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Background and objective: The relationship between EEG source signals and

action-related visual and auditory stimulation is still not well-understood. The objective of

this study was to identify EEG source signals and their associated action-related visual

and auditory responses, especially independent components of EEG.

Methods: A hand-moving-Hanoi video paradigm was used to study neural correlates of

the action-related visual and auditory information processing determined by mu rhythm

(8–12Hz) in 16 healthy young subjects. Independent component analysis (ICA) was

applied to identify separate EEG sources, and further computed in the frequency domain

by applying-Fourier transform ICA (F-ICA).

Results: F-ICA found more sensory stimuli-related independent components located

within the sensorimotor region than ICA did. The total number of independent

components of interest from F-ICA was 768, twice that of 384 from traditional

time-domain ICA (p < 0.05). In the sensory-motor region C3 or C4, the total source

signals intensity distribution values from all 14 subjects was 23.00 (Mean 1.64 ± 1.17)

from F-ICA; which was more than the 10.5 (Mean 0.75 ± 0.62) from traditional

time-domain ICA (p < 0.05). Furthermore, the intensity distribution of source signals

in the C3 or C4 region was statistically significant between the ICA and F-ICA groups

(strong 50 vs. 92%; weak 50 vs. 8% retrospectively; p < 0.05). In the Pz region, the total

source signal intensity distribution from F-ICA was 12.50 (Mean 0.89 ± 0.53); although

exceeding that of traditional time-domain ICA 8.20 (Mean 0.59 ± 0.48), the difference

was not statistically significant (p > 0.05).

Conclusions: These results support the hypothesis that mu rhythm was sensitive to

detection of the cognitive expression, which could be reflected by the function in the

parietal lobe sensory-motor region. The results of this study could potentially be applied

into early diagnosis for those with visual and hearing impairments in the near future.

Keywords: electroencephalography, action-related visual and auditory stimulation, Fourier-Independent

Component Analysis, sensory-motor area, source signals
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Introduction

Human auditory and visual perception can promote the
simultaneous activation of motor regions responsible for
sensory relevant actions (Rizzolatti et al., 1996; Gallese and
Goldman, 1998; Iacoboni et al., 2005). Such motor-auditory-
visual integration ability is of great significance for the
formation of a variety of cognitive functions, including language,
memory etc. Efficient integration is supported by the highly
interconnected neural network across the sensory processing
regions and the motor controlling region (Rizzolatti and
Craighero, 2004).

The neural correlates for the motor-auditory-visual
integration have been first reported in animal studies showing
that after observing people grabbing food with their hands,
the neurons in the sensory-motor cortex of Macaque monkeys
exhibited activity patterns associated with hand-grabbing action
(Rizzolatti et al., 1996; Gallese and Goldman, 1998). Similarly,
action-related sounds have been shown to trigger action specific
neuronal activities in the monkey premotor cortex without the
execution of the actions (Kohler et al., 2002). Furthermore, it has
been reported that dysfunction of the neurons at critical sensory-
motor integration regions, i.e., Convergence–Divergence
Zones (CDZs), is closely associated with diseases of action
imitation barriers, visual understanding obstacles, auditory
comprehension obstacles, language defects, motor defects and
Autism Spectrum Disorder (ASD; Iacoboni et al., 2005; Moseley
et al., 2008; Rizzolatti and Sinigaglia, 2008; Le Bel et al., 2009;
Neuper et al., 2009). Therefore, identification of the neural
correlates involved in this integration process is potentially
useful for the clinical diagnosis of those cognitive dysfunctions.

One approach to investigating the neural correlates is to
perform an electroencephalography (EEG) and to measure the
Mu Rhythms (8–12Hz) brain activity over the sensorimotor
cortex. The decrease of themu rhythm power is believed to reflect
an increase of the neuronal activity for action preparation or
execution (Pfurtscheller and Lopes da Silva, 1999). Recent studies
in humans have suggested that the inhibition of the mu rhythm
activity (power decrease) may reflect the function of connecting
action, understanding information, processing responses, and
being able to transfer “see” and “hear” into “action” (Pineda,
2005; Alegre et al., 2010; Heida et al., 2014). Previous studies from
us and others also demonstrated that action-related auditory
stimuli led to event-related spectral perturbation in the mu
rhythm (i.e., 8–12Hz) over the motor cortex (Li, 1998; Bangert
and Altenmüller, 2003; Neuper et al., 2006). However, the
question of how much of the EEG activity originated from the
stimulation tasks and how many of the source signals associated
with these EEG activities was not well-addressed in those studies.
Therefore, a data analysis method with sufficient sensitivity and
reliability is necessary to detect the mu rhythm based neural
correlates of the action-related visual and auditory information
processing.

