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Simple and unambiguous visual cues (e.g., an arrow) can be used to trigger covert
shifts of visual attention away from the center of gaze. The processing of visual
stimuli is enhanced at the attended location. Covert shifts of attention modulate the
power of cerebral oscillations in the alpha band over parietal and occipital regions.
These modulations are sufficiently robust to be decoded on a single trial basis from
electroencephalography (EEG) signals. It is often assumed that covert attention shifts
are under voluntary control, and that they also occur in more natural and complex
environments, but there is no direct evidence to support this assumption. We address
this important issue by using random-dot stimuli to cue one of two opposite locations,
where a visual target is presented. We contrast two conditions, one in which the
random-dot motion is predictive of the target location, and the other, in which it provides
ambiguous information. Behavioral results show attention shifts in anticipation of the
visual target, in both conditions. In addition, using the common spatial patterns (CSPs)
algorithm, we extract EEG power features in the alpha-band (around 10 Hz) that best
discriminate the attended location in single trials. We obtain a significant decoding
accuracy in 7/10 subjects using a cross-validation procedure applied in the predictive
condition. Interestingly, similar accuracy (significant in 5/10 subjects) is obtained when
the CSPs trained in the predictive condition are tested in the ambiguous condition. In
agreement with this result, we find that the CSPs show very similar topographies in
both conditions. These results shed a new light on the behavioral and EEG correlates
of visuospatial attention in complex visual environments. This study demonstrates that
alpha-power features could be used in brain–computer interfaces to decode covert
attention shifts in an environment containing ambiguous spatial information.

Keywords: visuospatial attention, cues, decoding, electroencephalography, brain–computer interface, spatial
filtering

Introduction

In anticipation of an upcoming target in the visual periphery, the focus of attention can be
voluntarily and covertly shifted away from the gaze direction (Corbetta and Shulman, 2002).
Covert visuospatial attention has been extensively studied in experimental paradigms in which a
spatial cue (e.g., symbol, arrow, letter) presented at a central fixation point, indicates the peripheral
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location of an upcoming target (Posner, 1980; Dosher and Lu,
2000; Jongen et al., 2006; Thut et al., 2006; Green and McDonald,
2008, 2010; Wyart and Tallon-Baudry, 2008; Yamagishi et al.,
2008). In anticipation of the target presentation, subjects
voluntarily shift their attention according to the cue, leading to
shorter reaction times and more accurate responses to targets
presented at attended (cued) locations than at non-attended
ones (uncued). Moreover, electroencephalography (EEG) and
magnetoencephalography (MEG) recordings suggest that the
covert shifts of attention modulate oscillatory activity over the
parietal and occipital lobes. Alpha power (e.g., around 10 Hz)
is suppressed over the hemisphere controlateral to the attended
visual field (Yamagishi et al., 2003, 2005; Rihs et al., 2007;
Wyart and Tallon-Baudry, 2008; Green andMcDonald, 2010) and
increased over the ipsilateral hemisphere (Worden et al., 2000;
Sauseng et al., 2005; Thut et al., 2006; Rihs et al., 2009; Cosmelli
et al., 2011). Importantly, these attention-related modulations of
alpha power are sufficiently robust to be decoded on a single trial
basis (van Gerven and Jensen, 2009; Bahramisharif et al., 2010;
Treder et al., 2011) with up to 90% accuracy for protocols in
which targets are presented to a left vs. right location (Treder
et al., 2011; Roijendijk et al., 2013; Tonin et al., 2013).

It has been shown that in the absence of spatial cue,
visuospatial attention can be covertly shifted under volitional
control (Hopfinger et al., 2010) and alpha power modulations
can be used to decode the attended location (Bengson et al.,
2014). These observations lead to the assumption that covert
attention shifts could also be decoded in complex environments,
for instance in a driving situation while gazing at the road
and shifting attention to the rear-view mirror. However, unlike
experimental approaches in which unambiguous cues are used
to induce attention shifts, such real-life situations rarely contain
information pointing directly toward specific target locations.
Alternatively, they provide multiple cues that are used by
the subject to shift attention in a direction that may not
be predictable from the visual scene. This striking difference
between experimental and real-life situation raises two main
issues.

First, it has not been demonstrated so far that subjects can
produce voluntary shifts of visual attention when the visual scene
is complex and contains ambiguous directional cues. Second, it is
not known how brain correlates of attention shifts in a complex
visual environment compare to those induced by unambiguous
cues and if they can be decoded in the same way.

