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While previous studies have analyzed mean neurophysiological responses to
musical stimuli, the current study aimed to identify specific time courses of
electroencephalography (EEG) oscillations, which are associated with dynamic changes
in the acoustic features of the musical stimulus. In addition, we were interested in
whether these time courses change during a repeated presentation of the same musical
piece. A total of 16 subjects repeatedly listened to the well-known aria “Nessun dorma,”
sung by Paul Potts, while continuous 128-channel EEG and heart rate, as well as
electrodermal responses, were recorded. The time courses for the EEG oscillations were
calculated using a time resolution of 1 second for several frequency bands, on the basis
of individual alpha-peak frequencies (theta, low alpha-1, low alpha-2, upper alpha, and
beta). For all frequency bands, we identified a more or less continuous increase in power
relative to a baseline period, indicating strong event-related synchronization (ERS) during
music listening. The ERS time courses, however, did not correlate strongly with the time
courses of the acoustic features of the aria. In addition, we did not observe changes
in EEG oscillations after repeated presentation of the same musical piece. Aside from
this distinctive feature, we identified a remarkable variability in EEG oscillations, both
within and between the repeated presentations of the aria. We interpret the continuous
increase in ERS observed in all frequency bands during music listening as an indicator of
a particular neurophysiological and psychological state evoked by music listening. We
suggest that this state is characterized by increased internal attention (accompanied
by reduced external attention), increased inhibition of brain networks not involved in the
generation of this internal state, the maintenance of a particular level of general alertness,
and a type of brain state that can be described as “mind wandering.” The overall state
can be categorized as a psychological process that may be seen as a “drawing in” to
the musical piece. However, this state is not stable and varies considerably throughout
the music listening session and across subjects. Most important, however, is the finding
that the neurophysiological activations occurring during music listening are dynamic and
not stationary.

Keywords: EEG oscillation, EEG time course, music, brain signature of music listening, heart rate, electrodermal
response
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Introduction

Music listening is a ubiquitous phenomenon in most people’s
everyday life. The reason for this frequent usage of music in
everyday life situations is that music is an extremely powerful
stimulus for evoking and regulating emotions (Thoma et al.,
2014). Therefore, it comes as no surprise that music is also
often used in psychological and neuroscientific experiments as a
stimulus for evoking emotions.

A wealth of studies have been published regarding the
neurophysiological and physiological responses to emotional
music (Koelsch, 2014). In such studies, many neuroscientific
methods have been used to examine brain function during
music listening, including functional magnetic resonance
imaging (fMRI), positron-emission tomography (PET),
magnetoencephalography (MEG), electroencephalography
(EEG), transcranial magnetic stimulation (TMS), and even
near-infrared spectroscopy (NIRS). In general, these studies
have shown that the limbic system, as well as the cortical areas,
are strongly activated when listening to emotionally arousing
music. One important region is the nucleus accumbens, which
is activated by listening to pleasant music, while the amygdala
is strongly activated when listening to unpleasant or sad music
(Blood et al., 1999; Baumgartner et al., 2006b; Alluri et al., 2013).
Many other cortical regions besides the limbic system have
also been shown to be involved in processing emotional music.
Depending on the method used to register brain activations,
different distributed cortical networks have been identified,
which cover numerous other regions in the frontal, temporal,
and parietal lobes (Koelsch, 2014).

Nearly all of the studies on brain activation in response to
emotional music have analyzed mean neurophysiological and
psychological responses that last from seconds to severalminutes.
For example, average hemodynamic or electrophysiological
responses to musical pieces are usually used for interpretation
(Blood et al., 1999; Blood and Zatorre, 2001; Baumgartner et al.,
2006b; Koelsch et al., 2007, 2013; Sammler et al., 2007). The
same pertains to the subjective evaluation of musical pieces.
Typically, study participants are asked to rate entire musical
pieces using various forms of rating scales for valence and arousal,
or other subjective variables such as the tension evoked by the
piece. These ratings are typically employed as though the musical
experience were a stationary phenomenon. However, music is a
dynamic stimulus, with changing acoustic features across time.
Thus, the neurophysiological and psychological responses should
vary according to the changing acoustic cues of the musical
piece. Using continuous ratings of a musical piece, it has already
been demonstrated that subjective ratings indeed vary during the
course of music listening (Nagel et al., 2007). This idea especially
holds for longer musical pieces, like symphonies or operas, which
are designed to evoke changing states of emotion and arousal.
Even short musical pieces from the modern pop genre, which last
approximately 5 min, include changing acoustic features over the
music’s presentation.

Taking this information into account, it can hardly be
expected that music would evoke a constant psychological and
neurophysiological reaction, even within one single subject.

Instead, these psychological and neurophysiological responses
should change during the course of music presentation. In
addition, listening repeatedly to a particular musical piece
may evoke different responses, either due to the listener
taking different approaches to listening to the music or he/she
habituating to repeated exposure to the stimuli. A further issue
that should also be kept in mind in this context is that the
psychological and neurophysiological responses tomusical pieces
will vary greatly according to the actual psychological state of the
subject and according to the “strategy” used when listening to the
particular musical piece.

Interestingly, although the above-mentioned aspects seem
to be plausible and are grounded in long-existing knowledge
about how we perceive musical pieces, it is surprising that so
few psychological and neurophysiological studies have examined
time courses of neurophysiological activation during music
listening. One reason for the apparent lack of literature in this
area is related to methodological issues. fMRI measurements
during music listening are particularly problematic due to the
obtrusive scanner noise that affects activations in the auditory
system (Herrmann et al., 2000). Another problematic point for
music and emotion studies using fMRI is the uncomfortable
scanner environment, which is associated with negative emotions
such as discomfort, claustrophobia, pain, low-level anxiety,
and other variants of negative emotion (Heinrich et al., 2014;
Mutschler et al., 2014; Keulers et al., 2015). In addition, the
measured hemodynamic responses to music are slow and inert,
allowing a time resolution in the range of only 4–8 s, at best.

Chapin et al. (2010) did, however, use fMRI to investigate
the neural correlates of emotional arousal during a Chopin
étude. They correlated the hemodynamic responses to this
musical piece with the arousal ratings obtained during music
presentation and identified several brain areas (middle occipital
gyrus, dorsal anterior cingulate, middle frontal gyrus, and medial
frontal gyrus), for which the hemodynamic responses were
associated with the arousal rating. Lehne et al. (2014) employed
a similar approach, relating subjectively experienced tension
ratings during piano pieces to hemodynamic responses. They
identified hemodynamic responses in the left lateral orbitofrontal
cortex, and to a lesser extent in the amygdala, that were related to
increased or decreased subjectively experienced tension.

Other studies have used PET to study blood flow responses to
musical stimuli (Satoh et al., 2006). Although PETmeasurements
are silent, which is beneficial whenmeasuring neurophysiological
responses to auditory stimuli, these measurements are
unfortunately associated with injections of tracers into the
blood of the subjects, which is a stressful intervention for
many subjects. In addition, the time resolution for blood flow
measured with PET is even lower than for the hemodynamic
responses measured with fMRI, ranging from several seconds
to minutes. Thus, this measure is actually not very well suited
for time series analyses. EEG and MEG, on the other hand,
measure neurophysiological responses on the millisecond
scale and are thus much better suited for analyzing time
courses of neurophysiological reactions to musical stimuli.
A further advantage of EEG is that it is easily available, relatively
inexpensive, and can be used in an ecologically valid setting
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(e.g., sitting on a chair while listening to hi-fi music without any
interfering noise). In addition, although EEG signals are prone
to contamination by muscle and eye-movement artifacts that
hamper time series analysis, several mathematical correction
methods are available that make it possible to subtract artifacts
from EEG signals, thus allowing the analysis of an (more or less)
artifact-free, continuous EEG signal.