In this study, we aimed to use a modified independent
component analysis (ICA) method to capture the neural
correlates for motor-auditory-visual integration. ICA is a
computational method for separating a multivariate signal

into additive subcomponents with the assumption that the
subcomponents are non-Gaussian signals and that they are
statistically independent from each other (Comon, 1994). ICA
method was applied to solve the unknown source signal’s space
distribution by separating the independent components from the
hypothetical source signals of the known EEG signals (Vigario
et al., 2000; Hyvärinen et al., 2010). Makeig et al. first applied
ICA into EEG signal processing and conducted an experiment in
which the subject was instructed to press a button at the prompt
of auditory stimulus: 14 components were extracted, with the θ

wave being prominent in component 1, α wave in component
2, and the low-frequency eye movement in another different
independent component (Makeig et al., 1996). Compared with
Principal Component Analysis (PCA), ICA was more applicable
for extracting spatially distinct EEG components (Makeig et al.,
1997). To date, ICA has been widely applied in neuroimaging
data processing such as EEG and fMRI, for the extraction of
task-specific brain responses, signal artifacts, etc. (e.g., Vigario,
1997; Jung et al., 1999; Joyce et al., 2004; Beckmann et al.,
2005). However, the classical ICA method may not be applicable
for extracting rhythmic EEG activities, as the non-Gaussian
assumption held by the ICA algorithm is not compatible with
the Gaussian nature of the rhythmic brain activities (Hyvärinen
et al., 2010).

The Fourier-Independent Component Analysis (F-ICA)
algorithm, a recently proposed revision of the ICA algorithm,
allows the application of ICA for analyzing rhythmic brain
activities (Hyvärinen et al., 2010). The F-ICA method is based
on short-time Fourier transforms of the EEG signals, for the
purpose of exploring the spatiotemporal and spectral patterns in
the cortical source space over time scales of minutes (Hyvärinen
et al., 2010; Ramkumar et al., 2012). Therefore, in this study,
we will employ the F-ICA algorithm to analyze the EEG data
generated when subjects received auditory or visual stimuli
associated with a hanoi-moving task, which is performed by
moving disks stacked on a peg to an adjacent peg. We used a
complex mixing matrix in F-ICA to model different phases of the
spatial extension source and fulfilled data analysis to search the
source spatial distribution of the interested area. We expected the
effective independent component to be found under the action-
related visual and auditory stimulation phantom with F-ICA.

Materials and Methods

Subjects
Sixteen healthy right-handed subjects (10 females, 6 males; ages:
18–22 years) participated in this study after giving written
informed consent. Two subjects were excluded the study due
to incomplete data recording. Handedness was assessed using
the Edinburgh test (Oldfield, 1971). The study was approved by
the Institutional Review Board of School of Medicine, Tsinghua
University.

EEG Paradigm
Each participant was instructed to watch a recorded action video
of one hand moving Tower of Hanoi (size: 720∗720, speed: 1536
kpbs, length 8 s). Tower of Hanoi (TOH) consisted of three pegs,
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and four colored disks stacked on one of the pegs (Wright and
Hardie, 2015). The 8 s-long video experiment consisted of a 5 s
period of one hand moving one disk from one peg to another,
followed by a 3 s resting period. Sound was produced by one
hand moving the disk from the peg at the beginning of 0s, as
the auditory stimuli. The video playing was divided into three
phases: (1) Pre-learning: the subjects repeatedly listened to the
video synchronous sound, but did not watch the video images. (2)
Learning: the subjects simultaneously watched the video images
and listened to the synchronous sound. The subjects knew which
action produced the sound, so as to establish an association of the
sound and the action. (3) Post-learning: the subjects repeatedly
listened to the video synchronous sound, but did not watch the
video images. Each phase consisted of 4 video playing sessions;
in each session, the 8 s-long experiment was performed 15 times.
There was a 4 s interval rest between each video experiment and a
120 s interval rest between each two-consecutive sessions. A total
of 60 (4×15) video experiments of 8 s EEG data were collected in
each phase. During the experiments, the subjects were instructed
to count the number of times they heard the sounds. At the end
of each experiment, the subjects were asked which types of the
sounds they heard, and how many times. This was to ensure that
the subjects were focusing on the experiments during the testing.