In order to approach these issues, it is critical to evaluate
how visuospatial attention is shifted following the presentation
of complex visual cues. In the present study, we designed a task
in which the subject must extract directional information from
a random dot motion stimulus, and then shift attention in the
indicated direction, toward a location where a visual target is
going to appear, andwill have to be discriminated. The directional
information to be extracted from the random dot stimulus is
either right or left, corresponding to the two possible target
locations. We investigated two experimental conditions. In the
predictive condition, the direction of dot motion is biased toward
the left or the right, and the subject can reliably predict the
location of the target. In the ambiguous condition, the direction

of dot motion is uniformly distributed and the subject is unable
to predict where the visual target will appear. Importantly, the
two conditions are randomly alternated and the subject is not
informed that some of the cues are ambiguous.

We hypothesize that in the ambiguous condition, the subject
will tend to use isolated local information in the complex
cue, in order to select where to shift attention. We also
hypothesize that in this condition, in which the direction of
attention shift is unpredictable from the visual cue, neural
signals represent the only reliable source of information to
decode the location of covert attention. This paper analyzes
both behavioral performance and EEG correlates of visuospatial
attention. We confirm that attention shifts produced in the
ambiguous condition are comparable to those produced in the
predictive condition. Finally, we discuss the potential of using
such modulations for the development of covert visuospatial
attention brain–computer interface (BCI). This paper makes a
seminal contribution to the literature of visuospatial attention
by showing that EEG signals can be used to decode the location
of covert attention shifts in situations where the environment
contains ambiguous information.

Materials and Methods

Participants and Apparatus
Ten male subjects aged between 21 and 44 (mean 26.9)
with normal or corrected-to-normal vision participated in the
experiment. All subjects provided informed written consent
and were paid for their participation in the study, which
was approved by the local ethics committee of Aix-Marseille
University. EEG was recorded from a BioSemi ActiveTwo
system, from 64 electrodes mounted on an elastic cap according
to the 10–20 method (1024 Hz sampling rate). In addition,
eye movements were recorded by electrooculography (EOG)
with bipolar montage, measuring voltage differences between
two external electrodes fixed at the outer canthi of each eye
(horizontal component), and between the Fp2 electrode and
another external electrode fixed below the right eye (vertical
component). The task was designed in Matlab using the
PsychToolbox package (Brainard, 1997) for visual display and
the Data Acquisition toolbox for recording behavioral responses
from a custom-made two-button box connected to a National
Instrument data acquisition card. Data were analyzed on a high
performance computing cluster using MNE (Gramfort et al.,
2014) and scikit-learn (Pedregosa et al., 2011) for EEG processing
and feature classification.

Procedure
During the experiment, the subjects performed a visuospatial
attention task in amodified version of Posner’s paradigm (Posner,
1980; Dosher and Lu, 2000). For this task, the subjects had to keep
fixating a central point throughout the trials. All trials followed
the same temporal sequence (Figure 1A). First, the subjects had
to use a random-dot spatial cue (Figure 1B) presented at the
fixation point to decide on the location where to anticipate a
forthcoming target (displayed at the lower-left or lower-right

Frontiers in Human Neuroscience | www.frontiersin.org 2 June 2015 | Volume 9 | Article 358

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Trachel et al. Visuospatial attention in ambiguous environment

FIGURE 1 | (A) Temporal sequence of a single trial: while fixating the central
white dot (A-Fixation), subjects had to distinguish the global direction of the
random-dot motion (A-Cue), to shift their attention toward the location
corresponding to the global direction (A-Decoding), to react to the target to
identify its orientation (A-Target) and, last, to report if they had indeed
attended the location where the target appeared (A-Report). (B) Schematic
representation of the spatial cues made of random-dots (single directions
shown as red arrows), which appear for 250 ms. (C) The visual targets (Gabor
tilted at ±45◦ and embedded in noise), here displayed with higher contrast
than in the actual experiment. Targets were briefly flashed (70 ms) and the
subjects had to report on their orientation.