To the best of our knowledge, only two published studies
have analyzed the time course of EEG responses during music
listening and related these time courses to subjective emotional
responses (Mikutta et al., 2012, 2014). Mikutta et al. (2012,
2014) analyzed the EEG activations of study participants while
listening to Beethoven’s fifth symphony, a musical piece that lasts
442 s. For each second, they computed the power in different
frequency bands and related these measures to subjective and
continuous arousal ratings. The latter ratings were obtained in
a second trial, in which the subjects listened again to the same
symphony without electrophysiological recordings, in order
to prevent contamination of the EEG signals by movement-
related neurophysiological activations. Using this approach, the
authors identified a right-frontal suppression of lower alpha-
band activity during periods of high subjective arousal. This
finding is consistent with the idea that right-sided frontal
brain regions are involved in the control of arousal (Meadows
and Kaplan, 1994; Nitschke et al., 1999; Craig, 2005). It has
been suggested that this lateralization is due to asymmetrical
input from the autonomic nervous system, in which the right
hemisphere receives preferentially sympathetic input that is
associated with arousal, orientation responses, and negative
affect. The left hemisphere receives mostly parasympathetic
input, occurring predominantly during states of low arousal and
positive affect.

Nevertheless, although the pioneering described above work
has paved the way for the analysis of the EEG activity time course
during music listening, some issues still remain unanswered.
For example, Mikutta et al. (2012, 2014) reported time courses
for subjective arousal ratings obtained during a second run,
during which no EEG recordings were made. During the music
presentation, participants were asked to rate their subjective
arousal via mouse movements. In particular, they were asked
to move their mouse forward when they felt a heightened
inner arousal that was independent of their affective valence.
When they felt reduced arousal, they were to move the mouse
backward. In this way, the participants provided a continuous
rating of their subjective experience of arousal. However, it is
not certain whether the subjective arousal experience indicated
during the second music presentation was similar to the arousal
experienced during the first music presentation, when no mouse
movements were required. Secondly, this arousal rating is
a reactive and consciously driven rating: the subjects must
decide to manipulate the mouse to indicate their arousal level.
Such a requirement evokes introspection, which is associated
with particular brain activations (Hutcherson et al., 2005).
A further unexplored aspect is whether the psychological,
physiological, and neurophysiological responses differ between
repeated presentations of the same music. The subjects may have
used a different listening approach during the second music

presentation than during the first. Some habituation might also
have taken place during the second music presentation.

Building on these initial studies of the time sequence of
brain activity during music presentation, we used EEG to
measure neurophysiological activation over time and evaluated
the time courses of the theta, alpha, and beta frequency bands
corrected for muscle and eye movement artifacts. In order to test
whether these neurophysiological fluctuations differ across music
presentations, we repeatedly presented one particular musical
piece and tested whether a type of habituation takes place as a
function of repeated presentation. Secondly, we analyzed the time
course of electrodermal and heart responses during the course
of the music presentation. These psychophysiological responses
were used as indicators of physiological arousal; they are also
known to be valid indicators of subjective experienced arousal
(Baumgartner et al., 2006a; Nater et al., 2006;Mikutta et al., 2013).

We addressed the following research questions:

(1) Is the time course of neurophysiological activation related to
the time sequences of the acoustic features of the musical
piece? Here, we focus on intensity envelope and acoustic
complexity.

(2) Is the time course of neurophysiological activation related
to the time course of psychophysiological arousal? Here, we
use electrodermal activity (EDA) and heart rate (HR) as
indicators of psychophysiological arousal.

(3) How stable is the time course of neurophysiological
activation over repeated presentations of the same musical
stimulus?

(4) Similarly, do EDA and HR during music listening change
over repeated exposure to the same musical piece?

Materials and Methods

Subjects
Sixteen students (4 men, mean age = 23.5 years, SD = 2.8 years,
and 12 women, mean age = 22.2 years, SD = 8.3 years, all native
German speakers) enrolled in psychology classes participated in
the present study. All subjects were consistently right-handed,
as revealed by the Edinburgh Handedness Inventory (Oldfield,
1971), except for one subject who was classified as moderate
right-hander. In order to control for general cognitive abilities,
we applied two short intelligence tests, namely the KAI (Kurztest
der aktuellen geistigen Leistungsfähigkeit; Lehrl et al., 1992) and
the MWT (Mehrfachwahl-Wortschatz-Intelligenz; Lehrl et al.,
1974; Hessler et al., 2013). These tests revealed above average
general cognitive abilities for the participating subjects (KAI-IQ:
mean = 133.6, SD = 10.06; MWT-IQ: mean= 110.13, SD= 9.6).
The musical aptitudes of the participants were estimated using
the “Advanced Measure of Music Audiation” (AMMA) test
published by Gordon (1989). This procedure is based on the
assumption that a fundamental prerequisite for musical aptitude
is the ability to hold musical sounds in memory and detect
melodic and rhythmic variations. During the AMMA test, the
volunteers listened to short pairs of piano tone sequences and had
to decide whether these sequences were equivalent, rhythmically
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different, or tonally different. The subjects scored above average
(according to the norms of the Gordon test; total score for the
subject sample of this study: 69.1, SD = 21.5; mean and SD of the
norm population for non-musicians = 50.6 ± 7.9). No subjects
reported a history of present or past neurological, psychiatric,
or audiological disorders, and all possessed an unremarkable
audiological status, as revealed by pure tone audiometry (Home
Audiometer software1). All subjects denied consuming illegal
drugs or regular medication. The subjects were paid for their
participation, the local ethics committee approved the study, and
written informed consent was obtained from all subjects. None of
the subjects indicated any history of musical training, as assessed
by an in-house questionnaire frequently used by our research
group.

Stimulus
Weused the well-known aria “Nessun dorma,” sung by Paul Potts,
as the music stimulus. This musical piece was chosen because it
evokes strong emotions, is well known, and has a strong dynamic
acoustic range (see Figure 1). The duration of the musical piece is
about 175 s, or approximately 3min. The relatively short duration
of this aria was an added benefit, as we were interested in studying
the neurophysiological and psychophysiological responses to
repeated presentation of the stimulus. We used the iTunesl’
version of the song and transformed the mp4 format into the
widely used mp3 format. The musical stimulus was presented
via HiFi earphones (Sennheiser, CX-350, Colchester, Essex, UK)
in convenient loudness (intensity = 75 dB). The time–frequency
histogram of the music stimulus is presented in Figure 1. As can
be seen from the amplitude time course of the musical piece, the

1http://www.esseraudio.com/de/home-audiometer-hoertest.html

FIGURE 1 | Time frequency analysis of the musical piece (Nessun
dorma). The spectrogram is scaled relative to the maximum intensity of the
musical piece.

aria starts with low intensity and from there continues to increase
in intensity. This is nicely depicted in the rectified amplitude time
course (AMP) shown in Figure 4. Although some non-linear
trends are evident, there is also a clear linear trend in intensity,
qualified by stronger intensities at the end of the aria.

Procedure
Over the entire course of the study, participants were seated
in a comfortable chair in a sound-shielded room. The music
stimulus was presented in three blocks. Block-1, Block-2, and
Block-3 comprised six, five, and six repeated presentations of
the music stimulus, respectively. Thus, the duration for Block-
1 and Block-3 was 18 min, while it was 15 min for Block-2.
Between each block, a pause of 5min was given. Due to the pauses
before and after Block-2 we shortened Block-2 in order to gain
some time to control the EEG montage. During each pause, the
experimenter ensured that electrode impedance remained low
enough and applied some saline to any electrodes that showed
increased impedance. After the first trial of Block-1 and the last
trial of Block-3, the subjects rated the musical piece according
to valence and arousal using analog scales based on the Self-
Assessment Manikin (SAM) for valence and arousal as proposed
by Bradley and Lang (1994). These ratings were done on a
computer monitor placed in front of the subjects, on which they
were shown a vertical line for valence and a horizontal line for
arousal. The SAM for valence ranged from a frowning, unhappy
figure (top) to a smiling, happy figure (bottom). The middle
position was illustrated with a neutral figure. The subjects were
instructed to click on the position of this vertical valence line that
best represents their actual valence rating. The values for each
position on the valence line ranged from −1000 (top = unhappy)
to +1000 (happy). Thus, values > 0 point to positive valence
while values< 0 to negative valence. For arousal rating we used a
horizontally arranged analog scale ranging from a relaxed, sleepy
figure to an excited, wide-eyed figure. This corresponding values
ranged from 0 (leftmost= relaxed) to 1000 (rightmost = excited).
The subjects first performed the valence rating, followed by the
arousal rating. A schematic presentation of the experimental
procedure is depicted in Figure 2. During the music presentation,
EEG, EDA, and HR were recorded, and subjects were instructed
to close their eyes and listen carefully to the music during
the entire measurement period. The closed-eyes condition was
chosen to minimize interference from visual input. Furthermore,
subjects were asked not to clench their teeth and to avoid any
kinds of movements.

