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Three-dimensional interactive virtual environments (VEs) are a powerful tool for

brain-imaging based cognitive neuroscience that are presently under-utilized. This paper

presents machine-learning basedmethods for identifying brain states induced by realistic

VEs with improved accuracy as well as the capability for mapping their spatial topography

on the neocortex. VEs provide the ability to study the brain under conditions closer to the

environment in which humans evolved, and thus to probe deeper into the complexities

of human cognition. As a test case, we designed a stimulus to reflect a military combat

situation in the Middle East, motivated by the potential of using real-time functional

magnetic resonance imaging (fMRI) in the treatment of post-traumatic stress disorder.

Each subject experienced moving through the virtual town where they encountered 1–6

animated combatants at different locations, while fMRI data was collected. To analyze the

data from what is, compared to most studies, more complex and less controlled stimuli,

we employed statistical machine learning in the form of Multi-Voxel Pattern Analysis

(MVPA) with special attention given to artificial Neural Networks (NN). Extensions to NN

that exploit the block structure of the stimulus were developed to improve the accuracy of

the classification, achieving performances from 58 to 93% (chance was 16.7%) with six

subjects. This demonstrates that MVPA can decode a complex cognitive state, viewing

a number of characters, in a dynamic virtual environment. To better understand the

source of this information in the brain, a novel form of sensitivity analysis was developed

to use NN to quantify the degree to which each voxel contributed to classification.

Compared with maps produced by general linear models and the searchlight approach,

these sensitivity maps revealed a more diverse pattern of information relevant to the

classification of cognitive state.

Keywords: fMRI BOLD, machine learning, human vision, virtual environments, natural stimuli

Introduction

Recent research has shown that fMRI is capable of decoding some cognitive states (Mitchell
et al., 2004) such as the cognitive states associated with the perception of various types of objects
(Shinkareva et al., 2008; Cabral et al., 2012), what a person is saying and who is saying it (Formisano
et al., 2008a), and telling the truth or lying (Fan et al., 2006). The ability to decode cognitive states
during training and therapy exercises could be invaluable for improving their efficacy. Virtual
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environments (VEs) are the most practical way to perform
such exercises within the confines of an MRI scanner, and a
number of virtual training and therapy environments already
exist (Gerardi et al., 2008; Gonçalves et al., 2012). However,
these exercises are far from the controlled stimuli used in most
fMRI experiments. During such natural tasks, we expect a variety
of complex interactions between many regions of the brain. A
goal of the work reported in this paper is further development
of computational analysis techniques that improve decoding
accuracy of cognitive states in such an environment. Rather than
focusing on a specific set of cognitive states, we look to develop
a general approach to decoding task-relevant states with high
accuracy. Additionally, the visual richness, the motion of the
objects and viewer, and the real-time interaction with the virtual
environment bring experiences to the subject much closer to
those which shaped the evolution of our brains. It seems plausible
then that using VEs can reveal how the brain functions under
more realistic circumstances. Therefore, another goal of the work
reported in this paper is to further development of analysis
techniques that improve the interpretability of complex decoding
algorithms for use in hypothesis driven experiments.

Using VEs in fMRI experiments have been explored by
various researchers over the past decade. Early examples
can be found in the work of Spiers and Maguire (2007b)
and the resulting publications (Valente et al., 2011) from
the PBAIC 2007 competition (see http://www.lrdc.pitt.edu/ebc/
2007/competition.html). In the case of Spiers and Maguire, a
commercial taxi driving game was used as the stimulus, thereby
leveraging many millions of dollars in development expense, but
at the same time severely limiting control of the stimulus by
the researchers. The game play was recorded during scanning,
and afterwards the subject reviewed the video with a researcher
and explained what they were thinking and doing at each point
to assist in labeling the data. For the PBAIC 2007 competition,
researchers constructed an interactive VE using the Source game
engine. Subjects were given a relatively complex task to search for
fruits, toy weapons, and characters with piercings, while avoiding
contact with a dog. Subjects received compensation after the
scan based on the score they received in the game. Similar to
the work of Spiers and Maguire, the game play was recorded
and participants rated their subjective mood along several axes,
including arousal and valence, while reviewing the video. More
recently, researchers have begun using VEs in more traditional
controlled experimental protocols utilizing specially designed
and far simpler VEs (Marsh et al., 2010;Mueller et al., 2012; Op de
Beeck et al., 2013; Schindler and Bartels, 2013). These stimuli cost
much less than a commercial game, and so are commensurately
less realistic.

For our experiments, we used a virtual environment specially
developed for us by a professional game and simulation designer
using a state-of-the-art game engine. The visual quality of the
environment and the motion of characters and camera were
comparable to what is found in military training systems. The
visual quality is similar to the stimuli used in the work of
Spiers and Maguire as well as the PBAIC 2007 competition.
However, in those stimuli the induced cognitive states are not
well balanced. Due to their interactive nature, the subjects

may spend significantly more time in one state than another.
This complicates the training and, in particular, the evaluation
of decoding algorithms. In our stimulus, we have balanced
the induced states at the cost of interactivity to provide
better accuracy estimates of different decoding methods for
comparison. On the other hand, the stimulus is considerably
more realistic—and the subject’s state less controlled—than what
is found in the recent neuroscientific investigations involving
VEs (Marsh et al., 2010; Mueller et al., 2012; Op de Beeck
et al., 2013; Schindler and Bartels, 2013). It was important to
measure the performance of different decoding methods in this
environment to gauge their potential for use with training and
therapy exercises.