part of the screen). Second, they were instructed to shift their
attention toward the cued location, where the visual target
(Figure 1C) was briefly flashed (70 ms) after a random delay
of 1.5–2.5 s following the cue presentation. Finally, they had
to detect and identify as fast and as accurately as possible the
target orientation with respect to the vertical axis. The subjects
responded by a right- or left-thumb button press to indicate
whether the target was tilted at plus or minus 45◦ respectively.
They had to respond within 3 s after target presentation. Button
responses were used to compute reaction time (RT) and error
rate (ER) for target identification. The task was designed so that
the direction indicated by the random-dot motion was difficult
to discriminate and in some trials, the subjects shifted attention
to the side opposite to target presentation, making a so-called
“spatial error.” At the end of each trial, the subjects reported with
the button box if the target had appeared at the location they
had actually attended. Using this subjective report, we computed
the spatial ER for motion discrimination. The target locations
and orientations were pseudo-randomly balanced in order to
minimize sequential and priming effects on RT and ER. Overall,
the session included a training period (52 trials), two adaptive
procedures to set the cue and target parameters (40 trials each)
and the recording session (eight blocks of 52 trials, interleaved
with short breaks).

Visual Stimuli
The spatial cues and the visual targets were displayed on a
50 cm CRT monitor (resolution 800 × 600, 140 Hz) 60 cm
away from the subject’s eyes. The spatial cue consisted of 400
dots, each moving in a single direction for 250 ms, within
a 5◦ circle around the central fixation point. In each trial,

the dot directions were randomly drawn from a Von Mises
distribution whose mean indicated the target location and whose
variance was the inverse of motion coherence. We used the
QUEST procedure (Watson and Pelli, 1983) to measure the
threshold coherence value allowing each subject to achieve the
task with a spatial ER of 10%. During this procedure, random-
dot motion coherence was adapted from trial to trial in a
stimulus-response sequence that enabled fast computation of the
subject’s coherence threshold after 40 or more trials, according
to convergence criteria. This adaptive procedure ensured that
all subjects had a similar level of performance in motion
discrimination.

Two experimental conditions were used. In the predictive
condition, we set the coherence at threshold so that subjects could
reliably extract the average direction contained in the dotsmotion
in about 90% of the trials (10% spatial ER). In the ambiguous
condition, the motion coherence was set to zero. The resultant
direction of the dots motion had a vector norm <0.05 and was
expected to be perceived at chance level by the subjects (spatial
ER around 50%). In both conditions, the target location was
determined by the average direction of the dots.

During the task, the subjects underwent overall 75% of
predictive and 25% of ambiguous trials, pseudo-randomly
interleaved. In combination with the spatial ER expected from
the adaptive procedure, these proportions were such that the
target was eventually displayed at the non-attended locations
in about 20% of the trials (75∗0.1+25∗0.5). The overall 20%
spatial ER was critical to the goal of the experiment (Posner,
1980). This low value ensured that all subjects adopted a strategy
in which they voluntarily shifted attention to one of the two
possible target locations, rather than dividing attention between
them (Cosmelli et al., 2011). Importantly, to ensure that they
would use a similar strategy in both the predictive and ambiguous
conditions, they were not informed that ambiguous trials would
occur in the experiment. At the end of the protocol, the subjects
where questioned about the experiment. None of them noticed
that two different types of cue were used in the experiment but
they noticed that sometimes, the direction of the dots motion was
difficult to perceive. Therefore, we assume they were voluntarily
shifting attention to the cued location, or randomly choosing one
location when they felt unsure about the main direction of the
random-dot motion.

The visual target consisted of a Gabor pattern tilted at ±45◦
and presented for 70 ms at the center of one of two squares
located at ±9.23◦ horizontal and −5◦ vertical eccentricity from
the central point (Bahramisharif et al., 2011). A dynamic noise
was displayed inside both squares for the entire duration of the
trial (Dosher and Lu, 2000). The noise contrast was displayed
at 35% of maximum intensity with a spatial resolution 10 times
lower than the target. For each subject, Gabor contrast was
set below the noise contrast using another QUEST procedure
(Watson and Pelli, 1983) to ensure that the ER would be around
10% when targets were displayed at the attended location, and
around chance level (50%) at the unattended location. During
this adaptive procedure, the target location was cued by an arrow
instead of a random-dot motion to ensure the subjects would
shift their attention to target location in every trial. Moreover,
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the target locations (lower left and right) and orientations (±45◦)
were pseudo-randomly balanced in order to minimize sequential
and priming effects.