EEG Recording and Data Reduction
Electroencephalograms were recorded using a high-density
Geodesic EEG system

R© (GSN300; Electrical Geodesic Inc.,
Eugene, OR, USA) with a 128-Channel HydroCel Geodesic
Sensor Nets@ (HCGSN120). Data was sampled at 500 Hz and
band-pass filtered at 0.1–100 Hz. The vertex electrode (Cz) served
as an on-line reference. Impedance was maintained below 30 k�.
For the exact positioning of the onset of music in the EEG, a
marker channel was used to indicate the start and end of the
musical piece. EEG analysis was conducted to identify the spectral
correlates of music-induced fluctuations in cortical activations.
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FIGURE 2 | Schematic description of the experimental design (T1–T17 are the different trials).

EEG data were analyzed with the Brain Vision Analyzer
version 2.0.1 (Brain Products GmbH, D-82205 Gilching). In
a first step, raw EEG data were band-pass filtered (1–40 Hz)
including a notch-filter of 50 Hz to eliminate even very small
oscillations leaking above 40 Hz. Eye movements and muscle
artifacts were corrected by applying independent component
analysis (Delorme et al., 2007). In addition, remaining muscle
artifacts were identified and eliminated using ASR (The Artifact
Subspace Reconstruction Method developed and programmed
by Christian A. Kothe2,3), a new algorithm designed to remove
non-stationary high-variance signals from EEG time series and
reconstruct the missing data using a spatial mixing matrix
(assuming volume conduction). Next, the data were parsed into
175 epochs, each 1 s in duration. All epochs and channels were
recomputed to average reference and frequency transformed by
means of a fast Fourier transform (FFT). Spectral amplitude
(μV2/Hz) was then computed.

For frequency analyses, we used the individual alpha
frequency (IAF) as the reference frequency according to which all
other frequency bands were determined. For this determination,
we used the following individually adjusted frequency bands
according to Doppelmayr et al. (1998), which were also used
by Sammler et al. (2007): Theta: IAF × 0.4−IAF × 0.6;
Lower alpha-1: IAF × 0.6 HZ−IAF × 0.8 HZ; Lower
alpha-2: IAF × 0.8 HZ−IAF × 1.0 HZ; Upper alpha:
IAF × 1.0−IAF × 1.2; Beta: IAF × 1.2−30 Hz. In order to gain
statistical power, we defined nine electrode clusters of interest
(EOI) for which the mean power of the frequency bands was
calculated: three frontal, three central, and three parietal (left,
midline, and right; the EOIs are shown in Figure 3). The EOIs
comprised the following sensors: left frontal (LF) = 23 (F3),
24, 26, 27, and 33 (F7); midline frontal (MF) = 4, 5, 10, 11
(Fz), 12, 16, 18, and 19; right frontal (RF) = 2, 3, 122 (F8),
123, and 124 (F4); left central (LC) = 36 (C3) and 41; midline
central (MC) = 31, Cz, and 80; right central (RC) = 103 and
104 (C4); left parietal (LP) = 47, 51, 52 (P3), 58, and 59; midline

2http://sccn.ucsd.edu/eeglab/plugins/ASR.pdf
3http://sccn.ucsd.edu/eeglab/plugins/clean_rawdata0_31.zip

parietal (MP) = 61, 62 (Pz), and 78; right parietal (RP) = 91, 92
(P4), 96, 97, and 98 (for orientation please refer to the map in
Figure 3). These EOIs were chosen because they symmetrically
cover the frontal, central, and parietal scalp regions of both
hemispheres. Of the EOI selection, F3, Fz, F4, C3, Cz, C4, P3, Pz,
and P4 were chosen as pivotal and central electrodes. Applying
Geodesics EEG montages, several papers have used similar or
even the same electrodes of interest (e.g., Curran and Dien, 2003).
In order to account for individual intrinsic electrophysiological
differences, we calculated power values relative to a 5 s baseline
of EEG obtained immediately before the start of the musical
piece. These relative values are similar to the event-related
desynchronization (ERD) and event-related synchronization
(ERS) measures proposed by Pfurtscheller and Andrew (1999):

ERD or ERS = (A − B)

B

where B is the mean power during the baseline session, and A
represents the mean power during the stimulation period. In
our study, the ERD/ERS values were calculated and subjected
to statistical analyses. For the sake of completeness, we also
computed global field power (GFP) across the frequency bands
we have studied here (1–30 Hz), which is the SD of the
momentary potential values across all electrodes (Lehmann and
Skrandies, 1980)

Electrodermal activity and HR were recorded using a Biopack
MP100 amplifier. To measure EDA, we placed two electrodes
on the palm of the participant’s subdominant hand. For HR
recording, we placed two electrodes on each inner forearm, as
well as a reference electrode on the elbow of the subdominant
arm. Data were sampled at 200 Hz. HR was automatically
calculated online as beats per minute (bpm). For pre-processing,
we segmented the data into 1 s segments, linearly detrended each
segment, and related these values to the 4 s baseline prior tomusic
presentation. Thus, our HR and EDA values represent differences
in bpm (HR) and μMho relative to baseline.

From the acoustic music stimulus, we extracted the intensity
envelope using a root mean square rectification and integration
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FIGURE 3 | Definition of the electrode clusters of interest (EOIs). The EOIs are color-coded in yellow.

FIGURE 4 | Time series (in arbitrary values) of the rectified amplitude
(AMP) and the acoustic complexity (ACI) of the aria. The red line (for
AMP) indicates a linear trend (R2 = 0.446) while the blue lines (for AMP and
ACI) indicate higher order polynomials. A 20th order polynomial fitted to AMP
nearly perfectly describes the AMP time course (R2 = 0.89). A 40th order
polynomial fits the ACI time course very well (R2 = 0.64).

across a time window of 1 s, resulting in 175 data points for the
acoustic envelope (AMP). In addition, the acoustic complexity
index (ACI) was computed separately for each second, also

resulting in 175 time points for the ACI index. The ACI measure
represents the complexity of the sound spectrogram and has
been frequently used to analyze bird songs (Pieretti et al.,
2011). ACI was computed using a subroutine of the R software
package “seewave,”which is specifically designed to analyze sound
information (Sueur et al., 2008). In short, ACI represents for a
given time period the summed difference between the intensities
of adjacent frequency bins. Thus, the ACI represent variations
of intensity in each single frequency bin. The exact formula
can be found in Pieretti et al. (2011). The time courses of
these acoustic measures are shown in Figure 4. As can be seen
from this figure the rectified amplitude of the musical stimulus
increases throughout music presentation. Fitting a first order
(linear) polynomial to this time course revealed a strong linear
trend (R2 = 0.446). With a 20th order polynomial, this time
series is nearly perfectly modeled (R2 = 0.89). For the ACI
time course, a 40th order polynomial explains the time course
quite well (R2 = 0.64). There was, however, no linear trend
(R2 = 0.005).

In sum, we measured the time courses of the EEG ERD/ERS
ratios for the different frequency bands (theta, low alpha-1, low
alpha-2, upper alpha, and beta) and the different EOIs (LF, MF,
RF, LC, MC, RC, LP, MP, and RP), the time courses of EDA and
HR, and the time courses of AMP and ACI. All time courses were
computed with a time resolution of 1 s, resulting in 175 time
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points and 17 repetitions corresponding to the 17 trials during
which the musical stimulus was presented. In later processing
steps we used different time resolutions (see below).