Our goals were focused on exploring and improving methods
of data analysis coupled with virtual environment stimulus
design, rather than testing a specific neuroscience hypothesis. We
aimed to extract the cognitive state of the subject associated with
freely viewing a number of characters, rather than test the many
possible perceptual mechanisms that encode this information in
the human brain, such as object recognition, eye movements,
or social group perception. Such decoding methods will be
important for use of fMRI in clinical settings where it is useful
to know the task-relevant cognitive state of the subject, but the
neural mechanisms may not be well understood yet. We are,
for example, interested in supporting work using virtual reality
to treat PTSD due to combat, in which treatment exposes the
subject to virtual stimuli that are highly suggestive of the physical
situations that induced the trauma. Through carefully controlled
use of VR, the patient is gradually desensitized over a period of
weeks so that the likelihood of triggering of the trauma declines
(Gerardi et al., 2008), as confirmed through fMRI measurements
(Gonçalves et al., 2012). Our stimulus and experiments were
developed with this in mind. In particular, we created a virtual
town suggestive of the Middle East, and populated the town with
a combination of U.S soldiers and foreign combatants (Figure 1).

Most neuroscience experiments analyze their data using
hypothesis-based statistical techniques, such as the general linear
model (GLM), Such methods can be very effective only when a
distinct and testable hypothesis is available. However, the closer
the stimuli get to realistic experiences, as offered using VE,
the more difficult it becomes to isolate a tractable hypothesis.
Moreover, it is likely that the more complex VE stimuli will
evoke a more broadly distributed cortical response that includes
both low-level sensory and higher-level associative regions. The
treatment of each voxel independently by GLM cannot capture
the structure of multi-voxel responses reflecting the coordinated
activity these widely distributed brain regions. For all these
reasons, we employ multi-voxel pattern analysis (MVPA) based
on machine learning, an approach introduced in Haxby et al.
(2001).

We offer a new combination of methods to decode and
analyze VE stimulus information from fMRI data. Most fMRI
applications of machine learning have shown discrimination
between distinct object categories (Haxby et al., 2001; Pereira
et al., 2009). More recently the relationship between multiple
objects has been explored (Baeck et al., 2013). Here we
demonstrate that the cognitive state associated with object
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number rather than object classification can be decoded from
fMRI data. Specifically, the cognitive state associated with
viewing a number of animated characters, varying from 1 to 6
can be decoded in a dynamically changing virtual environment
with accuracy from 58 to 93% (chance is 16.7%). Such high
classification accuracy has important potential for real-time fMRI
based therapies that adjust the stimulus in response to brain
activity.

To achieve this performance, we experimented with four
machine learning algorithms. We were particularly interested
in artificial neural networks (NN) and support vector machines
(SVM). For completeness, we also tested a Gaussian naive
Bayes classifier (GNB) (Duda and Hart, 1973), and k-nearest
neighbor classifier (KNN). The SVM is the most commonly
used machine-learning algorithm in MVPA analyses (Pereira
et al., 2009). However, we found that NNs also produced very
favorable results. Recent advances in NNs, such as deep learning
(Hinton et al., 2006) and convolutional networks, have been
outperforming traditional SVMs in a variety of domains (Cirşan
et al., 2012). Before jumping to these advanced techniques, we
wanted to explore the application of relatively simple feed-
forward NNs on fMRI data, and we propose several methods for
improving their classification performance.

MVPA classification performance can tell us to what degree
the time-series data can be used to decode a target category, but
we also want to know which voxels are encoding the desired
stimulus information. The searchlight technique (Kriegeskorte
et al., 2006) can be used in conjunction with any machine-
learning algorithm to create a map, but it does not fully utilize
the spatially distributed multivariate nature of the classifier.
For SVMs, the absolute discriminative map (Formisano et al.,
2008b) has been used. However, the discriminative map is
limited to SVM algorithms. We propose a new mapping
method similar to the absolute discriminative map based on a
technique called sensitivity analysis (Zurada et al., 1994). For
an SVM, the method reduces to approximately the absolute
discriminative map. However, the method is more general and
has been adapted to the NN. The sensitivity analysis is used
in several ways. First, we examine the use of the sensitivity
results to train NNs on high-dimensional fMRI data with

relatively few training examples. Second, we present a method
for producing informative maps from trained networks based
on sensitivity analysis. Finally, we develop a technique based on
recursive feature elimination (Guyon et al., 2002) to determine
appropriate thresholds for these sensitivity maps. The recursive
feature elimination technique also acts as a multivariate feature
reduction technique that can improve decoding performance. A
similar method was applied to SVMs in the work of De Martino
et al. (2008).

Methods

Subjects
Five adult males, ages 24–57, with normal or corrected-to-normal
vision, participated in the experiments. All subjects participated
in two fMRI sessions and a third session to acquire a high-
resolution structural anatomy. Informed consent was obtained
from all subjects under a protocol approved by the University of
Texas at Austin Institutional Review Board.

Stimulus
For designing our virtual environment, we used the Unreal
Developer’s Kit developed by Epic Games, Inc.. This development
kit is available free of charge for non-commercial applications
(http://www.unrealengine.com/udk) and uses the same
rendering and game engine found in many current and
popular video games.

We created a virtual environment suggestive of a town
in the Middle East (Figure 1). The stimulus was rendered in
real-time from the point of view of a camera moving at eye
level through the town, providing a first-person-perspective
experience. Virtual characters representing friendly forces and
hostile combatants were situated at four locations in the town.
The camera would travel steadily on a predefined path from one
part of the town to another over a 15 s interval during which
no characters were visible. When one of the pre-determined
locations was reached, characters would appear for 15 s during
which the camera panned back-and-forth slowly while keeping
all the characters in the field-of-view. The characters engaged in
simple repetitive animated movement sequences. The number

FIGURE 1 | The stimulus in the experiment described in this paper

employs a virtual environment and a blocked design where the view

alternates between moving through the environment and viewing

groups of animated characters. (A) An example frame from the stimulus

where the camera is traveling through the virtual environment with no

characters presented. (B) An example frame from the stimulus where five

friendly characters are being presented. (C) An example frame from the

stimulus where three hostile characters are being presented. Such stimuli

allow studying how the brain responds in a more natural and complex

environment.
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of characters presented at each of these locations varied from
one to six, but the number and position of the characters
did not vary over each 15-s period (Figures 1B,C). The 30-
s block design of the stimulus was used for feature selection
and for improving classifier performance (see below). The
MVPA classification was always applied only to the periods
of time when characters were presented. While the stimulus
followed a 30-s block design, the subject always had the
context of being present in the virtual town. This was done in
order to preserve as much realism as possible by avoiding a
discontinuity in context induced by using a blank screen for
contrast.