EEG Data Analysis
Raw EEG signals were re-referenced to the common average
reference and filtered in the alpha range (8–14 Hz) with a
forward–backward band pass filter (Butterworth, order 4). Single
trials were epoched into time windows of 1.5 s before target onset.
Epochs were rejected when the EOG signal reached a threshold of
100 μV for the vertical and 40 μV for the horizontal component
(Rihs et al., 2009). After EOG rejection, on average 307.6 ± 3.6
predictive and 102.8 ± 1.2 ambiguous trials per subject were
available for further analysis. The subject’s report was used to label
each epoch in two classes (left and right shifts of attention). This
pre-processing step resulted in a set of EEG signals Xeeg ∈ RN × T

with N = 64 electrodes and T = 1536 (1024 × 1.5) time samples
for each epoch. Additionally, a set of EOG signals Xeog ∈ R2 × T

was analyzed in order to subsequently verify through decoding
that behavioral features (eye movements) could not be used to
predict the direction of attention shifts.

A regularized version of the common spatial pattern (CSP)
algorithm (Lotte and Guan, 2011) was applied to extract
discriminant alpha-band power features of left vs. right shifts.
The CSP algorithm is a spatial filtering method commonly used
in motor imagery BCI for robust single-trial classification of EEG
oscillatory activity (Blankertz et al., 2008). It has been shown
recently that this method improves decoding performance in
visuospatial attention BCI-based protocols (Fujisawa et al., 2008).
The CSP algorithm is a data-driven projection method that
maximizes the variance of spatially filtered signals Xcsp ∈ RN × T

for one class of trials while minimizing it for the other. It
computes a set of spatial filters W= {wj ∈ RN}j = 1,...,N by solving
the generalized eigenvalue problem:

�rW = λ�lW

with �r and �l, the averaged covariance of the EEG
signals Xeeg across right and left trials, respectively. Following
(Lotte and Guan, 2011), we estimated the covariance matrix
of the signals with an algorithm that computes the L2-
norm regularization parameter using an optimal shrinkage
approximation (see Pedregosa et al., 2011). Then, the EEG
signals were projected from the original sensor space onto a
surrogate space by Xcsp = WTX. Finally, the CSP features were
computed as the log variance of these spatially filtered signals
for each single-trial epoch by log10(var(Xcsp)). Interestingly,
the CSP algorithm provides neuro-physiologically interpretable
information (Blankertz et al., 2008) for each feature, through the
matrix A = (WT)−1 which characterizes the spatial patterns of
the sources passing through each filter. In addition, EOG features
were computed as the average signal value for each epoch. Both
CSP and EOG features were independently standardized bymean
subtraction and scaling to unit variance independently.

The single-trial epochs were decoded by a regularized linear
support vector machine (SVM). Features were selected on the
predictive trials using a recursive feature elimination procedure

(Guyon et al., 2002) which has previously been applied in
BCI for EEG channel selection (Lal et al., 2004). Basically, the
recursive feature elimination procedure recursively prunes and
ranks features given the weights assigned to them by SVM
from a set of trials, then tested on a separate set of trials to
compute the SVM cost function (i.e., hinge loss). This procedure
was repeated in parallel over a 10-fold cross validation for a
range of regularization parameters C = {ci ∈ log10 space from
−5 to 5}i = 1,...,100. For each cross-validation iteration, the
recursive feature elimination was applied to a set of training
trials for 9/10 of the folds and tested on trials from the test
set for the remaining fold. Finally, the optimal feature set
and regularization parameter were selected to minimize the
cost function averaged over the 10 test folds. The SVM was
trained on the predictive trials with the selected feature set and
regularization parameter, and tested to decode the ambiguous
trials. The decoding performance was evaluated by computing
the classification accuracy (rate of correctly classified trials)
obtained across 10 test folds of predictive trials. Moreover,
we also investigated the decoding performance in predictive
features using an inner 10-fold cross-validation. For each train
fold of predictive trials, we computed the CSP filters, applied
the recursive feature elimination/cross-validation procedure and
trained the SVM with the selected features and parameter.
Importantly, features were always centered and scaled with the
mean and the variance computed on the training set. The
statistical significance of classification accuracy was evaluated
from a binomial cumulative distribution (Waldert et al., 2008).
The probability p(k/n) of classifying the correct location in at least
k out of n trials by chance was computed. Classification accuracy
k/n was considered significant if p(k/n) was lower than 0.05.

Results

Behavioral Performance
On average across subjects, target contrast and random-dot
motion coherence thresholds were equal to 17.80% (±7.23 SD)
and 1.29 (±0.26) respectively. As expected, target contrast was
adapted below the noise contrast [1 sample t-test, mean at 35%,
t(9) = −7.131; p = 5.475e-5]. In this condition, we assumed
that a lateral shift of attention was the optimal strategy to reduce
the noise effect (Dosher and Lu, 2000) and to produce fast and
accurate behavioral responses to the target.