Statistical Analysis
The statistical analysis comprised several steps:

(1) Arousal and valence ratings obtained in Trial-1 and Trial-17
are compared using t-tests (step 1).

(2) We tested whether the EEG became synchronized (increased
in terms of power) or desynchronized (decreased in terms of
power) during the course of the music presentation. To do
this, we calculated mean relative EEG measures for all EOIs
and compared them to zero. For these tests, we performed
no correction for multiple comparisons. Cohen’s d, with a
threshold of d > 0.5, was used to decide whether the relative
EEG measures deviated from zero (step 2).

(3) In order to examine whether the dynamics of the acoustic
variables AMP and ACI are related to the dynamics of the
EEG and psychophysiological measures, cross-correlations
were done between the EEG time courses and the time
courses of AMP and ACI. Here, we used different time
resolutions ranging from a 1 Hz to a 0.028 Hz. For the high
time resolution (1 Hz), we computed cross-correlations with
different lags. However, since the correlations at lag = 0
turned out to be the strongest, we used these correlations for
all of our analyses. For all correlation analyses, we computed
the mean time courses separately for each subject across all
repetitions (step 3). The results are shown in Figures 5 and 6.

(4) In a further step, we correlated (using the different time
resolutions) the EEG time courses with the time courses of
the psychophysiological variables (step 4). The results are
shown in Figures 5 and 6.

(5) To examine whether the time courses of the EEG oscillations
and the psychophysiological measures are stable or vary
across the repeated presentations of the aria, we calculated
between-trial correlations. Similar to the aforementioned
correlations, we performed these correlations separately for
the different time resolutions. In order to estimate the mean
correlation of these between-trial correlations, we computed
the “eigenvector” of the correlation matrix and identified the
maximum and minimum eigenvalues and the corresponding
range. By dividing the range of eigenvalues by 17 (the
number of variables included in the eigenvalue analysis), we
obtained the mean correlation of the correlation matrix. The
correlations were then z-transformed and averaged across all
subjects to obtain a mean “between-trial correlation” for all
physiological variables. This “between-trial correlation” can
be taken as a kind of reliability measure (step 5). The results
are shown in Figure 7.

(6) In order to describe the time courses, polynomials up to the
fourth order were computed for all time courses (step 6). The
results are shown in Figures 8 and 9.

(7) All the above-mentioned analyses (except for step 1) were
done on a descriptive basis. For statistical testing, we
calculated a series of ANOVAs. First, we performed a
four-way repeated measures ANOVA with Trial (17 levels;

Trial-1–Trial-17), Time Frame (three levels: 1st, 2nd, and
3rd minutes of the musical piece), Scalp Location (three
levels: frontal, central, and parietal) and Site (three levels: left,
central, and right) for all relative EEG measures. For these
analyses, we computed the mean relative EEG values for the
1st, 2nd, and 3rd minutes of the musical piece. Since we used
five frequency bands, we performed five four-way repeated
measures ANOVAs (step 7).

(8) Two-way repeated measures ANOVA was performed for
EDA and HR, using Trial (17 levels; Trial-1–Trial-17) and
Time Frame as independent variables (three levels: 1st, 2nd,
and 3rd minutes of the musical piece) (step 8).

(9) In order to test for differences between frequency bands
(Frequency) and interactions between Scalp Location (frontal,
central, and parietal), Site (left, central, and right), and Time
Frame (1st, 2nd, and 3rd minutes), we conducted a four-way
repeated measures ANOVA with the relative EEG measures
as the dependent variables (step 9). The results are shown in
Table 2.

The analyses done in steps 2–6 were entirely descriptive. In
these analyses, we calculated correlation coefficients or Cohen’s d,
categorized as proposed by Cohen (1992), where 0.3 < r < 0.5 is
considered to be a moderately strong correlation. In this context,
a correlation of r > 0.5 is a strong correlation. For the statistical
analysis of the rating data (step 1), we conducted several t-tests
for which we applied the Bonferroni–Holm adjustment, starting
with p = 0.05. For d, we also relied on the classification provided
by Cohen (1992; moderate effect: 0.5 < d < 0.8, large effect:
d > 0.8). For the ANOVAs performed in steps 7–9, we used the
Greenhouse–Geisser correction to estimate the p-values. Since
p-values are more or less uninformative when calculated on
the basis of a relatively small sample, as we have used here,
we also focused on effect size measures. Thus, we report η2

p
effect size measures, as provided in the SPSS output. Since we
performed several ANOVAs (step 7: n = 5; step 8: n = 2;
step 9: n = 1; total: n = 8), it was necessary to correct for
multiple statistical tests. Here, we used the Bonferroni–Holm
correction starting with p = 0.00625 (=0.05/8). For all statistical
analyses, SPSS for Mac (Version 22) and several R packages were
used. R was used for data handling, sorting, correlation analyses,
and plots.

Results

Comparisons of Subjective Rating (Step1)
The mean valence and arousal ratings obtained after Trial-1 and
Trial-17 are displayed inTable 1. In general, themusical piece was
rated as positive and arousing. However, the valence and arousal
ratings dropped following the last trial [valence: t(15) = 3.0,
p = 0.008; arousal: t(15) = 2.6, p = 0.021].

Two-Way ANOVAs for the Psychophysiological
Measures (Step 8)
The two-way repeated measures ANOVA for EDA and HR
revealed strong effects for Time Frame but no influence of
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FIGURE 5 | Mean correlations between the time courses of the acoustic
variables (AMP and ACI) and the physiological variables (first row). The
correlations between psychophysiological and neurophysiological variables are
shown in the second row. Please note that the data shown are mean
correlations obtained by averaging z-transformed correlations and
re-transforming them into correlations. Indicated here are the correlations for five

different time resolutions [175 time frames (1 s period indicated in blue) = 1 Hz,
35 time frames (5 s period indicated in green) = 0.2 Hz, 25 time frames (7 s
period indicated in yellow) = 0.14 Hz, 7 time frames (25 s period indicated in
orange) = 0.04 Hz, 5 time frames (35 s period indicated in red) = 0.028 Hz].
LA1, low alpha-1; LA2, low alpha-2; UA, upper alpha; EDA, electrodermal
activity; HR, heart rate.

TABLE 1 | Summary of valence and arousal ratings obtained after Trial-1
and Trial-17.

Trial-1 Trial-17 t (df = 15) p

Valence

m 472 184 3.0 0.008

SD 240 338

Arousal

m 601 415 2.6 0.021

SD 193 245

Please note that the scale ranged from −1000 (unhappy) to +1000 (happy) for
valence and from 0 (not aroused) to 1000 (excited) for arousal. m, mean; SD,
standard deviation; t, t-value, p, two-tailed p-value, df, degrees of freedom.

Trial, either as main effect or as part of the interaction with
Time Frame [EDA: F(1.1,16.6) = 19.6, p < 0.001, η2 = 0.57;
HR: F(1.26,18.9) = 11.7, p = 0.002, η2 = 0.44]. Subsequently
performed post hoc tests (Bonferroni–Holm corrected) revealed
that the EDA and HR measures were small during the
2nd minute, with no difference between the 1st and 3rd
minutes.

Examination of Increases or Decreases in
Relative EEG Measures (Step 2)
The relative EEG measures were all positive, indicating increased
power relative to baseline. We averaged these measures across
all trials and used Cohen’s d to evaluate whether they deviated
considerably from zero. All relative EEG measures deviated
considerably from zero (as determined by d > 0.6), indicating
that the relative power in all frequency bands becomes larger
during music listening. Thus, all EEG measures demonstrated
ERS. The weakest ERS was found for beta power during the
1st minute of the music presentation, although it did pass the
threshold for a large effect (mean = 0.06, SD = 0.10, d = 0.6).
All further effect sizes were much larger, demonstrating strong
power increases for all frequency bands.