A scanning session of a single subject entailed five to six “runs,”
where each run was 6min in duration. During a single run, every
possible number of characters, from one to six, was presented
twice, for a total of 12 presentations of characters (15 s each). The
order of the number of characters was generated by a random
permutation of 1–6 applied twice, once for the first half of the
run and once for the second half. Since we placed characters at
only four different locations in the town, the camera made three
loops through the town in order to provide 12 presentations of
characters. Finally, the type of character, soldiers or insurgents,
was the same through a given run, and this character type was
alternated between runs.

The subjects were not given any specific instructions other
than to view the scene. The subjects were not military personnel,
and they were not instructed to perceive specific characters as
friendly or hostile. No background context was provided to bias
the way the subjects perceived the environment.

Our VE stimulus was designed to reduce low-level visual
differences between the group-number categories. First, the
imagery was never static. Once again, achieving as much realism
as possible motivated this decision. It is well known that the
visual experience of looking at still-imagery is quite different
from looking at moving imagery (Spiers and Maguire, 2007a).
Second, the distance and viewpoint of the character groups was
randomized from presentation-to-presentation to reduce low-
level contrast differences between character-number categories.
In addition, the subject performed free viewing of the scene,
so exploratory eye movements should average away any local
contrast correlations with character number. However, it is
possible that the total contrast across the scene is correlated
with character count, as this would not be affected by eye
movements. Therefore, we calculated total scene contrast for
each frame of the stimulus using the root-mean-square (RMS)
contrast measure (Kukkonen et al., 1993). We then fit a GLM
to the result with character counts 0–6 as explanatory variables
and performed a t-test on each of these variables to determine
if a significant correlation existed between total scene contrast
and character count (Friston et al., 1994). To determine what
effect any such correlations, whether significant or not, had on
the performance of the classifiers, we trained an SVM on the
total contrast data and compared the performance with the fMRI
data. Performance was estimated using two-fold cross-validation.
Since the total contrast is identical for each run there are only
two possible folds that are unique and contain every character
count.

MRI Protocols
Imaging was performed on a GE Signa Excite HD 3T scanner
using the product eight-channel head coil. Whole-brain image
volumes were collected using a custom GRAPPA EPI sequence
(Griswold et al., 2002). Sequence parameters were g-factor = 2,
TE = 25ms, TR = 2.5 s, and 2.5-mm cubic voxels across a
200mm field-of-view. The slice prescription included 40 slices
oriented along the AC-PC axis. A high-order shimwas performed
before the start of the functional imaging to improve field
homogeneity.

A set of T1-weighted structural images was obtained on the
same prescription before the functional acquisition runs using
a three-dimensional (3D) fast RF-spoiled gradient-echo (fSPGR)
sequence. These anatomical images were then used to align the
functional data to a structural 3D reference volume, which was
acquired for each subject in a separate session. The structural
reference volumewas T1-weighted with good gray-white contrast
and was acquired using a 3D inversion-prepared fSPGR sequence
(minimum TE and TR, TI = 450ms, 15◦ flip angle, isometric
voxel size of 0.7mm, 2 excitations,∼28-min duration).

Preprocessing
Preprocessing of the fMRI data was performed using the
mrVista software package (available at http://vistalab.stanford.
edu/), modified for use in our own lab. The first 15 s of data were
discarded to reduce transient effects. Within-scan motion was
then estimated using a robust intensity-based scheme (Nestares
and Heeger, 2000). Between-run motion was corrected using the
same scheme, this time applied to the temporal average intensity
of the entire scan. The first run of the session was used as
the reference. Because the goal is to learn associations between
patterns of activation in the brain and stimulus presentation, it
is important that the activation is temporally aligned with the
stimulus. Therefore, a Wiener filter deconvolution (Poor, 1980)
was applied using a generic difference-of-gamma hemodynamic
response function (Glover, 1999) as the kernel to the recorded
BOLD signal. Mostly, the deconvolution served to shift the
peak response in time so that it was aligned with its associated
stimulus, but it also provided some amount of noise reduction.
The high-resolution reference anatomies were segmented using
the Freesurfer image analysis suite (http://surfer.nmr.mgh.
harvard.edu/) to create approximate parcellations of the gray
matter in each subject, as well as a surface model for visualization
of mapping results.

Cross-Validation
The performance of machine learning algorithms is generally
defined to be the expected accuracy of the classifier on previously
unseen examples (Bishop, 2006). In practice, this measure can
only be estimated. A typical approach is to split the available
examples into training and test sets. The classifier is first trained
on the training set, and its performance on the test set is then
taken as the estimate of classifier performance on future unseen
data. The splitting process is performed multiple times to reduce
the variance of the performance estimate. This procedure is
known as k-fold cross-validation (Kohavi, 1995).
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In order to generate p-values for these performance estimates,
the null distribution for the cross-validated performance was
generated by randomly permuting the labels on the examples
2000 times and repeating the training and cross-validation
procedure. That is, the distribution of performance estimates was
generated under the assumption that the labels and data were
independent. Using this distribution, p-values were calculated
for the performance estimates (Ojala and Garriga, 2010). The
high-performance computing resources of the Texas Advanced
Computing Center at The University of Texas at Austin were
utilized to perform this computation.