Spatial Errors
The average spatial ER across subjects in discrimination of
random-dot motion direction (left vs. right) was 18.23 ± 2.78%,
i.e., very close to the 20% rate expected from the coherence
thresholds adaptation (see Materials and Methods). In
ambiguous trials, the spatial ER was not significantly different
from chance level [50%, 1 sample t-test, t(9) = −1.894;
p = 0.091]. This result confirms that the average direction of the
dot motion in the ambiguous condition was so low (resultant
norm < 0.05) that it was not reliably perceived by the subject and
wasn’t predictive of the direction of attention shifts. The spatial
ER was significantly lower for predictive than ambiguous cues
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FIGURE 2 | Behavioral results, displayed in green for predictive cues and
in pink for ambiguous cues. Trials in which the target appeared at attended
(resp. unattended) location are in light (resp. dark) colors. Error bars represent

the SD over 10 subjects. (A) Averaged spatial error rate (Cue ER), i.e., error
when estimating the target location from the random moving dots. (B) Average
target response time (Target RT; C) Average target ER (Target ER).

[Figure 2A, paired t-test, t(9) = −11.236; p= 5.408e-7]. All these
effects were in agreement with to the performance expected from
the adaptive procedure that set random-dot motion coherence
thresholds for each subject to produce 10% spatial ER with
predictive cues.

RT and Target Errors
In the target discrimination task, when the target appeared both
RT and ERwere significantly lower at the attended location rather
than at the unattended one (Figures 2B,C). For RT, we found a
main effect of visuospatial attention [f (1,9) = 57.280, p = 3.438e-
05] and an interaction with the cueing condition [f (1,9)= 15.367,
p = 0.0035] using a two-way repeated measure ANOVA (factors:
attended/unattended and predictive/ambiguous). For ER, we
found a main effect of visuospatial attention [f (1,9) = 47.574,
p = 7.088e-05] and also a main effect of cueing condition
[f (1,9) = 11.478, p = 0.008], but no interaction between these
two factors [f (1,9)= 4.478, p= 0.063]. In addition, the behavioral
performance for trials, pooled independently of the attention
location, was lower for predictive than for ambiguous cues for
both RT [0.789 ± 0.146 s vs. 1.047 ± 0.203 s, t(9) = −5.238;
p = 0.000536] and ER [10.081 ± 5.241% vs. 33.147 ± 15.031%,
t(9) = −3.616; p = 0.0056].

Performances of Individual Subjects
We questioned whether the behavioral performance of individual
subjects was related to their random-dot motion coherence
threshold or their target contrast threshold, as specified in
the adaptive procedures. We first investigated the correlation
[Spearman’s rank (r)] between coherence thresholds and spatial
ERs, and found no significant correlation across subjects. We
then computed the correlation between target contrast and the
subjects’ performance in response to the visual target (RT and
ER). We did not find any correlation between target contrast and
RT (n = 10, r = −0.139; p = 0.701 for predictive nor r = 0.357;
p = 0.310 for ambiguous trials), but we did find a correlation
between target contrast and ER both for predictive (n = 10,
r = −0.688; p = 0.0279) and for ambiguous trials (n = 10,

r = −0.673; p = 0.0330). These results reveal that the target
ER was determined in part by the subject’s performance in the
adaptative procedure for target contrast.

Spatial Patterns
In order to compare the spatial patterns of brain activity
induced by predictive and ambiguous cues, we fitted the CSP
filters separately on predictive and ambiguous epochs for each
subject. We investigated the relationship between predictive
and ambiguous spatial patterns A = {aj ∈ RN}j = 1,...,N for
which the coefficients (aj) are topographically mapped onto the
subject’s scalp. We defined the spatial patterns corresponding
to the most discriminative filters of each class as CSP-L1 and
CSP-R1, respectively. These patterns are shown in Figure 3 for
each subject and each condition. Note that the signs of the
pattern coefficients can be flipped between subjects, because for
CSP filters, sign is arbitrary (Blankertz et al., 2008). The largest
coefficients in absolute value were distributed either over the
left or the right posterior sensors. Interestingly, we observed
very similar patterns when comparing filters between predictive
and ambiguous conditions for the majority of the subjects
(Figure 3). To assess the significance of these observations, we
computed a within-subject Spearman’s correlation (r) between
the coefficients of predictive and ambiguous spatial patterns. The
results showed significant r values (n = 64, p < 0.05) in six
subjects (S1, S2, S3, S4, S8, and S10; mean r2 = 0.616) for CSP-
L1 and in all subjects (mean r2 = 0.615) for CSP-R1. These
correlations between the spatial patterns fitted in single-trial
predictive and ambiguous epochs suggest that alpha-band EEG
oscillations that best discriminate the attended location shared
common topographies in both conditions. Next, we compared
the information contained in each feature set with respect to the
spatial location of attention.