EEG Data Recording
A Neuroscan EEG machine was used to acquire data from 32
electrodes channels according to the International 10–20 System
of Electrode Placement. The data acquisition rate was 200Hz.
First, a 4–40Hz bandwidth filtering was applied to the data. Then,
a total of 240 (60×4) s (1–5 s) of EEG data from the “Learning”
phase was selected as the task status. Lastly, the other two phases
(pre-learning and post-learning) data were combined, forming
the datamatrix with a size of 30×96,000; 30= electrode numbers;
96,000= 2 (phases)×240 s×200Hz.

Algorithm
Traditional time-domain ICA (T-ICA) was used to automatically
extract and remove eye movement artifacts, according to
previous studies (Bingham and Hyvärinen, 2000; Joyce et al.,
2004), and then Fourier-ICA (F-ICA) was performed from time-
domain ICA analysis (Hyvärinen et al., 2010; Ramkumar et al.,
2012). We adopted previous F-ICA algorithmmethods to extract
EEG rhythmic activity signals from EEG data. The process
included (1) adopting random low frequency signal to modulate
10Hz sine signal, (2) obtaining amplitudemodulation sine signal,
and (3) analyzing the probability density distribution of the signal
amplitude. The distribution of amplitude modulation sine signal
has two properties. First the amplitude distribution of pure sine
signal is bimodal with strong negative kurtosis. Therefore, it
has strong non-Gaussian distribution. Secondly, the effectively
normal distribution can be computed when a smaller amplitude
modulation is added, thus reinforcing the Gaussian distribution
of the time-domain amplitude and its probability density signal
(Hyvärinen et al., 2010).

ICA was described as a blind source separation method
(Wang et al., 2008). It assumes that the observation signal
x(t) = [x1 (t) , · · · , xm (t)]T to be a set of multi-channel

random signals and obtained from a set of independent source
signals and a linear transformation mixed matrix A of s(t) =

[s1 (t) , · · · , sn (t)]T (1).

x (t) = As(t) (1)

Generally, it was assumed that the number of source signals was
less than or equal to the channel number of the observation
signals. In the model, the source signals (t) and the mixing matrix
A are unknown. Only after “m” time was processed could the
mixing be observed. ICA is to solve unmixing matrix W under
the condition of the unknown mixing matrix A and source signal
s(t). Therefore, the solved signal u(t) = [u1 (t) , · · · , un (t)]T is
to be approximate to the source signal s(t). The relationship u(t),
s (t) and x (t) is expressed as Equation (2).

u (t) = Wx (t) = WAs(t) (2)

When the information transmission reached the maximization,
the mutual information between the output terminal
components reached the minimum (Bell and Sejnowski, 1995).
So, the W enables the objective function to reach maximum and
to obtain the ICA solution.

The F-ICA model was assumed to be a linear, instantaneous
hybrid model similar to ICA. In the model, EEG measurement
data were expressed as xc,τ , in which c is EEG electrode number,
and τ istime sequence. Each EEG signal was assumed to be
linear aliasing of the source signal sp,τ (3), where p is each source
number. In the equation below ac,p is an aliasing coefficient. All
sources are statistically independent and randomly processed.

xc,τ =

p∑

p= 1

ac,psp,τ (3)

The basic idea of F-ICA is to transform the signals to the
frequency domain by Fourier transformation, and then to use
ICA to decompose data. First the measurement data were divided
into a series of assumed time bucket signal T, each time bucket
containing N sample point data. The measurement data xc,τ can
be decomposed into a series of time bucket data (Equation 4).

[
(
xc,1, · · · , xc,N

)
,
(
xc,N+1, · · · , xc,2N

)
, · · · ,(

xc,(T−1)N+1, · · · , xc,TN
)
] (4)

Fourier transformation was carried out on these sets of time
bucket data respectively to obtain sets of frequency domain data
x̂c,tf , where f = 1, 2, · · · , F. F is the index of Fourier coefficient.
The Fourier frequency domain coefficients were joined together
to form a two-dimensional data x̂c,tf . By Fourier transform
nature, the matrix after transformation can satisfy Equation (5).

x̂c,tf =

p∑

p= 1

ac,p ŝp,tf (5)

Equation (5) is also a typical ICAmodel as Equation (1).Whereas
the source signal ŝp,tf and measurement signal x̂c,tf are plural,

Frontiers in Human Neuroscience | www.frontiersin.org 3 July 2015 | Volume 9 | Article 405

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Li et al. Space distribution of visual-auditory stimulation

only ac,p is a real number. Adopting Complex-valued ICA to
decompose two-dimensional matrix x̂c,tf can estimate the mixing
coefficient ac,p as well as unmixing matrix W.