Previous studies (Pereira et al., 2009) have raised issues
with performance estimates that are optimistically biased due
to temporal correlations between examples (time frames) that
violate standard assumptions of independence between training
and test sets. For fMRI, the hemodynamic response introduces
temporal correlations on the order of 10 s, which raises
the question: What is the relationship between performance
estimates and temporal correlation? To address this question,
we estimated classifier performance when classifying number of
characters presented using four different methods for splitting
the data between training and test sets. Frames where no
characters were present were removed, leaving 72 frames per
run.We grouped different numbers of the remaining consecutive
frames into selection units: 1 frame (frame split), 6 frames (block
split), 36 frames (half-run split), and 72 frames (run split). For
each of these unit sizes, we formed training and test sets by
randomly selecting individual units (without replacement) and
estimated classifier performance using these sets. For the frame
and block splits, classifier performance was estimated using ten-
fold cross-validation. For the half-run and run splits, only eight-
and four-fold cross-validation was used respectively, due to the
limited number of runs per subject. Based on our results, we
chose to utilize the block split for performance estimates, as it did
not exhibit an optimistic bias and allowed us to use more folds in
the cross-validation procedure, which reduces the variance of the
performance estimates.

Feature Selection
We used feature selection methods to remove uninformative
voxels, thus improving both training time and performance of the
machine-learning algorithms. This was particularly important
for the NN, where training times can be quite long compared
to the other methods. Common tools for feature selection
in neuroimaging include anatomical region-of-interest (ROI)
selection, principal component analysis (PCA; Hotelling, 1933),
and univariate statistical tests. ROI selection is a powerful
aide for hypothesis testing, but is much less useful for data
exploration. PCA selects the orthogonal projections with the
highest variance, which are generally dominated by physiological
nuisance and is therefore not well suited for our purposes.
Instead, we used ANOVA (Scheffe, 1959), which has been shown
to be effective for feature selection in the context of MVPA
(Norman et al., 2006; Pereira et al., 2009). The idea behind
ANOVA is to calculate the mean and variance for the set of
samples in each class (e.g., number of characters), and then
use these statistics to determine how different the distributions

for each class are. We used ANOVA in one of two different
ways: selecting voxels that differed significantly between with-
character and without-character periods, or selecting voxels that
differed significantly across classification targets (i.e., number
of characters). To calculate significance, ANOVA estimates
the probability that the means of two different samples are
different. For comparison, we performed both task-activated
feature selection and classification-target feature selection. We
found classification-target feature selection yielded the best
results on this dataset. Additionally, care must be taken to avoid
optimistically biasing the accuracy estimates; voxel selection
must be performed within each fold of a cross-validation
procedure.

Classification
Using the time series from the voxels selected by the ANOVA
process, we constructed classifiers of the following types:
one-vs.-one multi-class linear support-vector machine with
C = 1 (Cortes and Vapnik, 1995; Weston and Watkins, 1999),
feed-forward neural network with scaled conjugate gradient
backpropagation training (Hornik et al., 1989; Møller, 1993;
Hagan and Menhaj, 1994), Gaussian naive Bayes classifier (GNB)
(Duda and Hart, 1973), and k-nearest neighbor classifier (KNN)
with k = 6 (Cover and Hart, 1967). The parameters for the
SVM and KNN were determined by a grid-search (Hsu et al.,
2010) on a left-out dataset. That is, the parameters were obtained
on data not used in the cross-validation procedure to estimate
performance. The performance of each classifier was estimated
for three different classification problems: whether characters
were present, how many characters were present, and what type
of characters was present. For the former classification, the full
time series was utilized; for the latter two classifications, we
used only the fMRI data obtained during the character-present
periods. The number of examples for each label was always
balanced.

Although the NN can potentially learn more complex
classification functions than the other algorithms, it uses a
stochastic training process and has many more free parameters.
To overcome these issues, we performed model selection within
each fold of the cross-validation procedure using a validation
phase. First, part of the training data was held out as the
validation set.We then performed a grid-search on the number of
hidden nodes and selected the best value based on the network’s
performance on the held-out validation set. Then, using this
hidden-node value, we trained 20 more networks and again
selected the best network based on performance on the held out
validation set. This procedure reduced considerably the variance
of the NNs cross-validated performance.

Classifier Probability and Confidence
All classifiers return a label for an input, but not all classifiers
return the probability that the label is correct. For example, the
SVM can only return a label, whereas the GNB classifier and
feed-forward NN can return the probability for all labels (Richard
and Lippmann, 1991). Normally, one chooses the label with the
maximum probability as the selected class while ignoring its
value, but we explored the use of this probability information
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to improve classification accuracy. It is also useful to consider
a heuristic, which we shall call confidence, which is correlated
with the probability that the chosen label is correct. For the
GNB classifier, the probability of the chosen label can be used
directly. However, the output of the NN is only an approximation
of the posterior probabilities. Therefore, the outputs are first
normalized to sum to one across all labels, and then the output
corresponding to the selected label is taken to be that label’s
confidence. Since the SVM only returns a label, generating a
measure of confidence is not as straightforward and we therefore
elected to only measure the confidence of the NN. How well
confidence correlates with the true probability depends on how
well the NN has approximated the joint probability distribution
after training. The true probability cannot be measured directly,
but we can compare the average confidence with the average
probability that a label is correct, that is, the estimated classifier
accuracy. To see how well the NN is estimating the joint
probability distribution, we averaged confidence across all frames
in a session and plotted it against the session’s cross-validated
performance. It is also worth noting that confidence is calculated
from the output of a trained NN and an input example, but not
the associated label. This means that confidence could potentially
be used as an independent quality estimate if the neural network
was trained on an independent dataset.

