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The concept of executive functions plays a prominent role in contemporary experimental
and clinical studies on cognition. One paradigm used in this framework is the random
number generation (RNG) task, the execution of which demands aspects of executive
functioning, specifically inhibition and working memory. Data from the RNG task are best
seen as a series of successive events. However, traditional RNG measures that are used
to quantify executive functioning are mostly summary statistics referring to deviations
from mathematical randomness. In the current study, we explore the utility of recurrence
quantification analysis (RQA), a non-linear method that keeps the entire sequence intact,
as a better way to describe executive functioning compared to traditional measures. To
this aim, 242 first- and second-year students completed a non-paced RNG task. Principal
component analysis of their data showed that traditional and RQAmeasures convey more
or less the same information. However, RQA measures do so more parsimoniously and
have a better interpretation.

Keywords: random number generation, recurrence quantification analysis, executive functioning, cognition,
principal component analysis

Introduction

In experimental and clinical studies on cognition, the concept of “executive functions” plays a
dominant role [see e.g., Jurado and Rosselli (2007), for an overview]. Executive functioning is
generally used as an umbrella term to refer to a set of higher-order cognitive processes that allow
an individual to exert control over lower cognitive processes. However, discussions about the exact
nature of these higher-order processes and their neural correlates are ongoing (e.g., Gilbert and
Burgess, 2008;McCabe et al., 2010; Packwood et al., 2011; Tsuchida and Fellows, 2013; Anastas et al.,
2014).

One task that has seen some use in the investigation of executive functioning is the random num-
ber generation (RNG) task. In this task, participants are instructed to generate a random sequence of
letters or digits. Executive functioning can be assessed using this task by measuring departures from
randomness. Specifically, the observed order in human-generated sequences is often attributed to
imperfections of the central executive and working memory (Baddeley, 1966; Brugger, 1997; Bad-
deley et al., 1998), in particular to the inability to inhibit stereotyped (i.e., repetitive) behavior and to
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monitor and update recent responses (Towse and Neil, 1998;
Miyake et al., 2000; Friedman and Miyake, 2004). This inability
to be random is operationalized using a series of randomization
measures that capture different types of order (Evans, 1978; Towse
and Neil, 1998). These measures typically align into three factors:
inhibition of prepotent responses, working memory updating,
and output inhibition (Towse and Neil, 1998; Peters et al., 2007;
Maes et al., 2011). Both inhibition and updating refer to sequen-
tial processes and, therefore, these factor labels imply that the
selection of the next number in a human-generated sequence is
inherently contextual, i.e., it is a function of previously selected
numbers (Brugger, 1997; Schulz et al., 2012). For example, neither
inhibition nor updating can exist in a vacuum of only a single
“behavior” (in the case of RNG, a single digit). A participant can
only inhibit a digit, or a sequence of digits, when the same digit or
sequence has been used before. Accordingly, the entire sequence
can be seen as a time series of human executive behavior.

However, contrary to the assumption of a determinate change
process being at least partly responsible for generating the trial
series of “random” numbers, most of these randomization mea-
sures calculated from the series are state-based summary statis-
tics referring to the deviation of independent event occurrence
from stochastic randomness. Therefore, all the information about
potential non-random state-propagation rules involved in num-
ber selection is lost (Gilden, 2001). For example, an often used
measure of randomness is RNG (Evans, 1978; Towse and Neil,
1998). RNG describes the difference between the observed distri-
bution of digrams, regardless of the order in which these digrams
occur, compared to an uniform distribution of digrams. The same
method applies to most other randomization measures. Schulz
et al. (2012) demonstrated the importance of time-evolutionary
information in RNGby predicting one participant’s number selec-
tion based on the sequence of another participant, and these
predictions became more precise when longer sequences were
used. This corresponds with growing evidence that variability in
behavioral data is not mere random fluctuation (Gilden, 2001;
Van Orden et al., 2003) but an essential constituent of the under-
standing of human (executive) behavior (Riley and Turvey, 2002).
Hence, RNG may be best analyzed by non-linear methods that
require no assumptions about the nature of the data in ques-
tion, but quantify the characteristics of any temporal pattern in
the sequence of numbers (Shockley, 2005; Webber and Zbilut,
2005).