Through comparing various objective functions, we adopted
robust measurement function in F-ICA as the target function
(Equation 6), which had better separate rhythmic source signal
(Hyvärinen et al., 2010). In the objective function, due to the
introduction of the logarithmic function, zero crossing value will
not rise too fast, nor be sensitive to the boundary. Its stability is
higher than that of the traditional fourth order statistics (namely
Kurtosis) method.

g4
(
y
)
= log(eps+y) (6)

Where eps is constant, g (·) is the non-linear function and g4 (·)

is the robust measure function. After using the robust measure
function as a non-linear function, and assuming ŝp is normalized
to zero, mean and unit step variable, the final optimization goal
J
(
ŝp

)
can be expressed as Equation (7).

J
(
ŝp

)
=

1

TF

∑

tf

− log
(
1+

∣∣ŝp,tf
∣∣2

)
(7)

Simulation
It has been known from the previous research studies that
auditory stimulus during post-learning phase can cause α

(8–13Hz) rhythmic desynchronization phenomenon at motor
cortex region (Pineda, 2005; Li et al., 2011). In addition, it
was shown that mu (8–12Hz) rhythmic desynchronization
in sensory-motor area may be accompanied by β (14–25Hz)
rhythmic desynchronization phenomenon (Pineda, 2005).
Therefore, the simulation data in this paper comprised three
EEG rhythmic components and three noise components
to minimize the desynchronization phenomenon. The first
source component was 10Hz amplitude modulation signal
which simulates the mu rhythm component near C3/C4
electrode. The second source component was 10Hz amplitude
modulation signal, which simulates α rhythmcomponent near
Pz electrode. The third source component was 20Hz amplitude
modulation signal, which simulates β rhythm component of
the motor cortex region. The first noise component S4 was
a single spike. The second noise component S5 was a spike
for multiple locations. The third noise component S6 was a
wide spectrum white noise, which simulates Electromyogram
interference in EEG. The noise location of these simulation
source signals or the moment of amplitude modulation signals
could be randomly changed. The data length of the signal
was 100 s and the sampling rate was 100Hz (10000 points).
After the source signal amplitude normalization, a 6 × 6
hybrid matrix was generated and six channels of data were
processed.

F-ICA processing steps were as follows: (1) Data were divided
into 100 segments with 1 s window or 100 points per 1 s. (2)
5–30Hz bandwidth filter was applied on the data. (3) All data
segments were joined into a two-dimensional matrix. (4) The
mean value of the row was subtracted from each set of row
data in the two-dimensional matrix. (5) ICA decomposition

was performed by using the complex value ICA algorithm,
and adopting Formula (Equation 7) for objective function;
then the decomposed source signals and unmixing matrix were
obtained.

The Infomax method criterion were used for data processing
(Makeig et al., 1997), which applied the correlation of the
unmixing matrix W and mixing matrix A to design the
evaluation criterion. Ideally, the product of the unmixing matrix
and the mixing matrix WA should be a permutation matrix,
meaning that each row had a non-zero element with only
1 or –1. Therefore, the maximum of the absolute value of
each row of the product matrix represented the estimation
accuracy of the mixing coefficient of the corresponding source
component. If the value was greater than 0.95, that meant
the source component was correctly estimated. Computer
simulation technology was used to simulate 600 multiple sets
of source signals in six groups for ICA decomposition. The
results were analyzed for statistical significance. If all of the
source signals were separated correctly, a total of 300 rhythmic
signal components and 300 noise components were correctly
estimated.

Due to the statistical separation accuracy of F-ICA, 77%
of the EEG rhythmic components and 35% of the noise
components were correctly estimated. While in the traditional
time-domain ICA method, only 20% of the EEG rhythmic
components and 87% of the noise components were correctly
estimated. The simulation results showed that F-ICA had a
greater advantage in the separation of amplitude modulation
signals. The brain rhythmic activity was similar to the
amplitude modulation sine signal. Therefore, F-ICA may
obtain better results in the separation of EEG rhythm
components.

Data Preprocessing
The runica function of EEG was analyzed using software EEGLab
which uses Infomax method to fulfill F-ICA decomposition.
Non-linear function of tangent function was used to obtain 30
independent components of spatial patterns and spectrum. We
adopted matrix A to represent the mixing coefficient. Each line
of the mixing matrix A represented the intensity distribution
of the corresponding source component in the measuring lead.
Therefore, the unmixing matrix W and inverse matrix WT

represented the intensity distribution of the estimated source
component in various measuring leads. A brain topographic
map was used to compute the intensity distribution of each
independent component (IC) at various leads, which can be used
as the spatial pattern of the ICA to help finding the source of the
interest brain signals.