Block Integration
A common approach to boost classification accuracy is to average
across frames in a stimulus block (e.g., Pereira et al., 2009).
We compared the use of individual frames as examples to the
use of examples created by averaging across 15-s blocks, and
found that the block-averaged examples produced better classifier
performance. Block averaging exploits our prior knowledge
about the temporal structure of the stimulus, but it is not the only
alternative.

We explored three other approaches for exploiting this
knowledge: block voting, confidence voting, and output
averaging. Block voting can be applied to any machine-learning
algorithm. In block voting, the classifier was trained using
individual frames as input examples, but the classification of
a block was chosen as the majority classification of all frames
in that block – each frame in the block “votes” on the block
classification. The block voting procedure can be interpreted
as a median filter on the output of a classifier trained on
individual frames, cblock = Median[c1 c2 . . . c6] where cblock
is the classification of the block and c1, c2, . . . , c6 are the
classifications of the individual frames in the block. Confidence
voting requires an algorithm that returns a probability along
with the label. Confidence voting was similar to block voting,
but each frame’s vote was weighted by the probability of the
chosen label on that frame, cblock = argmaxcǫ�

∑6
i=1 wi · 1c(ci)

where � is the set of all classes, wi is the weight or confidence
associated with frame i, and 1c(·) is the indicator function for
class c. Output averaging requires an algorithm that returns
a probability for each output class such as a NN. In output
averaging, the probability values from the neural network were
summed across the block and the label was selected to be the
class with the greatest value, cblock = argmaxcǫ�

∑6
i=1 Oc,i where

Oc, i is the probability output of the neural network for class c at
frame i.

Mapping
Wehave extendedNN sensitivity analysis to determine the spatial
distribution of voxels that contribute to the classification of each
class. The key idea is calculate the sensitivity (or derivative) of
the neural network output (classes) with respect to each input
(voxels). Let o be the vector of outputs and x be the vector of
inputs. Then the sensitivity of output k to input i is defined

by Ski =
δok
δxi

, which is the partial derivative of the output
with respect to the input. Let w be the weight matrix from the
hidden layer to the output layer and wkj be a single element of
w corresponding to the weight on the network edge connecting
output k with hidden node j. Similarly, let v be the weight matrix
from the input layer to the hidden layer and vji be a single edge

weight. Then the partial derivative can be expressed as
δok
δxi

=

o
′

k

∑J
j= 1 wkjy

′

jvji, where J is the total number of hidden units in

that layer of the neural network, o
′

k
is the value of the derivative

of the activation function at output k, and y
′

j is the value of the

derivative of the activation function at hidden neuron j. Finally,
the entire sensitivity matrix can be expressed in matrix notation

as S = O
′

×W×Y
′

×V , whereO
′

= diag(o
′

1, o
′

2, · · · , o
′

K) and

Y
′

= diag(y
′

1, y
′

2, · · · , y
′

K).
Since the activation functions are generally non-linear, the

sensitivity matrix becomes a function S(x), where x is an input
vector. However, the sensitivity matrix for a particular input
vector can vary due to the stochastic nature of training NN. To
compensate for this added variance, we trained 100 different nets
and calculated the average sensitivity matrix Savg (x) across these
samples.

We now have a sensitivity score for each voxel at all time
points and for all output classes. However, we would like a
measure of sensitivity only on voxels. Therefore, we calculated
S for each point in the time series, and then computed the
RMS average sensitivity matrix across all input vectors as

SRMS =

√

∑N
n= 1 Savg(x)

2/N, where N is the number of

input vectors (time points). SRMS gives a sensitivity value for
each voxel with respect to all outputs. We then calculated the
maximum sensitivity of each voxel across all outputs, i.e., φi =

maxk=1···KSki, RMS. This sensitivity was projected back into the
volume anatomy to create a map of the relative incremental
importance of each voxel’s response to the classification decision.

In order to empirically determine a sensitivity threshold to
eliminate irrelevant voxels, we propose an approach based on
recursive feature elimination (RFE; Guyon et al., 2002) adapted
to the feed-forward neural network. A similar approach was
used by Formisano et al. (2008b) in conjunction with the
weight vector of a regularized SVM. In RFE, a machine-learning
algorithm is first trained on a full data set. Next, some ranking
criterion is calculated for each input dimension. The dimension
with the lowest rank is removed from the dataset (a fixed
number or percentile of dimensions may be removed for speed
reasons). Then, the machine-learning algorithm is retrained on
the reduced dataset. This process can be repeated until all features
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have been removed. The performance of each subset can be
calculated using a held-out test set to determine a good threshold
to remove irrelevant voxels. We used the feed-forward neural
network as our machine-learning algorithm, and the measure φi

for our ranking criterion. For computational speed reasons as
well as for inter-subject comparison, we used a fixed sensitivity
threshold at each iteration to determine which features would be
removed. This allowed us to bootstrap classifier performance on
a held-out test set across all sessions to obtain 68% confidence
intervals (Efron, 1979).

For a qualitative comparison, we created surface maps for the
NN sensitivity analysis, GLM, and searchlight. These techniques
cannot be used for a direct quantitative comparison because
they present fundamentally different information. Similarly, the
thresholds used for each map are not directly comparable.
However, the thresholds have been selected based on standard
practices for determining meaningful localization of function
and information. For sensitivity analysis, recursive feature
elimination was performed on each subject’s volume sensitivity
map until the bootstrapped classier performance fell significantly
below (p = 0.05) the peak classifier performance. The resulting
maps were projected onto their cortical surfaces and blurred
along the surface using a 5mm full-width half-maximum
(FWHM) Gaussian kernel (voxel size is 2.5mm). For GLM, a
linear activation model was constructed using an explanatory
variable for each character count. Processing of fMRI data was
carried out using FEAT (FMRI Expert Analysis Tool) Version
5.98, part of FSL. Z (Gaussianized T/F) statistic images were
thresholded using clusters determined by Z > 2.3 and a
(corrected) cluster significant threshold of P = 0.05 (Worsley,
2001). For searchlight, we employed a 3×3×3 kernel and a linear
SVM classifier using the PyMVPA toolkit (Hanke et al., 2009).
The searchlight maps were thresholded at twice chance decoding
accuracy (33%). These maps were then projected onto the
Freesurfer generated surfaces for each subject. We attempted to
use non-linear warping to create a group average, but we were not
satisfied with the registration accuracy. In particular, there was a
tendency to confuse activity on superior temporal areas with that
on dorsal parietal regions. To average across subjects, therefore,
we aggregated themaps across 10 anatomical labels automatically
generated by Freesurfer during surface construction. To account
for variations in the total surface area covered by the different
maps, we calculated percent coverage, the fractional area of
the thresholded map contained within each surface label, and
bootstrapping was used to calculate 68% confidence intervals for
all three approaches and all 10 surface labels.