Single-Trial Power Modulations
The most discriminant filters produced clear power modulations
on a single-trial basis with respect to the shift of attention
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FIGURE 3 | CSP-L1 vs. CSP-R1 are spatial patterns corresponding to
the most discriminant spatial filters for trials in which attention is
shifted to the left vs. right location, respectively. The CSPs are fitted in
either predictive (first and third column) or ambiguous trials (second and fourth
column) for each subjects (rows). The pattern coefficients are topographically
mapped onto subjects’ scalp from blue to red (sign and scale are irrelevant).
Correlation coefficients (r) between predictive and ambiguous spatial patterns
are indicated for each subject, with significant r values in bold.

(left vs. right). Figure 4 shows the concatenation of single-trial
ambiguous epochs from subject 1, filtered with CSP-L1 (top)
and CSP-R1 (bottom). The power of alpha-band oscillations was
higher at the output of CSP-L1 than CSP-R1 when attention

FIGURE 4 | Concatenated epochs of ambiguous trials from Subject 1
in which the variance of the spatially filtered signals (CSP-L1 and
CSP-R1, fitted on predictive trials) is maximized for one category of
trials and minimized for another category of trials. The light blue and red
background corresponds to right and left shifts of attention, respectively.

was shifted to the left (Figure 4, red epochs). The opposite
modulations could be observed when attention was shifted to the
right (Figure 4, blue epochs). Indeed, the spatial patterns of the
filters suggested a dominance of the posterior sensors ipsilateral
to the attention shifts. We tested the significance of these
observations for each subject with a Student t-test computed
between standardized features of the right vs. left single-trial
ambiguous epochs. Importantly, the first and last filters used
to extract these features were fitted only on predictive epochs
(see Materials and Methods). The results showed significant
t-values (p < 0.05) in four subjects (S1, S2, S3, S4, and S5; mean
t = −3.391) for CSP-L1 and in six subjects (S1, S3, S4, S6, S9, and
S10; mean t = 4.102) for CSP-R1.

Decoding Performance
The regularization parameter and the feature set used to decode
ambiguous trials were selected in a 10-fold recursive feature
elimination/cross-validation procedure applied in predictive
trials. Also, we decoded predictive trials using an inner 10-
fold recursive feature elimination/cross-validation procedure
(see Materials and Methods). Figure 5 shows the classification
accuracy computed in ambiguous trials (Figure 5, purple),
and averaged over the 10-fold cross-validation in predictive
trials (Figure 5, green). The decoding performance was
similar in predictive and ambiguous trials [62.60 ± 8.12% vs.
61.79 ± 9.24%, paired t-test, t(9) = 0.412; p = 0.690] with
up to 76.90 and 80.58% for S1, respectively. It is important to
note that, even with the ambiguous cues, the average accuracy
was comparable with the performance reported in earlier studies
of covert-attention BCI, which systematically used predictive
cues (van Gerven and Jensen, 2009; Bahramisharif et al., 2010;
Treder et al., 2011; Roijendijk et al., 2013; Tonin et al., 2013).
The classification accuracy was significant for seven subjects
with predictive cues (S1, S2, S3, S4, S5, S9, and S10) and for
five subjects with ambiguous cues (S1, S2, S3, S6, and S10).
Indeed, we found a positive correlation in the classification
accuracy of predictive and ambiguous features (n = 10, r = 0.794;
p = 6.10e-3). However, three subjects (S3, S4, and S5) still
showed a significant difference in classification accuracy for
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FIGURE 5 | Classification accuracy with predictive (green) and ambiguous (purple) features for each subject. The red line indicates chance level. Error
bars are the SD over 10 runs of cross-validation. Stars indicate statistically significant results (p < 0.05).

