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Neurofeedback training of Motor imagery (MI)-related brain-states with brain-
computer/brain-machine interfaces (BCI/BMI) is currently being explored as an
experimental intervention prior to standard physiotherapy to improve the motor outcome
of stroke rehabilitation. The use of BCI/BMI technology increases the adherence to
MI training more efficiently than interventions with sham or no feedback. Moreover,
pilot studies suggest that such a priming intervention before physiotherapy might—like
some brain stimulation techniques—increase the responsiveness of the brain to the
subsequent physiotherapy, thereby improving the general clinical outcome. However,
there is little evidence up to now that these BCI/BMI-based interventions have achieved
operate conditioning of specific brain states that facilitate task-specific functional gains
beyond the practice of primed physiotherapy. In this context, we argue that BCI/BMI
technology provides a valuable neurofeedback tool for rehabilitation but needs to aim at
physiological features relevant for the targeted behavioral gain. Moreover, this therapeutic
intervention has to be informed by concepts of reinforcement learning to develop its full
potential. Such a refined neurofeedback approach would need to address the following
issues: (1) Defining a physiological feedback target specific to the intended behavioral
gain, e.g., β-band oscillations for cortico-muscular communication. This targeted brain
state could well be different from the brain state optimal for the neurofeedback task, e.g.,
α-band oscillations for differentiating MI from rest; (2) Selecting a BCI/BMI classification
and thresholding approach on the basis of learning principles, i.e., balancing challenge
and reward of the neurofeedback task instead of maximizing the classification accuracy
of the difficulty level device; and (3) Adjusting the difficulty level in the course of
the training period to account for the cognitive load and the learning experience
of the participant. Here, we propose a comprehensive neurofeedback strategy for
motor restoration after stroke that addresses these aspects, and provide evidence for
the feasibility of the suggested approach by demonstrating that dynamic threshold
adaptation based on reinforcement learning may lead to frequency-specific operant
conditioning of β-band oscillations paralleled by task-specific motor improvement; a
proposal that requires investigation in a larger cohort of stroke patients.
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Introduction

Neurofeedback training of Motor imagery (MI)-related brain-
states with brain-computer/brain-machine interfaces (BCI/BMI)
is currently being explored as an experimental intervention
alternative to or prior to standard physiotherapy to improve
the motor outcome of stroke rehabilitation. Using BCI/BMI
technology increases the adherence to mental training more
efficiently than the same interventions with sham or no
feedback. Moreover, first results suggest that such a priming
intervention before physiotherapy might—like some brain
stimulation techniques—increase the responsiveness of the
brain for the subsequent physiotherapy, thereby improving
the general clinical outcome, i.e., independent of the specific
BCI/BMI task (Ramos-Murguialday et al., 2013; Pichiorri
et al., 2015). While such a result would be valuable in itself,
the physiological foundation of BCI/BMI technology raises
hopes that functional gains not yet achieved with enhanced
physiotherapymight soon be possible. However, when compared
to dose-matched robot-assisted therapy, BCI/BMI interventions
achieve, at best, only similar clinical benefits (Ang et al., 2010,
2014).

Interestingly enough, those studies that used BCI/BMI
neurofeedback prior to physiotherapy, thereby improving the
general motor outcome in comparison to the respective control
groups, could not demonstrate a significant improvement in
controlling the feedback devices, i.e., lacking a learning progress
in the neurofeedback task. More specifically, subacute stroke
patients, who participated in twelve BCI sessions, showed
no significant changes in their neurofeedback performance
(Pichiorri et al., 2015). Similarly, chronic stroke patients who
performed a mean of seven and eleven sessions with an arm and
hand BMI, respectively, could not increase the brain-controlled
movement time of these devices during the respective training
periods (Ramos-Murguialday et al., 2013). Only those patients
who trained with the BMI devices for longer periods could
achieve control rates higher than the starting condition—albeit
without presenting a performance curve to be expected for
a continuous learning experience (Ramos-Murguialday et al.,
2013).

Thus, there is little evidence up to now that in stroke patients
BCI/BMI-based interventions have achieved operate conditioning
of specific brain states that facilitate task-specific functional gains
beyond the practice of primed physiotherapy or intensive robot-
assisted rehabilitation.

In this context, we argue that while BCI/BMI technology
provides a valuable neurofeedback tool for rehabilitation, it needs
to target physiologically relevant features and to be informed by
concepts of reinforcement learning and cognitive load theory to
develop its full potential (Bauer and Gharabaghi, 2015a,b).

Such a refined neurofeedback approachwould need to address
the following issues: (1) Defining a physiological feedback
target that is specific to the intended behavioral gain, e.g.,
β-band oscillations for cortico-muscular communication. This
targeted brain state might be different from the brain state
optimal for the neurofeedback task, e.g., α-band oscillations
for differentiating MI from rest; (2) Selecting a BCI/BMI

classification and thresholding approach on the basis of
learning principles, i.e., balancing challenge and reward of the
neurofeedback task instead of maximizing the classification
accuracy (CA) of the feedback device; and (3) Adjusting the
difficulty level in the course of the training period to account
for the learning experience and the cognitive load of the
participant.