Correlations between the Time Courses of the
Acoustic and Physiological Variables (Steps 3
and 4)
In order to identify similarities between the time courses of the
acoustic and physiological variables, we performed correlations
between variables. These correlations were done for different
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FIGURE 6 | Mean correlations between the time courses of all EEG
oscillations. Please note that these are mean correlations obtained by
averaging z-transformed correlations and re-transforming them into regular
correlations. Indicated here are the correlations for five different time
resolutions [175 time frames (1 s period indicated in blue) = 1 Hz, 35 time
frames (5 s period indicated in green) = 0.2 Hz, 25 time frames (7 s period
indicated in yellow) = 0.14 Hz, 7 time frames (25 s period indicated in
orange) = 0.04 Hz, 5 time frames (35 s period indicated in red) = 0.028 Hz].
LA1, low alpha-1; LA2, low alpha-2; UA, upper alpha.

FIGURE 7 | Mean correlations between the 17 trials for the time
courses of all physiological variables. Please note that these are mean
correlations obtained by averaging z-transformed correlations and
re-transforming them into regular correlations. Indicated here are the
correlations for five different time resolutions [175 time frames (1 s period
indicated in blue) = 1 Hz, 35 time frames (5 s period indicated in
green) = 0.2 Hz, 25 time frames (7 s period indicated in yellow) = 0.14 Hz, 7
time frames (25 s period indicated in orange) = 0.04 Hz, 5 time frames (35 s
period indicated in red) = 0.028 Hz]. LA1, low alpha-1; LA2, low alpha-2; UA,
upper alpha; EDA, electrodermal activity; HR, heart rate.

time resolutions [175 time frames (period of 1 s) = 1 Hz, 35
time frames (period of 5 s) = 0.2 Hz, 25 time frames (period of
7 s) = 0.14 Hz, 7 time frames (period of 25 s) = 0.04 Hz, 5 time
frames (period of 35 s)= 0.028 Hz]. For the 1 Hz time resolution,
correlations were done using lags of up to 10 s. The correlations

for lag = 0 turned out to be the strongest correlations, and
we thus used them for our analyses. All correlations were
performed separately for each subject, transformed using
Fisher’s z transformation, averaged, and then re-transformed
from z-transformed correlations to regular correlations. These
correlations are depicted in Figure 5 (upper). As can be seen in
Figure 5, the correlations with the acoustic variables were small
and far from substantially large (e.g., r > 0.5). Furthermore,
the correlations increased with decreasing time resolution
and we obtained the strongest correlations for the lowest time
resolutions. For example, beta correlated quite strongly with
AMP and ACI: the stronger AMP and ACI, the stronger the
beta power synchronization. A similar picture emerged for all
other frequency bands. For the psychophysiological variables, we
found stronger negative correlations with the acoustic variables.
Thus, with increasing acoustic complexity, HR and EDA became
smaller.

For the correlations between the psychophysiological and
neurophysiological variables, we obtained similar results
(Figure 5, lower). With a high time resolution, the correlations
were small. For the correlations obtained for the time series with
low resolution, the correlations were much higher. These larger
correlations were negative, indicating that as ERS increases, HR
and EDA decrease.

Figure 6 gives the correlations between the EEGmeasures. All
correlations were small or moderate. In general, the correlations
increased with diminishing time resolution. For the lowest time
resolution, we obtained the largest correlations between all EEG
measures, with several strong correlations, according to Cohen’s
classification.

Correlations between the Time Courses
Obtained for Repeated Presentations of the
Musical Stimulus (Step 5)
Figure 7 shows the correlations between the time courses
obtained during the 17 trials. As can be seen from the Figure 7,
the correlations (which can be interpreted as reliability indices)
are low for the high time resolutions. For the high time
resolutions, moderately strong stability is only seen for the EDA
time course. The EEG time course measures are more stable
across the 17 repetitions for the low time resolutions. However,
for the lowest time resolution, we obtained only moderately
strong correlations. The EDA time course turned out to be the
most stable time course across all repetitions. For the high time
resolutions, the mean correlations were moderately strong.

Analysis of Time Courses (Step 6)
The mean time courses for all variables are depicted in Figure 8.
For the ERS time courses, we used the central EOIs, since
these time courses exhibited the strongest variation within
music presentation. In Figure 8, the time courses are depicted
together with the SEM and 4th order polynomials. The 4th order
polynomials explain the mean time courses quite well (theta:
R2 = 0.53; low-alpha-1: R2 = 0.61; low-alpha-2: R2 = 0.77; upper
alpha: R2 = 0.70; beta: R2 = 0.78; GFP: R2 = 0.53). As can be
seen in the time courses, sharp increases in ERS occurred during
the 1st minute of music presentation for theta, low alpha-1, low
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FIGURE 8 | Mean relative power changes (relative to baseline) for the
frequency bands and global field power (GFP) during music listening.
Since the relative changes in power are positive, we have denoted them as
event-related synchronization (ERS). The dashed vertical lines separate the
time courses into segments of 1 min duration (1m: 1st minute, 2m: 2nd

minute, 3m: 3rd minute). The SEM (calculated across subjects) are plotted
as blue area around the mean (plotted as a black line). The red line indicates
the 4th order polynomials fitted to these time courses. These fits explain the
time courses very well (R2 ranging from R2 = 0.53 for GFP to R2 = 0.78 for
beta).

alpha-2, upper alpha, and for the GFP. During the following
2 min of music, ERS was more or less stable. For beta, a more
or less stable linear increase occurred throughout the 1st and 2nd
minutes of the music presentation. During the final minute, no
substantial change in beta ERS was seen. GFP is included here
since this measure represents the strength of the topographic
map. Thus, the larger the GFP, the stronger the difference between
the positive and negative amplitudes of the EEG and the more
pronounced the difference between the smallest and the largest
ERS over the entire electrode set.

The mean time courses for the psychophysiological variables
are shown in Figure 9. These time courses can be explained by
4th order polynomials (EDA: R2 = 0.83; HR: R2 = 0.77). Both
time courses are roughly similar, with an initial drop occurring
within the 1st minute. EDA increased during the final minute,
while HR remained more or less constant throughout the music
presentation.

Four-Way ANOVAs for the Neurophysiological
Measures (Step 7)
The four-way repeated measures ANOVAs (Trial: 1–17, Time
Frame: 1–3, Scalp Location: frontal, central, and parietal, Site:
left, mid, right) for the ERSmeasures revealed no significant main
effect for Trial or any interaction between Trial and other factors.
There were, however, strong and significant results for Time
Frame for all frequency bands [theta: F(1.5,22.7)= 9.4, p= 0.002,

η2 = 0.38; low alpha-1: F(1.2,18.3) = 11.5, p = 0.002, η2 = 0.43;
low alpha-2: F(1.5,23.5)= 22.4, p≤ 0.001, η2 = 0.59; upper alpha:

FIGURE 9 | Mean changes in electrodermal activity (EDA; in mho) and
HR change (in bpm) relative to baseline during music listening. The
time scale is the same as for the time courses depicted in Figure 8. The
dashed vertical lines separate the time courses into segments of 1 min
duration (1m: 1st minute, 2m: 2nd minute, 3m: 3rd minute). The SEM
(calculated across subjects) are plotted as blue area around the mean (plotted
as a black line). The red line indicates the 4th order polynomials fitted to these
time courses. These fits explain the time courses very well (EDA: R2 = 0.83;
HR: R2 = 0.77).
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F(1.6,24.5) = 24.3, p < 0.001, η2 = 0.62; beta: F(1.7,19.1) = 26.8,
p < 0.001, η2 = 0.64]. Subsequently performed post hoc
tests (Bonferroni–Holm corrected) revealed that the ERS values
were stronger during the 2nd and 3rd minutes of the music
presentation than in the 1st minute. For most EEG measures,
there were no differences in ERS during the 2nd and 3rd minutes
of the music presentation, except for the beta band, where there
was a linear increase from the 1st to the 3rd minutes (3 > 2,
2 > 1). For theta and all alpha bands, significant effects were seen
for Scalp Location and Site. Bonferroni–Holm corrected post hoc
tests revealed that the ERS values at the central and parietal sensor
positions were the strongest, compared to the frontal positions.
Site turned out to be significant for theta, low alpha-1, and low
alpha-2, with the central sensor position yielding the largest ERS
measures. Comparing ERS values obtained from the left and right
sensors revealed practically identical measures for all frequency
bands, except for low alpha-2, for which the right-sided sensors
yielded the strongest ERS measures (p = 0.059, corrected for
multiple comparisons).