Recurrence plots (RPs) and recurrence quantification analysis
(RQA) are such non-linear approaches to time series analysis
that exploit the dynamical organization of the entire time series
(Webber and Zbilut, 1996, 2005). RPs display easily interpretable
information about pattern recurrences on different time scales
(Eckman et al., 1987), while RQA is an objective quantification of
those recurrent patterns that can be associated with properties of
non-linear dynamical systems (Webber and Zbilut, 1994; Marwan
et al., 2007). In the current study, we use auto-RPs, which are
a visual representation of a time series compared to itself. This
visual representation is created by plotting the time series x on
both axes in an N ×N square matrix, where N is the length of the
time series and x(i) is the ith measure in the time series. In case
of random number sequences, a dot is placed at (i, j), whenever

x(j) has the same number as x(i). Hence, dots are placed at the
same moment in time, alongside the diagonal i= j, and at every
moment later in time when the same number recurs. Due to the
auto-recurrent nature, these RPs are symmetrical regarding the
diagonal i= j and both planes contain the same information (see
Figure 1). Using RQA, this information is described by the fol-
lowing variables: recurrence rate, determinism, longest diagonal
line length, entropy, laminarity, and trapping time. Recurrence
rate quantifies the amount of recurrent points or dots (excluding
the diagonal), expressed as a percentage. In other words, recur-
rence rate is the proportion dots to non-dots in the RP. These
recurrent points can be either scattered across the RP or clustered
in diagonal and vertical line structures. Determinism measures
the proportion of recurrent points forming diagonal line struc-
tures and quantifies the amount of repetitive patterns. Shorter
diagonal line structures equal unstable patterns (more chaotic
patterns) indicated by the longest diagonal line length. Shannon
information entropy is based on a histogram of all diagonal line
lengths present in the data and is an index of the complexity
of the deterministic structure of the time series (Pellecchia and
Shockley, 2005; Webber and Zbilut, 2005). Finally, laminarity
measures the proportion of recurrent points forming vertical line
structures, whereas trapping time is the average length of vertical
line structures (Marwan et al., 2002). These vertical line structures
are indicative of patterns that are trapped in one state (repeating
the same behavior over and over), while trapping time quantifies
the stability of these trapped states.

Figure 1 shows two examples of how temporal sequences are
quantified using RPs and RQA. The left-side panels display the
observed time series of two participants, while the right-side
panels show shuffled versions of both time series. The upper left
panel (Figure 1A) displays a time series with dots scattered across
the entire surface of the RP and only a few of these dots form
diagonal and vertical line structures. This minimal amount of line
structures equals the absence of (complex) repetitive behavior,
which is reflected by a low value for determinism and laminarity
and a short diagonal line length. On the other hand, the lower left
RP (Figure 1C) displays a highly clustered and, therefore deter-
ministic time series, reflected in both the formation of diagonal
and vertical line structures and a high value for determinism and
laminarity. The lower right RP (Figure 1D) is a randomly shuffled
version of the same time series. By shuffling the time series, most
line structures disappear, which is quantified by a drop in deter-
minism and laminarity. Furthermore, this drop in determinism
is indicative of the disappearance of long-range correlations and,
therefore, the importance of keeping time series intact. Although
this does not absolutely refute the use of conventional measures, it
does point toward the use of non-linearmethods and, hence, RQA
as the better method.

Combined, these RQA measures expose the dynamical pro-
cesses inherent to the construct under study. RQA has been
applied successfully in the field of postural control (Riley et al.,
1998; Pellecchia and Shockley, 2005), eyemovement coordination
(Richardson et al., 2007;Dale et al., 2010),motor control (Wijnants
et al., 2009), problem solving cognition (Stephen et al., 2009), and
treatment efficacy for aggressive children (Lichtwarck-Aschoff
et al., 2012).
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FIGURE 1 | Recurrence plots (RPs) of the RNG task of participant 240
(upper row) and participant 176 (bottom row). The left-side panels (A,C)
display the observed time-series of both participants, while the right-side panels
(B,D) show a randomized version of the same sequence. The RQA measures

demonstrate the effect of randomizing the temporal order of the time-series: for
both participants the recurrence rate is the same, but the formation of line
structures differs from the observed sequence to the randomized version (see
main text for a more detailed explanation on the interpretation of RPs and RQA).