Physiological Feedback Target
Brain oscillations in α- (8–12 Hz) and β-frequency (15–35 Hz)
bands are modulated during actual and imagined movements.
Although showing a highly correlated pattern, they nonetheless
serve distinct functional mechanisms (van Wijk et al., 2012;
Kilavik et al., 2013; Brinkman et al., 2014). While α-activity
gates information by inhibiting task-irrelevant regions (Mazaheri
and Jensen, 2010), β-activity mediates the disinhibition of the
sensorimotor cortex and the coherent interaction with the
muscles (Mima et al., 2000; Kristeva et al., 2007; van Wijk et al.,
2012; Kilavik et al., 2013; Aumann and Prut, 2014).

In stroke patients, movement-related β-desynchronization
(event-related desynchronization, ERD) in the contralateral
primary cortex is compromised in comparison to healthy
controls, i.e., the more severe the patient’s motor impairment,
the less β-ERD (Rossiter et al., 2014). Although, β-ERD has been
shown to be feasible as a control signal in principle (Bai et al.,
2008), it remains—particularly in the case of severely affected
stroke patients—inferior to α-ERD for classification purposes,
e.g., for differentiating movement-related brain states for the
control of external devices such as BMI (Gomez-Rodriguez
et al., 2011). Recent BMI approaches for stroke rehabilitation
therefore used MI-related α-ERD to control orthotic training
devices (Buch et al., 2008, 2012; Ang et al., 2010, 2014; Shindo
et al., 2011; Ramos-Murguialday et al., 2013). Despite generally
promising results, clinical improvements for the severely affected
and chronic patient group are still missing (Buch et al., 2012) or
are limited with regard to the restoration of relevant hand and
finger function (Ramos-Murguialday et al., 2013).

In this context, we argue that the fact that β-oscillations might
be less optimal for classification purposes, e.g., for differentiating
movement-related brain states in many stroke patients, does not
compromise but rather qualifies this physiological marker as a
therapeutic target. Here, we see an analogy to the concept of
constraint-induced movement therapy in stroke patients, where
the affected rather than the healthy body side is trained to
facilitate restoration instead of compensation of motor function.
We therefore propose that restorative BCI/BMI should follow the
therapeutic goal of restoring the sensorimotor loop via improved
β-band modulation rather than aiming to train the brain state
that enables the patient to control the exercising device best.
The latter is a strategy that is implicitly followed when selecting
individual frequency bands with best classification properties,
i.e., that best separate the rest and the task condition (Pichiorri
et al., 2015).

A similar rationale may be applied when considering which
brain hemisphere should be trained with neurofeedback. Severely
impaired patients are often characterized by movement-related
activity shifts to the contralesional hemisphere, particularly
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in the acute and subacute phase after stroke. However, the
physiological role of this shift, i.e., either fascilatory or inhibitory
for functional restoration, is still not completely clear (Di Pino
et al., 2014). As in the majority of BCI/BMI rehabilitation studies
in stroke, we therefore propose the strategy of targeting the
ipsilesional hemisphere with the therapeutic intervention as long
as sufficient corticospinal connectivity, e.g., probed by motor-
evoked potentials following transcranial magnetic stimulation,
is still present (Stinear et al., 2007, 2012). Neurofeedback of the
ipsilesional hemisphere might result in lower BCI/BMI CA than
training the healthy hemisphere. However, on the basis of the
theoretical framework explained above, the decreased oscillatory
range in the ipsilesional hemisphere should not be considered
as a limitation but rather as the actual target of reinforcement
learning in this therapeutic setting.

Cognitive Load of BCI/BMI Neurofeedback
A recent analytic approach has provided a theoretical foundation
for estimating the participant’s cognitive resources and the
instructional efficacy of neurofeedback on the basis of BCI/BMI
performance measures (Bauer and Gharabaghi, 2015a).

By integrating classification theory (Theodoridis and
Koutroumbas, 2009) with item response theory (Safrit et al.,
1989), the relationship between the classification algorithm
of a BCI/BMI and the ability for self-regulation has been
described (Bauer and Gharabaghi, 2015a). Moreover, on
the basis of the cognitive load theory for instructional
design (Sweller, 1994; Schnotz and Kürschner, 2007), the
BCI/BMI CA may be interpreted within the framework
of neurofeedback training by off-line calculation of the
positive rates for different classifiers and thresholds (Bauer
and Gharabaghi, 2015a). In this context, different performance
measures provide information about the subject’s ability and
his/her performance when support is provided as well as
an indirect measure of the subject’s cognitive resources for
coping with the mental load that occurs during a misalignment
between ability and difficulty (Allal and Pelgrims Ducrey,
2000; Schnotz and Kürschner, 2007; Bauer and Gharabaghi,
2015a).

Mathematical models and evidence from empirical data
suggest that participants with low abilities for brain self-
regulation in particular, e.g., stroke patients with a reduced
β-band modulation range, might benefit from neurofeedback
strategies that take cognitive resources into account and
align the ability and task difficulty (Bauer and Gharabaghi,
2015a).