Results

Classification Accuracy
We built classifiers for three separate cases: with/without
characters, 1–6 characters, and soldiers vs. insurgents. Recall
that the with/without characters case has a block structure of
15 s. for each condition, and that both conditions contained
images of the town. For this case, classification performance was
excellent, with typical scores of 94–97% for the NN. This high

performance was not too surprising, as there were strong low-
level visual image differences between these two conditions. In
contrast, the third case of distinguishing between soldiers and
insurgents did not produce classification performance well above
chance. Consequently, we focused our analysis on the second
case, character counting where we did not distinguish between
soldiers and insurgents.

We tested the cross-validated performance of the classifiers on
four different training-and-test split methods to determine the
method that would yield unbiased performance estimates with
the lowest variance (Figure 2). Our results indicate that block split
was the best method for estimating performance and subsequent
results used this procedure.

To ensure that total contrast was not a confounding element
in our results, we built a GLMwith the total frame contrast as the
target and the number of characters as explanatory variables. The
resulting p values for this model are presented in the following
table.

Character Count 1 2 3 4 5 6

p-value 0.027 0.717 0.002 0.156 0.166 0.884

We found that character counts 1 and 3 did have a statistically
significant correlation with total contrast. We also calculated
the Pearson correlation coefficient between total contrast and
character count while leaving out the 0 character blocks (r =

0.1598) and its significance (p = 0.1800), which did not show
significant correlation. However, statistically significant trends do
not necessarily drive high classifier performance, though they
can contribute. To determine how much this affect could have
contributed to classifier performance, we trained an SVM on

FIGURE 2 | The estimated performance of the classifiers averaged

across all sessions and plotted across the four training-and-test-split

methods; error bars show bootstrapped 68% confidence intervals.

There is a statistically significant drop in the estimated performance when the

average minimum temporal delay increases from 2.6 to 21 s, though

performance stays above the chance performance of 16.7%. This result

confirms that short delays result in optimistic performance estimates because

of temporal correlations.
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only the total contrast information andmeasured its performance
with cross-validation. We found the performance on only total
contrast to be 25% and approximately 66% of the correct guesses
were for character count 1 and 3. Therefore, the total contrast
likely did impact classifier performance, but only for character
counts 1 and 3. Furthermore, this cross-validated performance
is significantly lower than the performance achieved by our
machine learning algorithms on the fMRI data.

Averaged across all 10 sessions (five subjects with two sessions
each), the cross-validated performance estimates of all four
classifiers are significantly above chance, where chance is one out
of six = 16.7% (Figure 3). The SVM had the best performance,
followed by the feed-forward NN (without using our new output
processing techniques; see below). The performance of all four
independent classifiers being above chance increases confidence
in the results, however the GNB and KNN classifiers will not be
discussed further as their performance was significantly below the
SVM and NN. There is considerable variation in performance
between sessions for the same subject, as well as variation in
average performance between subjects.

It is also worth noting the computation time of these
algorithms in practice. The average training time was 0.683ms
per example for the SVM, 121.299ms per example for the NN,
0.073ms per example for the GNB, and 0.044ms per example
for the KNN. The training time of the NN is this ∼2 orders of
magnitude slower than the SVM. Nevertheless, the full NN cross
validation procedure still only took approximately 10min per
session. The average decoding time was 0.431ms per example for
the SVM, 0.197ms per example for the NN, 0.172ms per example
for the GNB, and 0.466ms per example for the KNN. Unlike
training times, the NN is the second fastest at decoding.

We tested four different methods for exploiting the block
structure of the stimulus to improve classification accuracy: input
averaging, block vote, confidence vote, and output averaging.
Since confidence vote and output averaging require an estimate

FIGURE 3 | The estimated performance of all four classifiers averaged

across all sessions. The performance of individual sessions are indicated by

the symbols. Each subject performed two sessions and there are therefore

two symbols per subject. The performances estimates were bootstrapped

across sessions in order to obtain 68% confidence intervals. While the SVM

had the best average performance, all four classifiers performed well above a

chance performance of 16.7%.

for the probability of each output label, only the feed-forward NN
was considered for this comparison. Both block voting methods,
and output averaging improved session performance significantly
over simple input averaging. The output averaging method had
the greatest average improvement (Figure 4).

From the confusion matrix in Figure 5, we see that the
classifier is best at detecting the presence of a single character.
In fact, there are relatively few cases of confusion between one
and two characters. Apparently, these two situations evoke very
different responses in the brain. Also, note that the majority
of the incorrect responses lay just off the main diagonal.
These responses correspond to the classifier being wrong by a
single character in its classification. 1 and three characters were
classified with the highest accuracy. This is likely due in part to
the correlation with total scene contrast. However, note that two
characters were also classified with high accuracy and yet had the
second lowest p-value for contrast correlation.