Data Analysis
Data with normal distribution were described by mean
and standard deviation and tested by paired-t test. Data
with skewness distribution were described by median and
quartile and tested by Wilcoxon rank test. The statistical
software SPSS 18.0 (SPSS Inc., Chicago, IL) was used for the
statistical analysis. p value <0.05 was considered as statistically
significant.
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Results

EEG Responses to Hanoi-Moving Visual and
Auditory Stimulation with Time-domain ICA
Thirty independent components of spatial patterns from one of
the subjects are shown in Figure 1 with time-domain ICA (T-
ICA) analysis method. The spatial distribution of source signals
is denoted by color circles and the signal intensity (–1 to 1) by
the color on the map. Corresponding power spectrum from each
independent component is displayed in Figure 2. The results in
Figure 2 also show that the mu rhythm’s power at the motor
cortex region was lower at post-learning phase than at pre-
learning (IC4). According to the spatial pattern brain topographic

map and the power spectra of each IC at pre-learning and post-
learning phases, three typical IC components were identified:
IC2, IC19, and IC4. The details of the interested source signals
are as follows:

(1) IC2: (i) Components were mainly distributed in frontal
region (Figure 3A); (ii) Power spectra were mainly low
frequency signals (Figure 3B).This component was electro-
oculogram.

(2) IC19: (i) Components were mainly distributed in occipital
region (Figure 3C); (ii) Power spectra were mainly
distributed in α band of 8–12Hz (Figure 3D); (iii) there
was no difference in the power spectra between the

FIGURE 1 | Thirty IC spatial distributions in a representative subject (blue represents –1, red represents 1).
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FIGURE 2 | Source signal power spectra curve corresponding to Figure 1: x-coordinate for frequency (Hz), y-coordinate for power spectrum (uV2). The

solid line indicates pre-learning, the dotted line indicates post-learning.

components of pre-learning and post-learning phases. So,
IC19 represented α activity of the occipital region.

(3) IC4: (i) Components were mainly distributed in the motor
region and top region of the left hemisphere (Figure 3E);
(ii) Power spectra were mainly located in 8–12Hz, and
in the same frequency range of mu rhythm (Figure 3F);
(iii) 8–12Hz rhythm energy during the post-learning task
was lower than during pre-learning task, suggesting that
IC4 brain activation at post-learning was higher than at
pre-learning.

As described in the “Methods” above, the decomposed 384
sources of the 14 subjects were manually selected (Table 1). Eight
subjects (S1, S2, S3, S7, S8, S12, S13, and S16) had one interested
IC (Figure 4) and two subjects (S6, S14) had two interested ICs.
Four subjects (S4, S5, S9, and S10) had no suitable source selected.
The spatial distribution of source signals of the 14 subjects is also
displayed in Figure 4. The signal space distribution is denoted by
selected color circles and by the intensity of the color (–1 to 1)

on the map in each IC region. Each circle was given an intensity
distribution value from 0 to 1 based on the intensity distribution
of the corresponding source component in the measuring lead
as described in methods. The source signal distributions in the
Pz and C3/C4 regions are also depicted in Table 1; where the
source signals was expressed as the sum of intensity distribution
values for an IC in the a region. Figure 4 and Table 1 show that
while many subjects had a source component near Pz region, five
subjects (S3, S7, S8, S13, S16) had weak source signals (intensity
distribution value <1.0) located in the primary motor cortex
region near C3 or C4; and five (S1, S2, S6, S12, S14) had strong
source signals (value ≥1.0) in the region (Figure 4 and Table 1).

EEG Responses to Hanoi-Moving Visual and
Auditory Stimulation with Fourier-ICA
As described in the “Methods” for F-ICA processing steps above,
IC power spectrum was used to select the decomposed 768
source signals from the 14 subjects (Table 1). Figure 5 shows
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FIGURE 3 | The spatial distribution and the corresponding power

spectrum diagram of three interested source signals. The source data

come from simulation, including (A) Eye power signal IC2, (C) α rhythm source

activity IC19, (E) Auditory stimuli evoked brain source activity IC4; (B), (D), and

(F) Power spectra of the above three source signals, respectively. The solid

line indicates the pre-learning, and the dotted line indicates post-learning.

30 ICs analysis results of subject S3 and Figure 6 shows the
corresponding power spectra curve of 30 ICs in Figure 5. The
results of the interested source signals are as follows:

(1) IC10 was mainly distributed in the region of the forehead,
and the power spectra were mainly low frequency signals.
The component was electro-oculogram; similar to the IC2
analysis results displayed in the time-domain ICA above
(Figure 1).