Reinforcement Learning with BCI/BMI
Technology
Due to the treatment rationale of modulating specific brain
features, the classifier of restorative BCI/BMI technology is
usually constrained, thus posing a particular challenge for
the optimization of neurofeedback to the participant, who
should be rewarded for achieving this goal (Bauer and
Gharabaghi, 2015b). In this context, in which classifiers are
often based on linear discriminant analysis, threshold adaptation
might be a viable approach to affect reinforcement learning

(Theodoridis and Koutroumbas, 2009). Linear methods are
characterized by threshold selection, i.e., the definition of
a specific value on an one-dimensional continuum spanned
between the two states that are to be differentiated (Bauer
and Gharabaghi, 2015b). By altering this threshold, the
sensitivity and the specificity of the classifier will be modified
(Thompson et al., 2013; Bauer and Gharabaghi, 2015b).
The selection of this threshold is currently determined by
the intent to maximize the CA (Thomas et al., 2013;
Thompson et al., 2013). However, mathematical modeling of
restorative neurofeedback on the basis of Bayesian simulations
indicates that operant conditioning can be optimized when
an adaptation strategy for threshold selection is applied in
the course of the training (Bauer and Gharabaghi, 2015b).
Such an adaptation strategy would need to change the
classifier threshold, i.e., difficulty level, of the feedback device
to challenge the participant in the course of the training
while preserving his/her motivation. Moreover, the provided
feedback should retain its specificity and reward trained
actions rather than punish false ones (Bauer and Gharabaghi,
2015b).

Here, we propose a comprehensive neurofeedback approach
for motor restoration after stroke that addresses these aspects,
and provide evidence for the feasibility of the suggested approach
by demonstrating that dynamic threshold adaptation based on
reinforcement learning may lead to frequency-specific operant
conditioning of β-band oscillations paralleled by task-specific
motor improvements.

Adaptation Strategy
The sensitivity and specificity of the classifier of a linear
discriminant analysis are indicated by the true-positive rate
(TPR) and the true-negative rate (TNR), respectively; the
false-positive rate (FPR) equals 1-TNR. TPR and TNR are
calculated by

TPR =
pNmove

Nmove
(1)

TNR =
nNrest

Nrest
, (2)

with N as the total number of sample blocks in either the rest
or move period, and pN and nN as the positively and negatively
classified sample blocks, respectively.

The CA of a BMI system is defined by

CA =
TPR+ TNR

2
. (3)

The correct response rate (CRR) is defined as the ratio
between the actual occurrence of the anticipated action (e.g.,
robotic orthosis movement) and the number of trials.

To optimize operant conditioning, we propose a threshold
adaptation strategy informed by a Bayesian reinforcement
learningmodel for restorative neurofeedback training (Bauer and
Gharabaghi, 2015b). The threshold adaptation strategy is based
on the following principles:
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1. Facilitating fast and efficient learning by challenging the
participant with thresholds of increasing difficulty, i.e., low
TPR.

2. Rewarding trained actions rather than punishing false ones by
thresholds beyond the maximum CA.

3. Preserving the specificity of the feedback by minimizing the
FPR, i.e., maximizing the TNR.

4. Improving the motivation of the participant and the
adherence to the training by maximizing the CRR.

The threshold of the linear classifier is adjusted before each
neurofeedback session and then kept fixed throughout this
session (i.e., training day). This adjustment is conducted on the
basis of an offline calculation of the neurofeedback parameters
CRR, TPR and TNR/FPR to maximize the following function,
which we refer to as the zone of adjusted threshold (ZAT):

ZAT = CRR− (TPR+ FPR) (4)

ZAT = CRR− (TPR+ (1− TNR)) . (5)

Experimental Setup and Methods

The BMI-based neurofeedback environment (Figure 1)
included a commercially available electromechanical hand
orthosis (Amadeo, Tyromotion GmbH, Graz, Austria)
which enables mass finger extension and flexion while
the wrist remains fixed without any movement. This
robotic orthosis is used regularly for standard rehabilitation
exercises independent of brain-interfacing. When used in
conjunction with BCI/BMI technology, it is also referred
to as a brain-robot interface (BRI; Bauer et al., 2015;
Vukelić and Gharabaghi, 2015). This BMI/BRI opens and
closes the paralyzed hand when triggered by ipsilesional
oscillatory brain activity during cued kinesthetic MI which
is classified with a linear classifier (Walter et al., 2012;

FIGURE 1 | Brain-machine interface (BMI) training environment
presented with a healthy subject. Motor imagery (MI)-related modulation of
oscillatory activity is detected by electroencephalogram, EEG (1), amplified (2)
and processed in a BCI2000-based control system (3) to operate a
commercially available electromechanical hand orthosis (4).

Gharabaghi et al., 2014a). Following each BMI training
session, approximately 1 h of goal-oriented physiotherapy
was applied by practicing hand opening, finger extension
and grasping movements during activities of daily living to
enhance the consolidation of the movements trained with BMI
feedback.