decoding predictive and ambiguous features [1 sample t-test,
t(9) = 3.162; p = 0.0115 for S3, t(9) = 5.017; p = 7.217e-
04 for S4, and t(9) = −2.544; p = 0.0315 for S5]. As recently
shown in the literature of covert attention based BCI (Roijendijk
et al., 2013), target contrast and classification accuracy are
negatively correlated across subjects, both for predictive (n = 10,
r = −0.600; p = 0.067) and for ambiguous (n = 10, r = −0.224;
p = 0.533) cues. This result suggests that at lower contrast,
the subjects must shift attention more purposefully to detect
the target (Dosher and Lu, 2000). In order to ensure that eye
movements were not predictive of left vs. right attention shifts,
we also applied our decoding analysis to EOG features extracted
in predictive and ambiguous trials. Classification accuracy was
near chance level for predictive (52.01 ± 2.69%) and ambiguous
(49.87 ± 4.93%) trials, confirming our hypothesis that, in
ambiguous cueing conditions, neural signals represent the only
reliable source of information to decode the location of covert
attention.

Discussion

There is experimental evidence showing that covert attention
shifts are under volitional control after presentation of an
unambiguous cue (Worden et al., 2000; Hopfinger et al., 2010),
even when the cue contains no spatial information (Cosmelli
et al., 2011; Bengson et al., 2014). In the present paper,
we demonstrated that subjects can shift attention to specific
locations following the presentation of random-dot motion cues
containing ambiguous spatial information. This result reveals
that conflicting spatial cues contained in the ambiguous random-
dot pattern do not interfere with the subject’s ability to attend
a specific spatial location, when asked to do so. In addition,
our EEG recordings revealed striking similarities between the
spatial patterns of brain activity extracted in the alpha band

from covert shifts of attention induced either by predictive or
ambiguous random-dot motion cues. Following both types of
cues, the EEG signals could be decoded with up to 80% accuracy
to discriminate between left and right attention shifts. Our
results suggest that human subjects were able to voluntarily and
covertly shift attention in a well-controlled experimental context
containing ambiguous spatial information. This point is crucial
for the future development of BCIs by providing evidence that
covert attention can voluntarily be shifted in complex visual
environments.

Cueing Effects on Behavioral Performance
The behavioral results demonstrate that subjects shifted attention
location even if they could not reliably discriminate the global
direction motion of the cue. When the subjects reported the
target to appear at the attended location, the behavioral response
was faster and more accurate than when it had appeared at
the unattended location (Posner et al., 1980). Interestingly, this
effect was observed both for predictive and ambiguous cueing
conditions and with a similar strength (Figure 2). This suggests
that for both types of cues, the processing of low contrast
target embedded in noise (Dosher and Lu, 2000) is enhanced
with covert shifts of attention. Previous studies have already
demonstrated that unambiguous spatial cues (i.e., an arrow)
triggers cueing effects, whether the cue is weakly (Dosher and
Lu, 2000; Worden et al., 2000; Yamagishi et al., 2003, 2005;
Thut et al., 2006; Wyart and Tallon-Baudry, 2008) or highly
informative (>75%; Posner, 1980; Posner et al., 1980; Sauseng
et al., 2005; Rihs et al., 2007, 2009; Cosmelli et al., 2011) about
the target location. Here, we showed alternatively that if the
spatial cue is highly informative about the target location, i.e.,
when the average spatial ER is maintained around 20% across
all predictive and ambiguous trials (Posner, 1980), subjects
shifted attention even in totally ambiguous conditions containing
unreliable spatial information about the target location. One
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likely interpretation is that in the absence of obvious directional
information in the ambiguous condition, subjects relied on local
motion information to select one of the two target locations. This
strategy was strengthened by the fact that the subjects were not
told about the ambiguous cues, and they were not able to not
distinguish between the two types of cues. In their subjective
reports at the end of experiment, subjects noted that the direction
of the random-dot motion was often difficult to discriminate
but they didn’t report about different cueing conditions (i.e.,
predictive vs. ambiguous).

Two questions could be investigated in future studies. First, it
would be important to know if attention shifts in ambiguous trials
still occur when the proportion of ambiguous trials is increased.
As in earlier works (Dosher and Lu, 2000; Worden et al., 2000;
Yamagishi et al., 2003, 2005; Thut et al., 2006; Wyart and Tallon-
Baudry, 2008), this approach would increase the average spatial
ER and decrease the information content of the cue. Second,
we would need to test if similar attention shifts occur when
the ambiguous cue is replaced by a cue containing no spatial
information at all, like a circle appearing at the fixation point.
However, we think that the visual presentation of a neutral
cue would lead to temporal rather than spatial attention shifts
(Jongen et al., 2006; Cosmelli et al., 2011).