Four-Way ANOVA for Testing between Different
Frequency Bands (Step 9)
Since Trial turned out to be insensitive, we calculated mean values
for ERS and the psychophysiological measures and subjected
these measures to a four-way repeated measures ANOVA with
Time Frame (1st, 2nd, and 3rd minutes of music listening),
Site (left, central, and right), Scalp Location (frontal, central,
and parietal), and Frequency (theta, low alpha-1, low alpha-2,
upper alpha, and beta) as independent variables. The significant
effects are shown in Table 2. The main effect of Frequency
is qualified by larger ERS for low alpha-2 and upper alpha.
The smallest ERS was found for beta and theta, with no
differences between them. No differences were seen between
low alpha-1 and upper alpha, low alpha-1 and theta, or low
alpha-2 and upper alpha. Low alpha-2 did differ, however, from
low alpha-1. The main effect of Scalp Location depended on
larger ERS for central and parietal EOIs. The main effect of

TABLE 2 | Significant results for four-way repeated measures ANOVA with
Frequency, Time Frame, Scalp Location, and Site as the independent
variables.

Effect F df1 df2 p η2

Frequency 14.30 1.60 25.10 0.001 0.49

Time Frame 11.70 1.70 25.70 0.001 0.44

Scalp Location 25.30 1.50 22.40 0.001 0.63

Site 6.30 1.20 18.10 0.001 0.24

Frequency × Time Frame 8.80 2.50 38.10 0.001 0.37

Frequency × Scalp Location 4.80 4.10 61.40 0.001 0.24

Frequency × Site 4.61 2.50 37.57 0.010 0.24

Time Frame × Site 3.39 2.40 35.60 0.040 0.18

Time Frame × Scalp Location 6.80 2.16 32.36 0.001 0.31

The dependent variables are the event-related synchronizations (ERS) for all
frequency bands (theta, low alpha-1, low alpha-2, upper alpha, and beta). Only
those effects passing a significance level p < 0.05 are shown. df1 and df2 are the
Greenhouse–Geisser corrected degrees of freedom, p is the p-value, and η2 is the
η2

p provided in the SPSS output.

Site is qualified by large ERS over central and parietal EOIs.
The smallest ERS was found at the frontal EOIs. The main
effect of Time Frame depended on the fact that the ERS seen
during the 1st minute is smaller than the ERS observed during
the 2nd and 3rd minutes. Five two-way interactions were also
significant: Scalp Location × Time Frame, Frequency × Time
Frame, Frequency × Scalp Location, Frequency × Site, and Time
Frame × Site. No further interaction became significant. Scalp
Location × Time Frame is qualified by higher ERS found for
the central and parietal EOIs, with no difference between the
central and parietal EOIs. Frequency × Time Frame depended on
differences in the power increase from the 1st to the 2nd and 3rd
minutes of the music presentation. Descriptively, the strongest
power increases were for low alpha-1 (mean = 0.16) and low
alpha-2 (mean = 0.16), followed by upper-alpha (mean = 0.095).
The smallest increases were found for beta (0.04) and theta
(0.057). Bonferroni–Holm corrected post hoc tests revealed no
significant differences between beta and theta, beta and low
alpha-1, low alpha-1 and upper alpha, or low alpha-2 and upper
alpha. However, low alpha-2 showed stronger increases from
the 1st to the last 2 min, compared to theta, beta, and upper
alpha. In addition, upper alpha revealed stronger increases than
theta and beta. The Frequency × Scalp Location interaction was
determined by the fact that there is no significant difference
across frontal, central, and parietal EOIs for the beta band.
For all other frequency bands, the central and parietal EOIs
demonstrated stronger power increases than did the frontal
EOI. Frequency × Site is qualified by larger power increases
of the central EOI for low alpha-1 and low alpha-2. For the
other frequency bands, we found no differences between the
left, central, and right EOIs. The final significant interaction is
qualified by larger increases from the 1st minute to the last 2 min
over central EOIs. No differences were seen with respect to power
increases of left or right EOIs (central: mean = 0.14, SD = 0.10;
left: mean= 0.11, SD= 0.07; right: mean= 0.12, SD= 0.08). The
mean relative EEG measures for each frequency band are shown
as topoplots in Figure 10. In addition, the mean ERS are shown
in Figure 11, together with the mean HR and EDA measures.

Discussion

This study was designed to examine five questions: (1) Does
a consistent relationship exist between the time course of
EEG oscillations and the time course of particular acoustic
features of the presented musical piece? (2) Similarly, are
the time courses of psychophysiological measures (HR and
EDA) related to the time courses of the acoustic features of
the musical piece? (3) How stable are the time courses of
EEG oscillations and the time courses of psychophysiological
measures across repeated music presentations? (4) Do the
neurophysiological responses that occur during music listening
change across repeated presentations of the same musical
piece? (5) Similarly, do EDA and HR measured during music
listening change across repeated exposures to the same musical
piece? For the musical piece, we chose a popular and well-
known aria lasting more than 3 min. We chose this aria
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FIGURE 10 | Topoplots of the relative EEG power changes relative to
the baseline for each frequency band and for the 3 min of the music
presentation. Please note that we used the same scale for all frequency
bands. All changes in power are positive, indicating ERS. (1m: 1st minute,
2m: 2nd minute, 3m: 3rd minute).

FIGURE 11 | Mean relative EEG power changes (and SEM; Upper) and
mean psychophysiological measures (Lower) for each minute of
music listening (1m: 1st minute, 2m: 2nd minute, 3m: 3rd minute).

because its acoustic intensity varies considerably throughout
the 3 min. The aria was presented 17 times to the subjects,
while EEG oscillations, HR, and EDA were continuously
measured.

So far, examination of the time course of EEG oscillations
during music listening has rarely been done. Two recent studies

examined neurophysiological responses to realistic musical
pieces (Cong et al., 2013; Sturm et al., 2014), but the results
are difficult to relate to our project. The study by Cong et al.
(2013) was published in the proceedings of a technical conference
and clearly focused on the elaboration of specific techniques for
analyzing the time courses of EEG data, without reference to
emotional responses or repeated presentation musical stimuli.
The paper by Sturm et al. (2014) reports on ten epileptic patients
from whom the investigators measured electrocorticographic
(ECoG) signals from 53 to 134 channels placed only over the left
perisylvian brain while the patients listened to a rock song and
a narrative. This was an invasive manipulation, thus definitively
demolishing the pleasureful aspect of listening to music.

Our study does, however, have a strong relation with the
two studies of Mikutta et al. (2012, 2014), which specifically
examined the time courses of EEG oscillations and emotional
responses during music listening. In both studies, rather than
studying the time courses of EEG oscillations in detail, the
authors used an approach they named “covariance mapping.”
In this technique, the correlations (or covariances) between the
time courses of subjective ratings (here, arousal) and the EEG
oscillations are calculated and mapped onto topoplots. In this
context, the particular time courses are not analyzed in detail.
In addition, the authors of this pioneering work related the
time courses of subjective ratings obtained in separate sessions
to the EEG time courses. Thus, it is not clear whether the
sequential measurement might have influenced their results. In
our study, we examined the EEG oscillation time courses in more
detail and related them to the time courses of acoustic features
and psychophysiological variables. EDA and HR were used
as psychophysiological measures representing general arousal,
thus providing the opportunity to simultaneously obtain arousal
measures with the EEG oscillations. Since no published studies
have looked at the stability of EEG oscillations in the context
of repeated presentation of musical pieces, we presented 17
repetitions of our chosen musical piece. This frequent repetition
may mimic the repeated listening of musical pieces done in
real-life situations. Furthermore, a wealth of studies have shown
that our physiological system adapts, or habituates, to repeated
exposure to the same stimulus. In the following section, we will
discuss our results in a more comprehensive manner.