Every session contained 15 runs, each lasting 2–3 min. Every
run consisted of 11 trials which began with a 2-s rest period
and a preparation period of 2 s, followed by a 6 s movement
imagination period and a 6-s rest period (Figure 2). This fixed
timing of each trial may lead to anticipation effects, but was
intentionally chosen to be comparable with previous BMI studies
in healthy subjects and stroke patients.

The onset of the preparation, imagination and rest periods
were indicated by the commands ‘‘left hand’’, ‘‘go’’ and ‘‘rest’’,
respectively. The BMI environment was designed to passively
open the patient’s paralyzed left hand during the movement
imagination period as soon as MI-related ERD in the β-band
was detected in the ispilesional, i.e., right, hemisphere (Walter
et al., 2012; Gharabaghi et al., 2014a). The BMI algorithm was
based on the spectral power values between 17 and 23 Hz
for three selected channels (FC4, C4 and CP4). We selected
these three electrodes to cover premotor, primary motor and
somatosensory areas, all of which have been shown to be involved
in functional restoration following stroke. However, the limited
anatomical specificity of sensor-based EEG must be taken into
consideration. The spectral power range was chosen on the
basis of our previous findings (unpublished data) indicating
that the effective corticospinal connectivity is mediated in a
frequency-specific, amplitude- and phase-dependent way. We
therefore applied the very same frequency-range and setup as
in our previous BMI studies (Bauer et al., 2015; Gharabaghi
et al., 2014a; Vukelić et al., 2014; Vukelić and Gharabaghi,
2015).

The spectral power was calculated using an autoregressive
model order of 16 (McFarland and Wolpaw, 2008). This
was fitted to the last 500 ms of the signal and updated
every 40 ms. Orthosis-assisted movement was initiated or
interrupted when five consecutive 40 ms epochs (i.e., 200

FIGURE 2 | Time course of BMI session. Each BMI session lasted
approximately 30 min and consisted of fifteen runs separated by short breaks.
Every run consisted of 11 trials, each of which lasted 16 s. Each trial started
with a rest period (2 s) while subjects were instructed to prepare for MI
following an auditory cue (2 s preparation phase), and to imagine the
respective reaching movement following a “start” cue (6 s MI phase), which
was followed by a “rest” cue (6 s rest phase).
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ms) were classified as ERD-positive or negative, respectively.
An epoch was not regarded as ERD-positive until the output
of the classifier exceeded a threshold θ (Walter et al., 2012;
Gharabaghi et al., 2014a). The online signal processing was
performed with the standard algorithm of the BCI2000 software
(Mellinger and Schalk, 2007). With a bin width of 2 HZ
and targeted bin centers of 18, 20 and 22 Hz the resulting
frequency band was 17–23 HZ and corresponded to a wave
length of between 43 and 59 ms. Choosing a data window
of 500 ms enabled us to capture several cycles of these
frequencies for reliable power analysis. This approach has
already proved to be reliable in studies with the very same
BMI setup (Walter et al., 2012; Bauer et al., 2015; Gharabaghi
et al., 2014b; Vukelić et al., 2014; Vukelić and Gharabaghi,
2015).

We adjusted the threshold of the linear BMI classifier
before each neurofeedback session. This adjustment was based
on the recalculation of the neurofeedback parameters CRR,
TPR and TNR/FPR of the previous session. Since the actual
BMI performance of each session depended on the selected
classifier threshold, the neurofeedback parameters had to be
calculated independently of the used threshold. Hence, they had
to be analyzed offline for different threshold levels (Bauer and
Gharabaghi, 2015a,b).

Data Acquisition and Analysis
Electroencephalogram (EEG) signals were recorded
with BrainAmp DC amplifiers and an antialiasing filter
(BrainProducts, Munich, Germany) from 32 Ag/AgCl scalp
electrodes (sampling rate: 1000 Hz) in accordance with the
international 10–20 system (FP1, FP2, F3, Fz, F4, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, P3, POz, P4, POz, O1, O2;
reference: FCz, ground: AFz). Electrode impedances were
maintained below 10 k�. Ambient noise may compromise
the recordings as it often exceeds the frequency range of
the physiological signals. To avoid an aliasing error due
to undersampling of this noise, we made every effort to
remove all potential sources of electrical noise from the
experimental environment, i.e., high-frequency noise was
actively avoided during the experiment and verified offline.
Thanks to this approach, we do not observe high-frequency
noise in our recordings (Bauer et al., 2015; Gharabaghi et al.,
2014c; Vukelić et al., 2014; Vukelić and Gharabaghi, 2015).
Furthermore, since our data analysis is based on the difference
between two brain states (i.e., MI vs. rest), an unspecific
noise would project into both conditions without affecting the
difference.