The goal of the current study was to explore the utility of RQA
in quantifying number sequences generated in the framework of
RNG tasks. In a typical RNG procedure, responses of participants
are paced using a metronome. However, recent research demon-
strated a coupling of behavior between themetronome and several
human systems, resulting in a change of long-range correlations
within time series (Coey et al., 2014; Marmelat et al., 2014; Rigoli
et al., 2014). For the current study, this coupling would imply
that both motor behavior and number selection is influenced
by the variability and speed of the metronome. Consistently, a
positive correlation between metronome interval length and the
quality of randomness is often reported (Baddeley, 1966; Brugger,
1997; Joppich et al., 2004). Withal, state-based randomization
measures should not be as much affected by a change in long-
range correlations. In contrast, RQA measures are sensitive to

the sequential order of time series, and to eliminate this coupling
effect, we used a non-paced RNG paradigm to examine the utility
of RQA over traditional measures. Since little to no research has
been done on RNG without a pacing signal, we first explored the
similarities of the current results with those from a paced version.
Specifically, we compared the factorial structure of the current
datawith results reported in the literature (Maes et al., 2011). Next,
we added RQA measures to our factorial structure, to determine
their similarity to the original RNG randomization measures and
their interpretability within the often-used theoretical threefold
of executive functioning: shifting between mental sets, updating
and monitoring of working memory contents, and inhibition of
prepotent responses (Miyake et al., 2000). Finally, we explored
whether RQA provides a better explanation of executive function-
ing as measured by the RNG paradigm than is the case for the
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more conventional randomness measures. This was achieved by
comparing the RQA measures to the randomization measures in
terms of their interpretability, the number of components in the
model, and the amount of variance explained.

Materials and Methods

Participants
A group of 242 first- and second-year students attending courses
in methodology and statistics completed the RNG task. These
students were asked during their respective classes to participate
without getting any compensation. The task was completed within
the classroom environment.

Apparatus
Participants generated a sequence of numbers by clicking (with
a standard input device) on the cells of a 3× 3 (12.5× 13 cm)
grid, shown on a laptop computer. The digits were displayed in
a vertically inversed num-pad grid, with the numbers 1, 2, and
3 in the top row. Each response resulted in the appearance of
a 3.8× 4.2-cm rectangle drawn with a dotted line in the cor-
responding cell of the grid, while the grid and digits remained
visible throughout. This rectangle disappeared upon selection of
the subsequent response, and the newly selected digit was again
marked by the appearance of a dotted-line rectangle. The grid was
drawn in black against a white background.

Procedure
Participants were orally given the instruction to generate 100
numbers in their own pace with the sole rule that the numbers
must be as random as possible. Since all participants were taught
in basic methodology and statistics, no further explanations on
the meaning of random was given. Because participants were free
to take the time they needed to produce the number sequence, we
term this procedure non-paced RNG. In contrast, a paced RNG
paradigm uses a fixed decision time interval (e.g., one response
each second) to randomly select numbers.

Measures
The randomization measures used in the current study were
identical to those originally described by Towse and Neil (1998)
and were calculated using software that these authors developed:
RgCalc. The measures used were: adjacency, coupon, Phi 2-gram,
Phi 3-gram, Phi 4-gram, Phi 5-gram, Phi 6-gram, Phi 7-gram,
redundancy, repetition gap (mean), repetition gap (median), rep-
etition gap (mode), RNG, RNG 2, runs, and Turning Point Index
(TPI). For a full explanation of thesemeasures, see Towse andNeil
(1998) and Maes et al. (2011).

The RQA measures were calculated using Cross Recurrence
Plot toolbox for MATLAB (Marwan et al., 2007). The measures
were recurrence rate, determinism, longest diagonal line length,
averaged diagonal line length entropy, laminarity, and trapping
time (see Introduction for a full explanation of these measures).
In many cases, laminarity proved to be zero, which makes it
impossible to calculate trapping time for these cases. In order
to include all participants in our principal component analysis
(PCA), the missing trapping times were set to zero. These RQA

measures are affected by the chosen embedding dimension (M),
time delay (τ), minimal line length, and radius. To optimize the
information gained from the time series, M is chosen based on
the disappearance of false nearest neighbors (Kennel et al., 1992)
and τ on the first minimum in the mutual information (Fraser
and Swinney, 1986). However, since random number sequences
contain only nominal information, we used the same embedding
dimension (M= 1) as practiced by Coco and Dale (2014), Dale
et al. (2010), andDale and Spivey (2005) on categorical time series
data. Our parameter τ was set to 1, which is advised for discon-
tinuous data (Webber and Zbilut, 2005). Finally, the minimal line
lengthwas set to 2, to ensure that every recurring combination of 2
or more digits are considered a diagonal or vertical line structure,
and the radius was set to less than 1 such that only exact matches
are considered recurrent (Orsucci et al., 1999).