Behavioral and Psychophysiological Data
While the initial valence and arousal ratings indicate a general
rating of the aria as positive and as arousing, different ratings
were obtained after the 17th presentation of the aria. After
the final presentation, the subjects rated the aria as less
arousing and less positive than after the first presentation.
Thus, a kind of habituation in terms of subjective rating
took place. Habituation is normally accompanied by typical
changes in psychophysiological measures, e.g., reduced HR
and EDA reactions (Holzl et al., 1975; Elton et al., 1983).
However, we did not find a habituation-like reduction in
psychophysiological responses after repeated presentations. The
HR and EDA responses to the musical stimuli were roughly
similar across the 17 presentations. Thus, subjective ratings
and psychophysiological responses do not correlate with one
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other and actually dissociate. Inspecting the mean HR time
course reveals a pattern of initial acceleration up to 4 bpm
(lasting ∼10 s) followed by HR deceleration within the 1st
minute of music presentation. During the final 2 min of
the music presentation, HR normalizes to the baseline level.
A similar time course was found for EDA, which showed an
initial increase followed by a decrease. However, at the end
of the aria presentation, when the intensity of the acoustic
stimulus increased, EDA responses increased again. Since EDA
responses are known to correlate with subjective arousal (Ellis
and Simons, 2005), it is likely that the louder music at the end
of the presentation evoked greater psychophysiological arousal.
A roughly similar HR time course in response to positively
rated musical pieces was reported by Sammler et al. (2007),
who saw an initial decrease in HR in the first 2 s of music
presentation, followed by HR acceleration and normalization to
baseline levels after 4–6 s. Our findings demonstrate that the
chosen musical stimulus induces pleasant emotions and arousal
in listeners. They also demonstrate that valence and arousal
ratings, but not psychophysiological measures, change during
repeated presentation. The psychophysiological measures reflect
a typical pattern that is relatively stable during the presentation of
the musical stimuli (see Figure 7). In addition, the HR and EDA
responses to our musical stimulus replicate the findings reported
by similar studies (Ellis and Simons, 2005; Sammler et al., 2007).

EEG Oscillations
For the EEG oscillations, we observed increases in power
(relative to baseline) for all frequency bands throughout the
music presentation. The strongest increases were found during
the 2nd and 3rd minutes of the music presentation, especially
for the alpha bands (low-alpha-1, low-alpha-2, and upper
alpha). ERS for all frequency bands was strongest at the central
and parietal EOIs, with no left-right differences observed.
Interestingly, no consistent changes in EEG oscillations were
seen during the 17 trials of repeated music presentation.
This does not mean that the EEG oscillations were constant
during the 17 repeated presentations, but that they were
variable, as shown by the weak inter-trial correlations between
the EEG time courses (Figure 7). In addition, we found no
consistent patterns of change that might indicate habituation,
increased alertness, or drowsiness. Furthermore, the time
courses of the psychophysiological measures did not strongly
correlate with the time courses of EEG oscillations, suggesting
a kind of dissociation between psychophysiological and
neurophysiological activation (Figure 5). This lack of a strong
correlation between psychophysiological measures and EEG
oscillations is especially apparent for the high time resolutions
(1 and 0.2 Hz). Lower time resolutions for the physiological
measures (0.14 and 0.028 Hz) were associated with considerably
stronger correlations between the psychophysiological and
neurophysiological measures, with moderately strong correlation
between the psychophysiological measures (EDA and HR) and
low-alpha-1, low alpha-2, and upper alpha.

Although the general pattern of ERS across music
presentations was similar for all frequency bands, substantial
differences were also found, as indicated by the weak to

moderate correlations between EEG oscillation time courses
(Figure 6). Thus, the different frequency bands reflect different
neurophysiological or psychological mechanisms being activated
during music listening. In the following section, we will discuss
what the findings for the different frequency bands might
indicate. We will also provide an overarching interpretation of
the neurophysiological and psychological processes most likely
to be involved when listening to our particular musical piece.

Theta Band
Increases in human theta oscillations obtained through scalp
EEG are largely associated with three different psychological
functions: (a) the so-called frontal midline theta (Fm theta),
which is generally related to cognitive effort, working memory,
error, or processing of emotion (Gevins et al., 1997; Gevins
and Smith, 2000; Onton et al., 2005; Kawamata et al., 2007;
Sammler et al., 2007; Michels et al., 2008; Lin et al., 2010;
Anguera et al., 2013; Enriquez-Geppert et al., 2014; Maurer et al.,
2015; Wisniewski et al., 2015); (b) the widespread theta most
prominent at the frontal and parietal scalp locations, which
is associated with low-level alertness, drowsiness, and “mind-
wandering” (Braboszcz and Delorme, 2011; Park et al., 2011; Platt
and Riedel, 2011; Baumeister et al., 2012; Poudel et al., 2014),
and (c) the widespread theta with parietal dominance, which has
been related to effective encoding of new memories (Klimesch,
1999). Theta increases have also been reported during meditation
(Kasamatsu and Hirai, 1966; Wallace et al., 1971; Banquet, 1973;
Lagopoulos et al., 2009; Baijal and Srinivasan, 2010; Faber et al.,
2012).

The theta ERS found in our study was more the widespread
theta type, although the strongest theta ERS was found at fronto-
central midline positions, which might be with Fm theta at least
at that location. In line with Sammler et al. (2007) and Lin et al.
(2010), one could argue that our subjects were highly emotionally
engaged during the music listening. Fm theta is driven mainly
by dipoles located either in the anterior cingulum (ACC) or the
medial frontal cortex, brain areas that are both strongly involved
in processing of emotion via fronto-striatal and fronto-limbic
loops (Gevins et al., 2012). Thus, the more strongly these loops
are activated, the stronger the Fm theta. A further possibility
could be that our subjects were literally ‘drawn into’ the music,
which would result in less attention paid to the outside world.
The subjects would then have started a psychological process
that could be similar to “mind-wandering,” a state during which
theta increases have been frequently reported (Braboszcz and
Delorme, 2011). Mind wandering is a phenomenon that occurs
quite often in everyday life. It is characterized by the experience of
one’s attention drifting away from a task or from outside matters
toward personal issues. Braboszcz and Delorme (2011) argue that
mind wandering is a sort of low-alertness and low concentration
state of rest. It can also be seen as a hypnagogic state similar
to the psychological and neurophysiological states identified
during meditation. It should be noted that being in a mind-
wandering state does not prevent emotional experience. Thus,
it is conceivable that mind wandering during music listening is
still associated with activations in the fronto-striatal and fronto-
limbic systems driving emotional experience and thus Fm theta.
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Alpha
Electroencephalography alpha power increases have been
consistently reported during psychological states not requiring
attention to the environment, that is, during internally directed
attention (Cooper et al., 2003; Palva and Palva, 2007). A typical
example is the resting-state during which subjects are not
performing explicit tasks. During task-free resting-state
situations, spontaneous fluctuations in alpha oscillation power
correlate negatively with activity in the so-called dorsal attention
system (DAT) related to the superior frontal and intraparietal
regions (Laufs et al., 2003). Thus, when the dorsal attention
system is deactivated (because the subject is not using externally
directed attention) alpha power increases. There is, however,
a positive correlation between spontaneous fluctuations in
alpha oscillation power and activity in a more ventrally located
cingulo-opercular (CO) network comprised of the dorsal
anterior cingulate cortex, frontal operculum/anterior insula,
and thalamus, all brain areas that have been related to sustained
cognitive control and maintenance of alertness (Dosenbach et al.,
2007). Taken together, these findings show that increased alpha
power, mostly low alpha-2 and upper-alpha, is associated with
decreased activation in the dorsal attention system (indicating
reduced external attention) and with increased activation in the
ventral CO network (indicating sustained alertness). Thus, there
is a growing consensus that increased alpha power is associated
with active inhibition of sensory networks or brain networks
that are not needed for the control on-going tasks but rather for
simultaneous maintenance of alertness (Sadaghiani et al., 2009;
Coste et al., 2011; Sadaghiani and Kleinschmidt, 2013; Schiff
et al., 2014).