It is clear from Figure 4 that not all sessions performed
equally well. Even for the same subject, session performance
varied significantly. We found that the average confidence
(i.e., the probability of the chosen label) returned by the NN
was very significantly correlated (R2 = 0.98; negligible p)
with the network’s cross-validated performance (Figure 6). The
confidence measure was calculated without knowledge of the
labels and thus provides a measure of the quality of the data being
classified as well as an estimate for howwell the NN has estimated
the joint probability distribution.

Mapping
Sensitivity maps for individual subjects show a preponderance
of classification sensitivity in lateral occipital areas, ventral early
visual areas, and dorsal parietal lobe (Figure 7). Subjects also
displayed small regions of high sensitivity in portions of temporal
and frontal cortex. There is significant overlap between the
sensitivity, GLM, and searchlight maps, but the sensitivity maps
show greater contributions from anterior brain regions.

All three mapping techniques are intended to help localize
function or information, however the meaning of the values in
these maps are not equivalent, and neither are their thresholds.
The thresholds were chosen based on accepted practice for their
associated technique, but they are not statistically equivalent
and should only be used for qualitative comparison. Sensitivity
threshold values were determined using a recursive feature
elimination approach (Section Mapping). GLM linear-response
Z-statistic maps and searchlight accuracymaps are also presented
for comparison. The sensitivity maps were thresholded using
the recursive feature elimination technique described in the
Methods. The Z statistic images were thresholded using clusters
determined by Z > 2.3 and a (corrected) cluster significant
threshold of P = 0.05 (Worsley, 2001). The searchlight maps are
thresholded at twice chance probability (33%). Figure 8 presents
the performance of the NN and the fraction of voxels remaining
after each iteration. Greater than half the voxels can be removed
without significant loss of classification performance.

We calculated percent coverage for each of the three
mapping methods on Freesurfer anatomical surface labels
(Section Mapping). Results were averaged across all sessions
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FIGURE 4 | Individual session accuracies and relative accuracy for all

four averaging methods. The sessions have been sorted by average

performance for improved readability. The chance probability for all sessions

is 16.7%. The chart on the right shows the impact of the individual

aggregation methods calculated relative to the baseline score as 10 log

(score/baseline) for each session. These relative accuracy scores (in dB) are

averaged across all sessions and bootstrapped to obtain 68% confidence

intervals.

FIGURE 5 | The average confusion matrices for the feed-forward NN

with output averaging across all subjects. The value in cell (i,j) of the

matrix is the percent of examples from class i that were labeled as class j;

values along the diagonal indicate correctly classified examples while the rest

indicate incorrectly classified examples. The color of the cell indicates deviation

from chance probability (16.7%); greener cells indicating values above chance,

and redder cells indicating values below chance.

and bootstrapped to obtain 68% confidence intervals (Figure 9).
These numbers agree with our observations on the individual
surface maps; there is substantial overlap between all three maps
in lateral occipital and lingual cortex. Elsewhere the mapping
methods show different patterns of response. For example,
early visual cortex, roughly demarcated by the pericalcarine and
cuneus labels, shows greatest classification sensitivity by the
searchlight technique, intermediate response based on GLM, and
relatively low information content based on our NN sensitivity
metric. Interestingly, several temporal lobe regions show greater
sensitivity based on the NN metric than either of the others.
To determine if the sensitivity in these regions is meaningful,
we estimated the performance of the NN on a subset of
the original voxels constructed by taking all of the voxels
considered significant by the sensitivity analysis and removing all
those voxels considered significant by GLM. The cross-validated

FIGURE 6 | Cross-validated session accuracy plotted against average

session confidence.

performance on this subset averaged across all sessions was 25%
(with p < 0.05 for all sessions). While the performance dropped
substantially, these voxels were still able to classify character
count significantly above chance.

Discussion

We set out with the practical goal of decoding the subject’s
cognitive state associated with viewing a number of characters
from time series of functional images. Using a combination of
standard and novel machine-learning methods, we were able
to extract this information with accuracy that varied from well
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FIGURE 7 | A qualitative comparison of sensitivity, GLM linear-response Z-statistic, and searchlight accuracy maps projected onto semi-inflated

cortical surfaces for three different subjects. The maps are roughly similar across subjects and hemispheres, but substantial individual variations are evident.

FIGURE 8 | A plot of the feedforward neural network estimated

performance and the fraction of voxels remaining at each iteration of

the recursive feature elimination procedure. The fraction of voxels is

calculated with respect to the 2000 voxels selected by ANOVA. The

performance estimates and voxel counts were bootstrapped across sessions

in order to obtain 68% confidence intervals.

above chance to nearly perfect (Figure 4), depending upon
session and machine-learning algorithm. For the neural network
results, we then presented a novel approach to relating the
network’s decision-making sensitivity back to brain anatomy
of the individual. These sensitivity maps suggest that a more

widespread and diverse network of brain regions encoded the
cognitive state, which is consistent with the complex nature of
the VE stimulus.

The work described in this paper expands the opportunities

for utilizing VEs for scientific inquiry in cognitive neuroscience.

The design of the stimulus provided a balance between realism
and experimental control so that quantitative analysis of the

fMRI data stream achieved a degree of confidence ranging from

satisfactory (well above chance) to very high. Care was taken to
preserve asmuch of a natural experience as possible. For example,

we never exposed the subject to disruptions in the experience

of being present in a virtual environment, yet the stimulus had

an otherwise classic block design. And the synthesized video
stream never showed static images at any time, which rarely

occur under natural conditions. We also eschewed averaging

data between different subjects in accordance with one of our
goals: modeling individuals for therapies and learning regimens,

including utilizing real-time fMRI.

Despite these seemingly greater challenges, we were able

to achieve classifier performance that was significantly above

chance with all four of the MVPA methods we tested. More
importantly, for the two strongest methods, support-vector
machines and artificial NN, the classifier performance was
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FIGURE 9 | A bar graph depicting the coverage percent from the

sensitivity, GLM, and searchlight maps across automatically

generated labels from Freesurfer. The coverage percent is the

percent of the map contained within that area. In this way, the

variation in total map size between approaches is controlled for and

specificity and coverage of the maps can be directly compared.