Analysis
To compare the current data to earlier results, the same data-
reduction analysis (IBM SPSS Statistics 19.0) was used as in
the study by Maes et al. (2011): PCA with uncorrelated com-
ponents (varimax rotation) based on eigenvalues >1. Next, to
determine the similarity of the randomization andRQAmeasures,
factor analysis was performed on the combined data from the
current experiment and those from Maes et al. (Experiment 1).
However, because there is no reason to assume that inhibition
of prepotent responses, updating, and output inhibition are not
inter-correlated, four promax rotated components were sampled.
Finally, the factorial structure based on the RQA measures was
compared to that based on the randomization measures, focus-
ing on both the number of components and the proportion of
explained variance. To be able to compare the proportion of vari-
ance explained, the analysis was kept identical to the aforemen-
tioned dimension reduction technique: PCA with uncorrelated
components (varimax rotation) based on eigenvalues >1.

Results

To examine the factorial similarity of the current data and ear-
lier results, PCA was conducted on all 16 aforementioned ran-
domization measures with orthogonal rotation (varimax). The
Kaiser–Meyer–Olkin measure verified the sampling adequacy for
the analysis, KMO= 0.823, and all KMO values for individual
items were above the acceptable limit of 0.6. Barlett’s test of
sphericity, χ2(120)= 2426.29, p< 0.001, indicated that correla-
tions between measures were sufficiently large for PCA. Four
components had eigenvalues larger than Kaiser’s criterion of 1 and
in combination explained 71.60% of the variance (Field, 2009).
Table 1 shows the factor loadings after rotation. Apart from slight
deviations with respect to RNG(2) and Phi-gram measures, this
factorial structure largely resembles the structure based on the
paced RNG data reported by Maes et al. (2011) shown in Table 2.

Next, PCA was conducted to explore the factorial structure of
all 16 randomization measures in combination with seven RQA
measures, with four oblique rotated components (promax). The
Kaiser–Meyer–Olkin measure verified the sampling adequacy for
the analysis, KMO= 0.841, and all KMO values for individual
items were above the acceptable limit of 0.7. Barlett’s test of
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TABLE 1 | Summary of principal component analysis of the data from the
non-paced RNG task after orthogonal rotation (N=242).

Updating Inhibition of prepotent
responses

Output
inhibition

Undefined

Redundancy 0.782 0.432
RNG2 0.713 0.478
RG median −0.674 −0.486
RG mean −0.652 −0.461
Coupon 0.630 0.515
Adjacency 0.885
TPI −0.828
Runs 0.791
RNG 0.593 0.645
Phi 2 0.879
Phi 3 0.719 0.455
Phi 4 0.570 0.556
Phi 6 0.803
Phi 5 0.637
Phi 7 0.634
RG mode −0.546
Eigenvalues 3.200 2.817 2.392 3.047
% of variance 19.998 17.607 14.949 19.045

Output is sorted by size and a cut-off value of 0.4 was used.

TABLE 2 | Summary of principal component analysis of the paced RNG data
from Maes et al. (2011) after orthogonal rotation (N= 118).

Updating Inhibition of prepotent
responses

Output
inhibition

Undefined

Redundancy 0.792
RNG2 0.859
RG median −0.785
RG mean −0.586
Coupon 0.830
Adjacency 0.874
TPI −0.844
Runs 0.478 0.769
RNG 0.874
Phi 2 0.876
Phi 3 0.811
Phi 4 0.691
Phi 6 0.423 −0.569
Phi 5 0.445 0.462 0.521
Phi 7 0.631
RG mode −0.475
Eigenvalues 3.409 3.844 2.729 1.201
% of variance 21.304 24.026 17.059 7.508

Output is sorted by size and a cut-off value of 0.4 was used.

sphericity, χ2(253)= 6116.29, p< 0.001, indicated that correla-
tions betweenmeasureswere sufficiently large for PCA. The initial
extraction, before rotation, of four components explained 70.39%
of the variance. Table 3 shows the factor loadings after rotation,
andTable 4 shows the structurematrix. The structurematrix con-
firms the assumed inter-correlation between components, mainly
the components updating and output inhibition.

Finally, PCA was conducted to explore the factorial struc-
ture of using only the recurrence quantification measures with
orthogonal rotation (varimax). For the current sample, the
Kaiser–Meyer–Olkin measure verified the sampling adequacy for
the analysis, KMO= 0.645, and all KMO values for individual
items were above the acceptable limit of 0.5. Barlett’s test of

TABLE 3 | Summary of principal component analysis of the non-paced RNG
data after oblique rotation (N=242): pattern matrix.