During the experiment, surface electromyography (EMG)
of the extensor digitorum communis (EDC) and flexor
digitorum superficialis (FDS) muscles was recorded (band-
pass filter: 0.1–1000 Hz, sampling rate: 1000 Hz). Since
EMG contamination is known to compromise EEG-based BMI
training (Gharabaghi et al., 2014b), experienced examiners were
trained to recognize these artifacts and instructed the patient
to minimize them. Similar to previous studies with healthy
subjects (Vukelić et al., 2014) and severely affected stroke patients

(Ramos-Murguialday et al., 2012) the patient was also instructed
to avoid blinking, chewing, and head and body compensation
movements. Together with visual inspection and feedback by
the examiner, this approach proved to be a feasible method to
prevent alternative BMI control. In addition, the EEG data was
reanalyzed offline, removing all artifacted trials.

EEG was reanalyzed offline using MATLAB (MathWorks,
Inc., Natick, MA, USA) and the FieldTrip open source toolbox.1

The data was band-pass filtered (3–120 Hz). Artefacts were
rejected on the basis of trial variance, yielding an average of
147 ± 25 (mean ± SD) trials per session. Time-frequency
analysis (multitaper) was performed and resulted in a time
resolution of 0.1 s and a frequency resolution of 1 Hz. Power
spectrum was normalized to the mean spectral distribution
of the 4 s pre-movement rest period of the session. Mean
movement-related spectral perturbation (ERSP) of α-, β- and
γ-frequencies of the feedback electrodes were calculated for
each session. After excluding significant baseline shifts between
sessions, ERSPs were normalized to the first session to
capture changes across sessions as an indicator of operant
conditioning.

The BMI CA was calculated for each session. An exponential
function was fitted on CA data by

y(x) = a ∗ e−bx + c, (6)

where x represents the session number, y the CA performance of
the session, a and b the weighting factors and c the asymptote.
The fitted line represents the learning curve and the asymptote
(c) serves as a measure of final performance. The same fitting was
performed for the ERSP.

Clinical Evaluation
To capture the behavioral specificity of the BMI intervention
beyond a general priming effect for physiotherapy, a precise
clinical evaluation of the motor improvement is essential.
Previous pilot studies reporting a benefit of BMI interventions
in comparison to control groups reported a compound score
(Ramos-Murguialday et al., 2013) or a general score of the whole
upper extremity (Pichiorri et al., 2015). When comparing task-
specific motor outcome parameters, BMI intervention might
even be less effective than dose-matched control training (Ang
et al., 2014).

We therefore evaluated hand (i.e., finger), wrist and arm
motor function separately by the Upper Extremity Fugl-Meyer
assessment (UE-FMA; Fugl-Meyer et al., 1975). This was
conducted by an experienced physiotherapist before and after the
20–day training intervention (Ramos-Murguialday et al., 2013).
To ensure that our results were comparable to earlier studies,
coordination, speed and reflexes were not taken into account.
This resulted in a modified UE-FMA, previously named cFMA
(Ramos-Murguialday et al., 2013). Each score for the hand (i.e.,
finger), wrist and arm function, i.e., the parts (C), (B) and (A) of
the UE-FMA, were provided separately and not as a compound
score. Notably, an earlier controlled proof-of-concept study

1http://fieldtrip.fcdonders.nl/
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had fused the scores for hand (i.e., finger) and wrist function,
i.e., the parts (C) and (B) of the UE-FMA, and termed the
resulting compound value as the ‘‘hand’’ score (hFMA; Ramos-
Murguialday et al., 2013). This might be misleading, given that
the BMI intervention applied in both the earlier and present
study trained the opening and closing of the fingers and not wrist
movement. Reporting a compound ‘‘hand’’ score, i.e., summing
up parts (C) and (B) of the UE-FMA, might therefore obscure a
differentiation between the contribution of the BMI intervention
and the rather unspecific effects of the subsequent physiotherapy
applied in both the previous and the present report. To preserve
specificity, we adhere to the original differentiation between
hand (i.e., finger), wrist and arm function (Fugl-Meyer et al.,
1975). However, for the sake of clarity, we name them finger
(fFMA), wrist (wFMA) and arm (aFMA) function. The patient’s
performance was video-taped and then, following the period of
intervention, rated independently by five trained evaluators who
were blinded to the intervention (pre/post evaluation).

Empirical Dataset

A 68-year-old patient had suffered an ischemic cortico-
subcortical stroke of the right hemisphere 34 months prior
to his participation in the study. This had resulted in a
persistent paresis of his left upper extremity with no volitional
hand opening or finger extension (Medical Research Council
motor scale <2). We tested the feasibility of reinforcement
learning by controlling a robotic orthosis attached to the

paralyzed hand of this chronic stroke survivor with ipsilesional
sensorimotor β-band ERD during kinesthetic MI. The ability
and evolution of BMI control, as well as physiological changes,
were recorded in the course of twenty training sessions with
dynamic threshold adaptation to probe for frequency-specific
operant conditioning of β-band oscillations paralleled by task-
specific motor improvements. The study protocol was approved
by the local ethics committee.

The first training session, i.e., the calibration session, started
with a predefined, rather low threshold of θ = 0.5 to allow the
patient to familiarize himself with the setup. The thresholds of
the following sessions were adjusted according to the ZAT (see
Figure 3A) which was robustly characterized by a TPR of about
20% and paralleled by a CRR of at least 70% and a TNR of above
90% (i.e., a FPR of below 10%).