(2) IC14 was mainly located in the parietal region. IC20 was
located in occipital top region near Pz. IC26 was located
in the primary motor cortex region on the right side. The
power spectra curve showed that all these three components
had a significant difference between the two task phases;
in which the mu rhythm power spectra values were higher
during pre-learning task than that during post-learning
task (Figure 5). These results indicated that the three
components represented the activities related with tasks.

TABLE 1 | Number of source signals and sum of intensity distribution (ID)

values in Pz and C3/C4 between T-ICA and F-ICA group.

No. Source signals* T-ICA (ID) F-ICA (ID)

T-ICA F-ICA Pz C3/C4 Pz C3/C4

(#IC) (#IC)

S1 32 (1) 32 (1) 1.00 1.50 0.25 1.50

S2 32 (1) 32 (1) 1.00 1.50 1.00 0.50

S3 32 (1) 96 (3) 0.50 0.75 1.50 3.50

S4 0 (0) 64 (2) 0.00 0.00 0.75 1.00

S5 0 (0) 64 (2) 0.00 0.00 1.25 1.50

S6 64 (2) 64 (2) 1.20 1.75 1.50 1.75

S7 32 (1) 64 (2) 1.00 0.75 1.00 2.50

S8 32 (1) 64 (2) 0.25 0.50 1.00 1.50

S9 0 (0) 64 (2) 0.00 0.00 0.75 2.00

S10 0 (0) 0 (0) 0.00 0.00 0.00 0.00

S12 32 (1) 0 (0) 0.25 1.25 0.00 0.00

S13 32 (1) 64 (2) 1.00 0.75 1.00 1.00

S14 64 (2) 96 (3) 1.00 1.25 1.75 4.00

S16 32 (1) 64 (2) 1.00 0.50 0.75 2.25

Total 384 (12) 768 (24) 8.20 10.50 12.50 23.00

Avg 0.59 ± 0.48 0.75 ± 0.62 0.89 ± 0.53 1.64 ± 1.17

* Number of source signals was defined as the number of electrodes 32 times the number

of Independent Components (#IC; Figures 4, 7) found for each patient. The number

of source signals from all 14 patients was added to obtain the total source signals. ID:

Spatial distribution of source signals is denoted by color circles and color intensity on the

map (Figures 4, 7). Each circle was given an intensity distribution (ID) value from 0 to

1 based on the calculation described in “Methods.” The above ID value was the sum of

the values in parietal-occipital area (Pz) and sensorimotor area (C3 and C4), respectively.

Sum of ID value: 0, no signal; <1.0, weak signals; ≥1.0, strong source signals found.

Avg = Mean ± SD.

(3) IC17, IC18 and IC22 were located in the occipital region.
The power spectra were mainly distributed in α band of
8-12Hz. There was no difference in the power spectra of
the components between pre and post-learning. The three
components represented α activity in the occipital region.

Based on the same data selection method used for subject S3 in
Figures 5, 6, data from the rest of the subjects were examined to
select the source components; and results are shown in Figure 7.
F-ICA found interested ICs in 12 subjects (S1–S9, S13–S14, and
S16) in the two same areas where ICs were found with T-ICA
method. One IC area was distributed in the occipital region near
Pz; similar to the traditional ICA. The other was distributed in the
sensory-motor cortex region of C3 and C4. The ICs distributions
of each patient in the Pz and C3/C4 regions are also depicted
in Table 1; where the source signals are expressed as the sum of
intensity distribution value of an IC in a region. F-ICA found
ICs source signals in 12 of 14 subjects (86%) while T-ICA found
signals in 10 of 14 subjects (71%); not a significant difference.
However, the distributions of strong and weak source signals
were very different between the two methods. Of the 12 subjects
with ICs source signals found with F-ICA, 11 had strong source
signals (intensity distribution value ≥1.0) located in primary
motor cortex region (C3/C4) compared with only 5 with T-
ICA (Tables 1, 2). Only one subject had weak source signals
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FIGURE 4 | The spatial distribution of the interested source signals

from ICA analysis. Results were from 14 of the 16 subjects, and subjects S

11 and S 15 were excluded. No right source components were found in

subjects S4, S5, S9, and S10 and the rest subjects had normal source

distributions. Signal space distribution was denoted by selected color circles

and color intensity (–1 to 1) on the map. Blue represents –1, Red represents 1.

(intensity distribution value <1.0) located in C3/C4 region with
F-ICA compared with five with T-ICA (Table 1). The difference
of strong and weak signal distribution in C3/C4 between T-
ICA and F-ICA group was statistically significant (p = 0.029;
Table 2). The distribution of strong source signals in the Pz area
was similar between T-ICA and F-ICA (7 of 14 vs. 8 of 14)
respectively.

