simulators,
before being translated to RAS research platforms (Figure 2B).
Furthermore, the costs will likely decrease as the user community
grows. A third limitation could be the RAS system properties.
For example, the master manipulators may not have adequate
stiffness for certain experimental conditions or require unnatural
subject interfaces. Finally, the growth of shared datasets and RAS
research platforms remain moderate. Growth can be accelerated
with interest from more research teams, which, in turn, would
enable additional researchers to leverage RAS systems for their
studies. Given these limitations, alternative platforms outside of
RAS, such as gaming consoles and flight simulators, may also
be useful research tools for understanding sensorimotor control.
Similar to RAS, these platforms are real-life applications with
users of a wide range of ability. Interesting insights could result
from comparisons between these platforms and RAS.

Conclusions

In this perspective, we highlight the potential for RAS to become
an influential experimental platform for human neuroscience
research that bridges the gap between laboratory experiments
and real-world applications. RAS offers the unique opportunity
to examine how theories in human sensorimotor control evolve
from abstract tasks to more complex behaviors using simulators,
research platforms, or clinical systems. In the end, human
neuroscience research that uses RAS platforms has the potential
to improve the lives of individuals suffering from motor
impairments as well as patients undergoing surgery for a variety
of diseases.
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