This strategy allowed a dynamic adaptation of the threshold
on the basis of the patient’s ability and course of learning (see
Figure 3B). The fourth session, for example, was performed
with a threshold θ = 1.5. The offline analysis (see Figure 3C
left) suggested a threshold of θ = 1.2 for the next session.
We therefore adjusted the threshold of the next, i.e., fifth
session, to θ = 1.2. After training with this threshold, the
offline analysis (see Figure 3C, center) revealed that the
threshold could be increased to θ = 1.5 again. After adjusting
the threshold of the next, i.e., sixth session, to θ = 1.5,
offline analysis after training (see Figure 3C, right) showed
that the threshold needed to be decreased, but this time
to a threshold of θ = 1.4, revealing a learning effect in

FIGURE 3 | (A) Off-line re-analysis of the BMI data in the first session for
different thresholds θ providing the true-positive rates (TPR), true-negative rates
(TNR), classification accuracy (CA), correct response rate (CRR) and the zone of
adjusted threshold (ZAT). ZAT peaks at θ = 1.2 corresponding to TPR = 20.9%,

FPR = 9.9% and CRR = 72.2%. Hence, θ = 1.2 was selected for the
succeeding BMI session. (B) Shows BMI thresholds in the course of training.
(C) Exemplary off-line analysis after session 4, 5 and 6 illustrating on the
evolution of BMI performance.

Frontiers in Human Neuroscience | www.frontiersin.org 6 July 2015 | Volume 9 | Article 391

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Naros and Gharabaghi Reinforcement learning and stroke rehabilitation

comparison to the fifth session (θ = 1.2). These stepwise
adjustments led the patient to achieve higher thresholds, i.e.,
more β-band desynchronization, in the course of the training,
thereby facilitating operant conditioning of the targeted brain
state.

BMI training induced the anticipated perturbations in
the ipsilesional sensorimotor α (8–12 Hz)-, β (15–35 Hz)-
and γ (>35 Hz)-frequency spectrum with ERD and ERS in
the α/β- and γ-band, respectively (Figure 4A). Volitional
β-ERD control of the EEG-based BMI enabled the chronic
stroke survivor to open his paralyzed hand repetitively
and reliably with the attached robotic orthosis. The β-ERD
band, which was trained with feedback, changed significantly
within the first 10 sessions and reached saturation in the
course of the following 10 sessions, indicative of operant
learning (Figure 4B). The BMI skill showed the very same
exponential evolution in the first 10 sessions while reaching
an asymptotic maximum in the following 10 sessions,
thereby revealing a direct link to the modulated β-ERD
(Figure 4C).

Comparing α-, β- and γ-oscillations in the course of the
intervention revealed frequency specificity for the β-band and,
notably, a dissociation between the α- and the β-frequency
band with regard to the evolution of the modulation range
(Figures 5A,C). This β-ERD evolution was not restricted to
the feedback electrodes (FC4, C4 and CP4) and included
primary motor, premotor and supplementary motor areas of
the ipsilesional cortex (Figure 5B). These physiological changes
were paralleled by an overall clinical improvement of the upper

extremity (cFMA: from 12.4 ± 3.1 to 16.2 ± 1.9, p = 0.049,
Student’s t-test). However, disentangling the UE-FMA subscores
revealed a task specificity of the functional gain with a significant
improvement in the score related to the BMI trained finger
movement (fFMA: from 2.0 ± 1.0 to 3.2 ± 0.45, p = 0.04)
but not in the wrist (wFMA: from 0 ± 0 to 0 ± 0) and arm
scores (aFMA: from 10.4 ± 2.88 to 13.0 ± 1.73, p = 0.121;
Figure 5D).

Discussion

Acquiring motor skills or re-learning them after brain injury,
e.g., stroke, requires practice to induce motor learning (Doyon
and Benali, 2005; Halsband and Lange, 2006). MI might also
activate the sensorimotor system (Gao et al., 2011; Szameitat
et al., 2012), thereby serving as an alternative training method
(Halsband and Lange, 2006; Boe et al., 2014). The self-regulation
of brain activity during MI can be supported by providing visual
or proprioceptive feedback about the user’s current brain state
using either BCI or BMI/BRI (Vukelić and Gharabaghi, 2015).
First studies applying these approaches in stroke rehabilitation
are promising (Prasad et al., 2010; Ang et al., 2011, 2014; Shindo
et al., 2011; Ramos-Murguialday et al., 2013; Pichiorri et al.,
2015). However, some conceptual and physiological questions
remain as to the specificity of these interventions with respect
to the achieved clinical gains. Controlled studies in both healthy
subjects (Bai et al., 2014; Boe et al., 2014) and stroke patients
(Ramos-Murguialday et al., 2013; Pichiorri et al., 2015) indicate
that the adherence to MI training is higher with BCI/BMI