Comparing the Number of Source Signals of
F-ICA with That of T-ICA
The total number of interested source signals from the 12 subjects
with F-ICA analysis was 768, twice that of 384 from T-ICA (t = –
2.565, p = 0.010; Table 1). Next, we compared the source signals
as expressed as intensity distribution values obtained from F-ICA
with those from T-ICA at two different regions (Table 1). In the
sensory-motor region C3/C4, the total values from the 14 subjects
summed to 23.00 (average 1.64 ± 1.17) with F-ICA; more than
the 10.5 (average 0.750± 0.620) obtainedwith T-ICA (t= –2.631,
p = 0.021). In the Pz area, the total value from the 14 subjects

with F-ICA summed to 12.50 (average 0.89 ± 0.53) which was
still more than the 8.20 (average 0.59 ± 0.48) from T-ICA, but
the difference was not statistically significant with p = 0.066 (t
= –2.003).

Discussions

The present study employed a hand-moving paradigm to
investigate the electrophysiological correlates of action-related
visual and auditory information processing with F-ICA.
Independent components associated with 8–12Hz activity
were analyzed, which exhibited significant responses during
task conditions and differences between the pre-learning
and post-learning periods. These findings are consistent with
the assumption that event-related desynchronization reflects
activation patterns.

The Link of Sound and Movement through the
Visual Learning
In this study, we used the sound of “moving Tower of
Hanoi (TOH)” as a stimulus paradigm to connect the action-
related sound with cognition through the visual learning. These
phenomena may indicate that auditory and visual movement
loop have a close relationship during the process of the
auditory understanding. Our observation was in agreement
with the results of previous studies showing that visual
learning modulated comprehension of movement and auditory
stimulation (Bangert and Altenmüller, 2003; Pineda, 2005; Li
et al., 2011; Matyja, 2015).

Our results revealed that the subjects’ response after pre-
listening without seeing the movement was not significant or
immediate. Previous studies also suggested that the sound of
“moving TOH” can trigger action-related brain activity, but the
sound alone cannot immediately produce the response (Gallese
et al., 1996; Keysers et al., 2003). Others further reported that
only after viewing the moving TOH animation, the subjects
establish a connection between the sound and “TOH” images
(Kohler et al., 2002; Le Bel et al., 2009). When hearing the
same sound again, the subject would immediately associate
the sound of TOH with the moving actions. The results from
our F-ICA analysis further confirmed that the source signals
were difference between pre-listening and post-listening, and
that during the pre-learning phase sound was not associated
with specific action. These smaller changes relative to the
baseline in mu rhythm power spectrum could be regarded as
event-related desynchronization/event-related synchronization
(ERD/ERS) phenomenon. The changes relative to the baseline in
both two phases reflected the activity of related neurons and the
difference in the source signals. Hanoi-moving action related to
auditory stimulation could cause activation of the motor cortex
area of the brain. Thus, the function of auditorymotor as a part of
CDZs system may depend on the degree of integration between
auditory and motor experience. Understanding this integration
is of great significance for the study of cognition, language and
hearing, especially in learning. Defects in neuronal activity of
patients with diseases such as ASD may alter auditory motor
response (Stewart et al., 2015). Currently, there was no feasible
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FIGURE 5 | Thirty Fourier ICA spatial distributions of the subject S3 (blue represents –1, red represents 1).

and effective method to diagnose those defects. The results from
this study provide a potential method by monitoring mu rhythm
ERD/ERS changes between “Listening Action” and related brain
activity to detect auditory motor response. In the future, the
minimum spatial change of source signals from F-ICAmay detect
the locations of defects in the brain that are responsible for
listening recognition andmental retardation. It has been assumed
that cerebral cortex has multiple regions that are associated
with the sensory-motor cortex activation generated by auditory
stimulation (Le Bel et al., 2009; Stewart et al., 2015).

The Algorithm and Source Signals Analyzing
The objective of F-ICA analysis was to isolate source signals
and find their corresponding spatial mode. In this study, two
methods, the traditional T-ICA and F-ICA were compared using
simulation data, and then adopted to analyze Hanoi experimental
data. T-ICA tends to find the source of the largest non-Gaussian
component of the signal and has often been used for single trial
ERP (event-related potentials) extraction or artifact removal. The
rhythmic EEG has a smaller non-Gaussian property, and usually
is close to a Gaussian distribution. Consequently it was difficult to
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FIGURE 6 | Source signal power spectra curve corresponding to Figure 5: x-coordinate for frequenc y (Hz), y-coordinate for power spectrum (uV2).