Updating Inhibition of prepotent
responses

Output
inhibition

Undefined

Averaged diagonal 0.949
Entropy 0.905
Longest diagonal 0.845
RNG 0.741
Determinism 0.729
RNG2 0.405 0.691
TPI −0.497 −4.21 −0.473
Redundancy 1.010
Recurrence rate 0.995
Coupon 0.777
RG median −0.759
RG mean −0.558
RG mode −0.495
Phi 5 0.478
Phi 6 0.473
Phi 7
Phi 2 0.892
Phi 3 0.802
Laminarity 0.801
Trapping time 0.688
Phi 4 0.608
Runs 0.813
Adjacency 0.476 0.757
Eigenvalues 5.124 7.965 1.802 1.299
% of variancea 22.280 34.630 7.833 5.647

Output is sorted by size and a cut-off value of 0.4 was used.
a% of variance before rotation.

sphericity, χ2(21)= 1131.12, p< 0.001, indicated that correla-
tions between measures were sufficiently large for PCA. Two
components had eigenvalues above Kaiser’s criterion of 1 and in
combination explained 71.91% of the variance. For the sample
from the study by Maes et al. (2011), the KMO measure= 0.734,
and all KMOvalues for individual itemswere above the acceptable
limit of 0.5. Barlett’s test of sphericity, χ2(21)= 589.23, p< 0.001,
indicated that correlations between measures were sufficiently
large for PCA. Two components had eigenvalues above Kaiser’s
criterion of 1 and in combination explained 76.34% of the vari-
ance. Tables 5 and 6 show the corresponding factor loadings after
rotation.

Discussion

In the current study, we explored RNG in healthy participants by
using non-linear methods to quantify performance, specifically
RQA. To this aim, the performance of students on a non-paced
RNG task was compared to that in an earlier sample (Maes et al.,
2011), using a paced RNG paradigm. Performance was analyzed
using both traditional and RQAmeasures.We found that the RQA
measures align well within the same factorial structure that is
often reported in the literature using the traditional measures.
Moreover, the RQA measures explain about the same amount
of variance within RNG performance, but have a more sparse
interpretation than that based on the traditional measures.

Only small differences between the factorial structure of
the data from the current non-paced and earlier paced RNG
paradigms were found. Moreover, the interpretation of the four
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TABLE 4 | Summary of principal component analysis of the non-paced RNG
data after oblique rotation (N= 242): structure matrix.

Updating Inhibition of prepotent
responses

Output
inhibition

Undefined

Entropy 0.915 0.424
Averaged diagonal 0.913
RNG 0.488 0.874 0.455
Determinism 0.408 0.809
RNG2 0.503 0.797
Longest diagonal 0.774
TPI −0.678 −0.620
Redundancy 0.931
Recurrence rate 0.921
RG median −0.842 −0.548
Coupon 0.826 0.485
RG mean −0.714 −0.572
Phi 5 0.648 0.604
RG mode −0.629 −0.537
Phi 6 0.555 0.517
Phi 7 0.476 0.411
Laminarity 0.560 0.893
Phi 2 0.882
Phi 3 0.777
Phi 4 0.453 0.703
Trapping time 0.646
Adjacency 0.539 0.853
Runs 0.852

Output is sorted by size and a cut-off value of 0.4 was used.

TABLE 5 | Summary of principal component analysis of the non-paced RNG
data after orthogonal rotation (N=242).

Inhibition of prepotent
responses

Updating

Averaged diagonal 0.957
Entropy 0.937
Longest diagonal 0.852
Determinism 0.730
Laminarity 0.861
Trapping time 0.765
Recurrence rate 0.712
Eigenvalues 3.086 1.948
% of variance 44.085 27.830

Output is sorted by size and a cut-off value of 0.4 was used.

components of the current non-paced RNG data did not differ
from the often reported factorial structure with the three-defined
components (inhibition of prepotent responses, working memory
updating, and output inhibition) and one undefined component.
Adding RQA measures to the factorial structure did not change
this interpretation and the same structure could still be subtracted.
Thus, the RQA measures convey more or less the same informa-
tion as the traditional measures and most, if not all, theoretical
implications should be applicable to the RQA measures.

Although no significant difference in the amount of explained
variance was found between the RQA and the traditional mea-
sures, the amount of extracted components did differ.Whereas the
traditional measures are interpreted within the aforementioned
four-component structure, the RQA measures are aligned on just
two components that could be interpreted as reflecting inhibition

TABLE 6 | Summary of principal component analysis of the paced RNG data
from Maes et al. (2011) after orthogonal rotation (N=118).