FIGURE 4 | (A) Mean time-frequency plot of sensorimotor feedback electrodes (FC4, C4 and CP4) during a BMI training session showing the event-related spectral
perturbations (ERSPs). (B) Evolution of β-ERD in the course of 20 feedback sessions. (C) Evolution of BMI control in the course of the training period.
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FIGURE 5 | The topoplot indicates the cortical distribution of
β-ERD during the first (A) and final (B) training week. The three
feedback electrodes are shown as black dots. (C) Final ERSP
changes for different frequency bands derived from the exponential fit

to the ERSP learning curves at the end of training. Data represents
mean ± 95%-confidence interval. (D) Fugl-Meyer assessment scores
for arm, wrist and fingers prior to and subsequent to the training
period.

technology than in interventions with sham or no feedback,
i.e., that performing MI effectively is superior to performing
it ineffectively. It is not surprising that such an effective MI
intervention, when applied before physiotherapy, might increase
the responsiveness of the brain to the subsequent physiotherapy
like a primingmechanism, thereby improving the general clinical
outcome (Ramos-Murguialday et al., 2013; Pichiorri et al., 2015).
However, such BMI interventions have not achieved clinical
benefits beyond those of dose-matched robot-assisted therapy
(Ang et al., 2010, 2014) which has, in turn, provided only little
additional benefit over dose-matched classical physiotherapy so
far (Kwakkel et al., 2008; Lo et al., 2010; Klamroth-Marganska
et al., 2014).

However, BMI technology sparks hopes that functional gains
beyond this practice of primed and intensive physiotherapymight
be achievable, particularly for the majority of stroke patients
who still lack useful restoration of arm and hand function
for activities of daily living despite rigorous rehabilitation
training.

Operant conditioning of neural activity with BCI/BRI
neurofeedback, e.g., challenging the patient to attain specific
brain states that modulate corticospinal connectivity, is currently
one favored neurophysiological concept to facilitate motor
recovery (Daly and Wolpaw, 2008; Bauer and Gharabaghi,
2015b). Beta-band oscillations activity (15–30 Hz) over the
sensorimotor cortex is particularly appropriate for this approach
(Gharabaghi et al., 2014a,b,c; Vukelić and Gharabaghi, 2015)
since it mediates the natural communication between cortex

and peripheral muscular activity (Riddle and Baker, 2005;
Witham et al., 2011; Davis et al., 2012; Kilavik et al., 2013),
reflects sensorimotor control (Brittain et al., 2014), motor
learning (Herrojo Ruiz et al., 2014; Pollok et al., 2014),
corticospinal excitability (Takemi et al., 2013a,b), and the
extent of functional impairment after stroke (Rossiter et al.,
2014).

Recent studies in healthy subjects revealed that BCI feedback
of MI-associated β-oscillations increased both laterality (Boe
et al., 2014) and movement-associated desynchronization
of the targeted β-frequency band (Bai et al., 2014) after
three and five training sessions, respectively. Only one BRI
session with proprioceptive feedback of MI-associated β-
oscillations proved sufficient to activate a distributed cortical
network (Vukelić et al., 2014) thereby bridging the gap
between the abilities and cortical networks of MI and motor
execution (Bauer et al., 2015). Moreover, a direct comparison
between BCI and BMI/BRI feedback in the β-band and
their neural oscillatory signatures revealed that closing the
sensorimotor loop with proprioceptive feedback was superior
to visual feedback only in supporting self-regulation of β-
activity and activating a distinct cortical network resembling
the natural activation during overt movement (Vukelić and
Gharabaghi, 2015). Moreover, repetitive pairing of MI-related
cortical activity and afferent input increased corticospinal
excitability in healthy subjects (Mrachacz-Kersting et al., 2012;
Niazi et al., 2012; Gharabaghi et al., 2014a; Xu et al.,
2014).
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Similar evidence for the neurophysiology of BCI/BMI training
in stroke patients is sparse (Buch et al., 2012; Pichiorri et al.,
2015). Surprisingly, even the study with the largest clinical
gains of all pilot studies, in which BCI neurofeedback was
provided prior to physiotherapy, showed no progress in the
neurofeedback performance despite 4 weeks of training with
12 feedback sessions (Pichiorri et al., 2015). This might be
related to the fact that an individualized selection of feedback
channels and frequency bands was applied to maximize the
differentiation between MI and rest and/or to the fixed classifier
threshold throughout the course of training; an approach that is
also chosen by most other BCI/BMI approaches. Moreover, the
clinical benefit of the combination of BCI and MI as an add-
on to standard physical therapy was not confined to the BCI
tasks, i.e., grasping and finger extension, or even to the targeted
upper limb function but also affected general clinical outcome
scales (Pichiorri et al., 2015). This observation, while—from a
clinical perspective—highly beneficial for those subacute stroke
patients participating in this primed physiotherapy, nonetheless
somewhat clouds the neurophysiological mechanisms related
to the neurofeedback intervention. However, it is worth
pointing out that, when comparing early and late training
sessions in this study, only low β-band oscillations revealed
a significant difference in their desynchronization pattern
associated with BCI-MI. In the absence of any improvement in
the BCI neurofeedback performance, this physiological pattern
could most intuitively be interpreted as a correlate of the
achieved behavioral gain following primed physiotherapy. This
finding would corroborate the β-frequency band as a target
substrate for the neurofeedback itself, particularly because its
impaired activity range was also recently correlated to the
extent of functional impairment after stroke (Rossiter et al.,
2014).