This also fits with the studies reporting increased alpha
power, mostly at centro-parietal sites, during working memory
tasks (Klimesch, 1999; Klimesch et al., 1999; Palva and Palva,
2007; Weisz et al., 2011) or during effortful cognition such
as perception of degraded speech (Weisz et al., 2011). In
such situations, the engaged neural networks need to maintain
optimal neural activation by maintaining an optimal level of
excitation–inhibition through suppression of neural network
synchronization, which might “disturb” or “interfere” with
the on-going processing of the relevant task. Thus, it is not
surprising that increases in alpha power are also seen during
meditation, which is typically associated with the redirecting of
attention from external events to internal thoughts (Aftanas and
Golocheikine, 2001; Faber et al., 2012).

Increased alpha power has also been related to emotional
processing (Aftanas et al., 2001, 2006; Yuvaraj et al., 2014a,b).
More importantly, a considerable body of EEG research has
focused on the relationship between emotional processing and
frontal alpha power asymmetry, leading to the formulation of
the so-called “hemispheric valence hypothesis” (Davidson, 1998).
This hypothesis states that positive emotions are processed
mainly in left frontal brain areas, whereas negative emotions
engage the right frontal brain regions. This difference in
hemispheric activation is thought to be associated with an
alpha power asymmetry, especially at the frontal scalp positions.
Thus, a decrease in left frontal alpha power should be evident
during processing of positive emotions and a decrease in

right frontal alpha power should be seen during processing of
negative emotions. A number of studies using different types
of emotional stimuli (e.g., film clips, reward or punishment, or
pictures) have supported this hypothesis (Davidson et al., 1990;
Sobotka et al., 1992; Aftanas et al., 2001; see also Hagemann
et al., 1998; Reid et al., 1998; Hagemann, 2004; Baumgartner
et al., 2006a; Sammler et al., 2007). Two EEG studies using
emotional music have also supported this frontal asymmetry
hypothesis (Schmidt and Trainor, 2001; Tsang et al., 2001).
In addition, although they used DC potentials and not alpha
band power, Altenmüller et al. (2002) reported a frontal brain
asymmetry for pleasant and unpleasant music and sounds that
favors the frontal asymmetry hypothesis. However, in our study,
we found no strong evidence for a frontal alpha asymmetry,
except for the low-alpha-2 band, which showed a slightly and
non-significantly stronger ERS at the right-sided frontal EOIs.
A recent study Mikutta et al. (2012) reported a right-frontal
suppression of lower alpha-band activity during high subjective
arousal while the subjects listened to a musical piece. However,
the study did not relate the alpha power to emotional ratings.
In sum, a direct and clear influence of emotional processing
on alpha power oscillations is not obvious from the current
body of knowledge. Nevertheless, alpha power appears to be
more strongly related to active inhibition of sensory or brain
networks that are not needed for control of an on-going
task.

Beta
Electroencephalography beta frequency oscillations generally
indicate activation, excitation, and facilitation (Lopes da Silva,
1991). They increase during attention (Wrobel, 2000; Kisley and
Cornwell, 2006; Basile et al., 2010) and with alertness (Oron-
Gilad et al., 2008; Hlinka et al., 2010; Gola et al., 2012; Kaminski
et al., 2012). A few studies have found an association between beta
power and emotional processing, with most reporting an increase
in beta power following an unspecific increase in emotional
arousal (Sebastiani et al., 2003; Aftanas et al., 2006). Apart
from the above-mentioned findings, a circumscribed, centrally
distributed cortical beta rhythm is strongly related to motor
function and has been found to originate from the primary
motor cortex (Pfurtscheller and Lopes da Silva, 1999; Oron-
Gilad et al., 2008; Bauer et al., 2014) as well as from the
supplementary motor area (Pfurtscheller et al., 2003). However,
increases in beta oscillations have also been observed during
the “minimally conscious state” (MCS; Schiff et al., 2014), a
finding that seems to be, at least at a first glance, somewhat
counterintuitive according to the aforementioned findings. For
the MCS, it is suggested that the often-seen increase in theta and
beta oscillations could be a consequence of a kind of functional
or structural deafferentation of the thalamus from its cortical
inputs, which should finally result in theta and beta bursts.
The relative beta power increases seen in our study were small
compared to the power increases found for the other frequency
bands. Although small, these increases became stronger during
the course of music listening, with the strongest increases
found at centro-parietal EOIs. Whether these increases were
due to emotional processing, increased alertness, a psychological
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function similar to MCS, or a combination of these processes, is
unclear at present.

Conclusion

The general EEG response pattern seen in our study is
characterized by a general power increase relative to baseline for
all frequency bands. Such a neurophysiological response pattern
is unusual and has rarely been reported to date. Interestingly,
the time courses of the EEG oscillations did not correlate
strongly with one other, and thus one cannot argue that the
oscillations depended on a kind of fundamental oscillation
driving and influencing all other oscillations. The EEG time
courses were partially independent from one other. Obviously,
the different oscillations indicate different neurophysiological
and psychological processes that are operative while listening
to the particular musical piece. The small correlations between
the EEG time courses within and between trials indicate
strong variability in these neurophysiological and psychological
processes during music listening. Nevertheless, there is a general
neurophysiological and psychological state that is obviously
dominant during music listening. We speculate that this state
is characterized by increased internal attention, accompanied
by reduced external attention, increased inhibition of brain
networks uninvolved in generating this internal state (thus
maintaining a particular level of general alertness) and a
mind-wandering state. The overall state fits with a psychological
process in which the listeners are ‘drawn into’ the musical piece
and become even more drawn into the music the longer they
listen to the piece.

Limitations
A number of limitations are associated with this study. Besides
the fact that the study used only 16 subjects (a sample size
frequently used in studies of this type but which is nevertheless
relatively small), the variability in the EEG time courses is
remarkable. As can be seen from Figures 5–7, the variability
within and between the EEG frequency bands decreases with
lower time resolution. In our opinion, this does not indicate a
technical measurement problem but rather the variability in the
sequence of psychological and physiological processes operating
during music listening. It is possible that the time course of
EEG activity is composed of relatively short-lasting brain states
varying over time. For example, Lehmann et al. (1987) showed
that continuous EEG recordings can be parsed into a series of
distinct “microstates” that are defined as time periods that remain

stable in the sub-second time-range and that are separated by
rapid configuration changes. In a recent review on that topic,
Koenig et al. (2002) demonstrated that the duration of these
microstates ranges between 80 and 120 ms, a duration which
roughly matches the minimal duration of a percept. Lehmann
(1990) thus proposed that microstates might correspond to
basic blocks of human information processing. Microstates have
been shown to depend on “what just went through the mind”
(Lehmann et al., 1998). Thus, it is likely that the sequence of
thoughts and feelings might vary from subject to subject, but also
intra-individually during music listening. That could explain the
variability in the EEG time courses obtained with high temporal
resolution. The EEG time courses with low time resolution thus
might represent a more general change in neurophysiological
activation associated with a more general and slower change
in psychological state. We suggest that the slower and more
general changes occurring during music listening reflect being
more ‘drawn into’ the musical piece the longer the music lasts.
The faster neurophysiological and psychological processes will be
studied by our group in future studies, where we will use different
techniques to analyze our EEG data. Here, we have focused on the
EEG oscillations.

A further point that we would like to address as a limitation
is the fact that we did not control the “listening style” or
“listening attitude” applied by the subjects, a problem that
is associated with nearly all studies examining the neural
underpinnings of music listening. When listening to music,
we often use different listening attitudes (e.g., emotional
or cognitive listening) depending on our current mood or
the motivation for listening to particular musical pieces.
These listening attitudes might have changed within the
subjects during repeated exposure, and the different subjects
might have differed in terms of their use of these listening
styles.

However, despite these limitations, this study has found that
the neurophysiological activations during music listening are not
stationary, but rather are dynamic. We have also demonstrated
that the dynamics of these neurophysiological activations are
not related to particular acoustic features. The psychological
functions associated with these dynamic changes are a subject for
future experiments.
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