Coverage percentages were bootstrapped across sessions to provide

confidence intervals.

sometimes good enough to enable practical applications. This
is especially impressive given that the cognitive states being
discriminated were not based on differing object categories (e.g.,
houses, faces, tools, etc. . . ) that often activate brain regions with
limited anatomical overlap (Hanson et al., 2004), but rather were
from a single object category, viz. combatants, and differed only
in number of combatants.

We also discovered that the performance of classic feed-
forward NN, which have been somewhat neglected lately in favor
of SVM, can be competitive with SVM on the data in this study.
While the inherent properties of SVM make it well suited to
sparse representations (small number of object categories vs.
large number of voxels), NN provide a more general method
that can (in principle) capture more subtle features given enough
data. Moreover, NNs provide probability values that can be used
to further improve classification performance. Looking to the
future, building NNs using “deep learning” (Hinton et al., 2006)
has been shown repeatedly to outperform SVM on many types of
data (Cirşan et al., 2012). Even greater classifier accuracy may be
possible with such methods applied to VE data.

Classifier performance will be important for both on-line
use of fMRI in brain-computer interfaces (BCI), such as PTSD
therapy, as well as for off-line creation of brain maps using
sensitivity analysis. The techniques block voting, confidence
voting, and output averaging (see Section Block Integration), all

improved performance over the baseline classifier performance
as well as over input averaging. The concept of using the output
of the classifier to ascribe confidence (see Section Classifier
Probability and Confidence) to each output could be very useful
for differentiating the reliability of entire sessions. Similarly, any
confidence measure could be quite valuable in BCI applications
in which low confidence frames could be weighted by confidence
to reduce their influence and/or dropped entirely from any on-
line decision-making by the BCI software.

Classification sensitivity in early retinotopic visual areas and
lateral-occipital areas suggests that retinotopic organization is
important to decoding group size for our VE stimulus. Because
LO combines object-selectivity with retinotopic specificity
(Sayres and Grill-Spector, 2008), different group sizes could
evoke complex but stereotypical patterns of responses in LO
(and other retinotopically organized areas) as subjects visually
interrogate the stimuli with a sequence of eye movements.
Regions in the parietal cortex have been shown to be involved
in mental arithmetic and magnitude judgment (Rickard et al.,
2000) which may also play some role in decoding group size.
More recent research suggests this region may even contain a
topographic representation of numerosity (Harvey et al., 2013).
There is some debate as to whether this topographic map
represents numerosity or sensory processing (Gebuis et al., 2014),
but it would be useful for decoding group size regardless.
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Integrating information from the whole brain improves
decoding accuracy, but it makes interpreting functional
localization problematic. From our sensitivity analysis, we see
that regions associated with low-level vision, higher-level object-
recognition, and potentially even cognitive representations
of numerosity all contributed to decoding. However, the
sensitivity analysis does not necessarily tell us how these regions
contributed. Eye movements and other behavioral responses as
the subjects visually interrogate the stimuli could induce reliable
and complex patterns of activation in all of these areas. For
example, our control analysis indicates that low-level contrast
features may have partially, but not entirely contributed to
decoding. Similarly, increased eye movements could create
a higher variance of activation in retinotopic visual areas. If
this behavior is reliable and consistent, the machine learning
algorithms will learn to use that information to help decode
the state. At this early stage, we did not collect eye tracking
data during our experiments to evaluate to what extent this
contributed to decoding. Eye-movement information is not
obviously correlated with character count, but rather the
cognitive evoked in the subject by the VE: being in a town
and freely viewing a specific number of characters. It is this
VE-specific state that we are interested in decoding. Such goal-
driven decoding should be more useful for training and therapy
exercises where the underlying neural mechanisms may not yet
be well understood. However, neuroscientific studies looking to
leverage VEs and sensitivity mapping for functional localization
must still be careful to balance realism with control to avoid
these kinds of confounds when interpreting their results.

The GLM produced Z-statistic maps indicate significant
activation only in early ventral visual areas and lateral occipital
regions. Searchlight produced results qualitatively similar to
GLM, suggesting that the expansion from a single voxel with
GLM to a 3×3×3 set of voxels in searchlight was not sufficient
to capture potentially important long-rangemulti-voxel response
patterns identified by the NN sensitivity analysis. Therefore,
we conclude that extracting response patterns by performing
classification on voxels selected from a spatially diverse collection
of voxels captures potentially important brain information
missed by both GLM and searchlight (Figure 9).

Note that the information contained in the maps is quite
different, making them difficult to compare directly. The Z-
statistic maps tell us how well individual voxels agree with a
hypothetical model, the searchlight maps tells us how well small
localized groups of voxels are able to decode the desired brain
state, and the sensitivity maps tells us how much individual
voxels contribute to a spatially-distributed decoding decision.We
do not have a practical way to calculate p-values for individual
voxels with the sensitivity analysis so care must be taken when
interpreting the results. However, a qualitative comparison of the
techniques is still useful. While we are unable to calculate the
significance of individual voxels for our sensitivity analysis, the
comparison shows that the resulting sensitivity maps highlight
regions consistent with accepted mapping techniques where per
voxel significance calculations are possible. This increases our
confidence that the areas indicated by the sensitivity analysis, but
not the other techniques, likely do contain information relevant

for decoding the subject’s brain state and could merit further
investigation.

In conclusion, it is possible to extract useful information
from fMRI data obtained using a realistic virtual environment
stimulus using machine-learning methods. NN, supplemented
by some averaging techniques, performed particularly
well. The resulting classification data, moreover, can be
mapped onto the brain using a novel form of sensitivity
analysis. These methods open up new possibilities for the
use of VEs in both neuroscience research and in clinical
applications.
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