Spatial Patterns of Brain Activity
The spatial filters used for feature extraction and classification
in BCI (Blankertz et al., 2008; Lotte and Guan, 2011) allow to
visualize patterns of brain activity that discriminate the location
of attention shifts. We found that spatial patterns associated
to the most discriminant filters reflected the alpha-band power
modulation as previously shown with MEG (Yamagishi et al.,
2003, 2005; Wyart and Tallon-Baudry, 2008; Bahramisharif et al.,
2010; Roijendijk et al., 2013) and EEG (Worden et al., 2000;
Sauseng et al., 2005; Thut et al., 2006; Rihs et al., 2007, 2009;
Cosmelli et al., 2011). Moreover, we clearly observed these
modulations in single-trial ambiguous epochs filtered by the
most discriminant filters (Figure 4, CSP-L1 and CSP-R1) learned
from predictive epochs. The spatial patterns of these filters
mapped onto each subject’s scalp suggest that EEG recordings
in predictive and ambiguous trials share similar topography
(Figure 3). In addition, the CSP filters learned in the predictive
condition showed similar discrimination performance for the
ambiguous condition. This interesting result suggests that the
distribution of features did not depends on the coherence of the
random-dot motion. Therefore, it raises a fundamental question
about the brain activity patterns reflecting covert attention shifts
in complex visual environments containing either predictive
or ambiguous spatial information. Could these two types
of environments induce visuospatial attention processes that
actually share common sources in the posterior brain regions?
To address this issue more precisely, the spatial distribution of
the CSP patterns could be analyzed using a source localization
approach (Gramfort et al., 2014).

Decoding Covert Shifts of Attention
The classification accuracies reported in our paper are
comparable with the state of the art in visuospatial attention

studies aiming at decoding features at two opposite attended
locations (van Gerven and Jensen, 2009; Treder et al., 2011;
Roijendijk et al., 2013; Tonin et al., 2013). In this paper, the
decoding performance was quite variable across subjects, with
classification accuracies ranging between 50% (chance level)
and 80% (Figure 5). Several studies of covert visuospatial
attention (van Gerven and Jensen, 2009; Bahramisharif et al.,
2010; Roijendijk et al., 2013) distinguish “good” and “bad”
performers based on the decoding performances. Two main
hypotheses account for the high variability in our decoding
results. First, the random-dot motion coherence settings may
have influenced the subjects’ capacity to anticipate target
location. Indeed, the high level of ambiguity in the cues used in
this study is markedly different from classical decoding studies
using totally unambiguous arrow cues (van Gerven and Jensen,
2009; Treder et al., 2011; Tonin et al., 2013). It is likely that bad
performers have difficulty in switching attention when visual
cues are not reliable enough. A complementary hypothesis for
the decoding variability concerns the level of target contrast. The
difficulty in discriminating between the two target orientations
may have a direct influence on the strength of the subsequent
shift of attention (Dosher and Lu, 2000). In support of this
hypothesis, the classification accuracy showed a negative trend
with target contrast suggesting that subjects were more prone to
shift attention when contrast was low (Roijendijk et al., 2013).
Good performers would therefore correspond to subjects that
reached low level of target contrast in the calibration procedure.
Regardless of the variability between subjects, classification
accuracies were quite similar for the decoding of predictive and
ambiguous features in each subject. This result suggests that,
in the present task, modulations of cerebral activity are the
only reliable source of information to discriminate the location
of spatial attention. Indeed, with ambiguous random-dot
motions, this information cannot be predicted from the cue
itself.

These results have direct consequences for the development
of BCI based on visuospatial attention. In particular, they
show that features extracted from trials in which the spatial
cue is highly predictive of the target location can be used to
discriminate the location of attention in trials with ambiguous
cues. Such observations indicate that in an online protocol, the
spatial location of a visual target in ambiguous trials could be
selected directly from the decoded location of attention. This
approach is expected to have two main outcomes. First, the
spatial ER in ambiguous trials will be decreased. Second, the
subject’s behavioral performance measured by the RT and ER will
improve. Preliminary results in an online protocol fit with these
assumptions (Trachel et al., 2013).
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