It is tempting to relate the missing learning of the
neurofeedback task, i.e., the lack of operant conditioning, to the
pathological condition of the stroke patients. However, healthy
subjects also often present with a large variability or even inability
of brain self-regulation, referred to as BCI illiteracy (Vidaurre
and Blankertz, 2010). A more general misalignment between
the subject’s abilities and the classifier/neurofeedback strategy
therefore has to be assumed. This has led to attempts to estimate
the participant’s cognitive resources and the instructional
efficacy of neurofeedback on the basis of BCI/BMI performance
measures, revealing that particularly participants with low
abilities for brain self-regulation, e.g., stroke patients with a
reduced beta-bandmodulation range, might present a broad zone
of learning when aligning the task difficulty with their ability
(Bauer and Gharabaghi, 2015a).

Compared to studies with healthy subjects in a limited
number of neurofeedback sessions, stroke studies usually span
several weeks with a comparably high number of training
sessions. This poses a special challenge to keep up the motivation
of the participants and their adherence to the task even
when feedback is provided. Optimizing metabolic cost of
BCI/BMI control during long-term application (Jackson and
Fetz, 2011) might be one possible explanation for the lack of
operant conditioning. Therefore, BCI/BMI tasks need to provide

incentives to achieve higher levels of the targeted brain state
(Carmena, 2013), and, in turn to achieve frequency- and task-
specific effects of the intervention (Zoefel et al., 2011).

Bayesian modeling of neurofeedback, particularly in long-
term interventions with many iterations, indicates that operant
conditioning might be optimized when an adaptation strategy
for threshold selection, i.e., the difficulty level of the feedback
devise, is applied in the course of the training balancing
challenge and reward (Bauer and Gharabaghi, 2015b). The
neurofeedback strategy proposed here for motor restoration
after stroke provides evidence for the first time that dynamic
threshold adaptation based on reinforcement learning may lead
to frequency-specific operant conditioning of β-band oscillations
paralleled by task-specific motor improvements. The reported
observations—albeit in one patient and therefore requiring
investigation in a larger cohort—might, however, inform the
design of further studies in this field.

Since the presented concept achieved a continuous and
significant BMI improvement in the very first sessions and
provided a direct brain-behavior relationship with functional
gains specific for the BMI trained task, it might inspire
future research in this direction. Such studies would need to
directly compare different feedback targets, e.g., β-band vs.
α-band oscillations, and to relate respective changes of the
oscillatory range to distinct functional gains using specific
scores and measures. Moreover, the classical BCI/BMI concept
of maximizing CA of the decoding algorithms needs to be
complemented by and/or compared to approaches that adjust
the feedback in the course of the training period to account
for the cognitive load and the learning experience of the
participant.

When patients do not gain volitional control of β-
band oscillations via a standard EEG-based approach despite
the strategies mentioned above—e.g., due to an extended
cortical lesion and distorted physiology—epidural recordings
of field potentials may nonetheless facilitate the detection and
neurofeedback training of this physiological target (Gharabaghi
et al., 2014b). Such an approach closer to the neural signal source
may also induce clinical gains after a shorter therapy time than
is usually applied with the standard EEG technique (Gharabaghi
et al., 2014c). Furthermore, the frequency-specific increase of β-
ERD not only in the primary motor cortex, but also in medial
premotor and supplementary motor areas of the ipsilesional
cortex, suggests that these latter regions are a potential target
for future neurorestorative interventions in stroke patients on
the basis of neurofeedback and/or brain stimulation (Plow and
Machado, 2014).

The present case study showed a specific and significant
improvement in the finger function (in the finger part [C] of
the UE-FMA score) trained with the BMI intervention (i.e., task-
specificity). However—as in other BMI studies with severely
affected stroke patients (Ramos-Murguialday et al., 2013)—these
gains did not lead to relevant improvements of activities of daily
living that necessitate hand opening. To achieve substantial gains
for the paralyzed hand, more extended training periods than
those currently applied, i.e., beyond 4 weeks, might be necessary,
since time in therapy is a robust predictor of recovery across
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different intervention types, at least for less severely affected
stroke patients with residual hand function (Lohse et al., 2014).

However, such modifications of time scheduled for
training or actual practice time might not suffice per se
to pass the critical threshold for clinically meaningful
improvements of hand function. Additional interventions,
such as concurrent state-dependent brain stimulation
(Gharabaghi et al., 2014a) to restore or unmask latent
corticospinal connectivity in a functionally effective way,
may be required.

Preliminary evidence suggests that even severely affected
stroke patients lacking residual hand function have the potential
to train and extend their β-modulation range and achieve

specific motor gains when receiving neurofeedback training
based on concepts of reinforcement learning. If applied for a
sufficient time and at the appropriate intensity, this intervention
may in itself constitute a therapeutic approach for functional
restoration.
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