Inhibition of prepotent
responses

Updating

Averaged diagonal 0.963
Longest diagonal 0.922
Determinism 0.917
Entropy 0.839
Laminarity 0.918
Trapping time 0.878
Recurrence rate 0.486
Eigenvalues 3.487 1.857
% of variance 49.818 26.523

Output is sorted by size and a cut-off value of 0.4 was used.

of prepotent responses and working memory updating. Diago-
nal line structures are indicative of deterministic or (complex)
repetitive behavior, which is closely related to inhibition. This
is true for simple repetitive structures like is measured by RNG
and adjacency and for complex repetitive structures, which has
no equivalent conventional measure. Determinism, diagonal line
length, and entropy quantifies both simple and complex repetitive
structures and, therefore, inhibiting behavior. Updating of work-
ing memory content, on the other hand, is theorized to reflect
equality of response usage (Towse andNeil, 1998) or keeping track
of recent responses (Miyake et al., 2000). This keeping track of
recent responses is quantified by redundancy, coupon, and some
of the longer Phi-grammeasures. In contrast, recurrence rate is the
amount of all recurring numbers regardless of distance between
any two numbers and this conveys, among other things, the same
information as the redundancymeasure and all possible Phi-gram
measures without breaking the time series down into digrams.
Moreover, Tables 3, 5, and 6 do confirm inhibition of prepotent
responses as being one factor and, to a lesser extent, working
memory updating as the other.

The benefits of this two-component interpretation over the
traditional component solution are twofold. First of all, the fourth
component in the component structure of the traditional mea-
sures does explain a substantial amount of variance without,
however, having a satisfying interpretation. Mayhap, this vari-
ance might be attributed to the sequencing of digits on longer
timescales, seen in the longer Phi-gram measures and runs. The-
oretically, these measures should coincide with either working
memory updating (Phi gram) or inhibition of prepotent responses
(runs). However, by using summary statistics, these randomiza-
tion measures capture only a derivative of order and, therefore,
create an artificial fourth factor. Secondly, this two-factor solu-
tion preempts the high correlation between updating of working
memory content and output inhibition (Table 4). Furthermore,
Baddeley et al. (1998) theorized that output inhibition reflects
an automatic process of short-term negative priming and, hence,
should not be attributed to the central executive or workingmem-
ory. In other words, output inhibition is an automatic process and
not part of human executive behavior and should, therefore, not
be interpreted as a variable in theories on executive functioning.
This effect of negative priming should primarily be seen on short
timescales as captured by Phi 2-gram and Phi 3-gram, whereas
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the contribution of working memory gets larger with increasingly
longer time intervals. The current findings show this by the overall
high correlation between working memory updating and output
inhibition, but this correlation is non-existent for the Phi 2-gram
and Phi 3-gram measures (Table 4). Laminarity and trapping
time are closely related to Phi 2-gram and, therefore, this effect
of negative priming limits the information gained from these
RQA measures (often the percentage of recurring points forming
vertical line structures is zero), which makes their loadings on
the updating component hard to interpret. However, taking all
this argumentation into account, the RNG taskmeasures only two
domains of executive functioning, namely inhibition of stereo-
typed behavior and monitoring working memory content. As
mentioned earlier, the advantage of RQA over the conventional
measures is that the time series is kept intact. Most conventional
measures use either the frequency of digrams or a summary
statistic to model RNG and, thereby, lose all information of
longer timescales. In contrast, all RQA measures are based on
the longest timescale available within the data. In other words,

whereas conventional measures quantify only snapshots of exec-
utive behavior, RQA uses all available information and quantifies
executive behavior in a more holistic manner.

To summarize, we found that the RQA and traditional ran-
domization measures convey the same information, but the RQA
measures do so in amore parsimoniouswaywith a better interpre-
tation. Based on these findings, we believe that RQA is a useful, if
not better, alternative to the study of executive functioning using
RNG. Moreover, RQA and other non-linear methods offer many
more perspectives to broaden our understanding of executive
functioning that is reflected in RNG performance. One of these
perspectives is to include non-paced response times into our
analysis, as variability of response time intervals is another source
of information that tells us much about the underlying system’s
properties (Holden et al., 2009; Wijnants et al., 2009). In closing, it
is important to keep the temporal structure of behavior intact, and
for future reference, we will abide to this claim by embedding our
discussion on RNG into a framework of interaction-dominance
and complexity science.
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