The solid line indicates pre-learning, and the dotted line indicates post-learning.

find the source independent components related to EEG rhythms
using the traditional method, thus limiting the application of
T-ICA in EEG rhythmic component extraction. In comparison,
F-ICA can identify more and important ICs that were action-
related, visual and auditory evoked EEG signals (Hyvärinen et al.,
2010).

Although F-ICA has an advantage in EEG/EMG rhythmic
activity extraction over T-ICA, it also faces some of the same
problems as T-ICA. For example, in our study T-ICA did not
find suitable source components in S4, S5, S9, and S10. Similarly,

F-ICA failed to identify components in subjects S10 and S12.
The reason was that both used the same source separation
method and transformation matrix process. F-ICA extracted
more effective independent components that are mixed with
other signals according to Hanoi model, but the statistical
analysis with real data showed that the model was strongly
affected by the signals. Theoretically, such effects could be seen in
the asymptotic variance of the estimators but might not be very
relevant. Because most of the errors in practical analysis were due
to violations of the model assumptions, such as independence
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FIGURE 7 | The spatial distributions of the interested source signals

from Fourier-ICA analysis. Results were from 14 of the 16 subjects, and

subjects S 11 and S 15 were excluded. No source components were found in

the subjects S10 and S12. Signal space distribution was denoted by selected

color circles and color intensity (–1 to 1) on the map. Blue represents –1, Red

represents 1.

and linearity, the effect of the violations was quite difficult to be
analyzed.

Based on the results from our F-ICA analysis, two kinds of
source signals were found, one in occipital top region and another
in the motor cortex region. The meaningless sounds and actions
related sounds can be established by learning. In the third phase
experiment after the relationship was established, and when
hearing the sound of moving Hanoi again, the subjects could
recall just the video of the moving Hanoi, leading to the occipital
parietal region activities associated with visual. Subsequently,
they recalled the video with action meaning, leading to the
activation of the motor cortex region. The component separation
results of the traditional time-domain ICA showed that only one
main source was located in the central partial occipital region
which is not a puremotor region. It may involve part of the action
region and part of the vision related region near Pz electrode
of EEG. The results using F-ICA show that there are two main
sources. One is near sensory-motor region C3 electrode, the other
is near Pz electrode. These results suggested that in the traditional
ICA method, the two source signals were integrated into one.

In 1924, German psychiatrist Berger invented EEG, and
observed that the sound stimulation could inhibit α wave of

TABLE 2 | Comparing the intensity distribution (ID) of source signals in

C3/C4 between T-ICA and F-ICA group.

ID* T-ICA F-ICA Total χ
2 p

n % n %

<1.0 5 50.00 1 8.33 6 4.774 0.029

≥1.0 5 50.00 11 91.67 16

Total 10 100.00 12 100.00 22

*Difference was statistically significant (p = 0.029) by chi-square test with comparing the

intensity distribution (ID) of source signals between T-ICA and F-ICA group. *ID value:

<1.0, weak source signals; ≥1.0, strong source signals. Data excluded subjects with ID

value = 0.0 (Table 1).

the evoked EEG. In 1930, Wever and Bray used auditory nerve
electrodes to detect cochlear nerve action potentials of cats and
created the electrophysiological study of the auditory system
(Hallpike and Rawdon, 1934). Then, K-complex wave, P300
wave, Auditory Evoked Potentials (AEP) and BrainstemAuditory
Evoked Potentials (BAEPs) successively emerged (Campbell et al.,
2005; Perlman et al., 2015; Tsai et al., 2015), and the reaction
time of auditory evoked potential is shorter (the incubation
period is usually 0–800ms) in these studies. The visual cortex
has two major pathways: parietal dorsal pathway and ventral
pathway (Wang, 2006), and the auditory cortex information
processing pathways has the dorsal object location and the
ventral object recognition depends on double channel model.
The auditory channels include: (1) primary auditory channel that
is responsible for carrying the cochlear nerve information to
reach the thalamus after 3∼4 s relays, decoding and integrating
the sound; (2) non-primary auditory channel that is responsible
for the cochlear nerve information to reach each sensory-motor
cortex after transmitting to the thalamus (Zhang et al., 2001).
In the integrated dual auditory channel, the positive auditory
channel converts the sound message to sensory-motor region
(44 region and abdominal PMC) after auditory information
decoding(Zhang et al., 2001), which is consistent with the F-
ICA results in this study. In reverse auditory channel, stimulus
associated with auditory attention and willingness at the Inferior
Parietal Lobule (IPL) was showed to influence auditory neurons
to select the information associated with various action regions
(Wang et al., 2008).

Auditory System and Stimuli Process
The Wernicke-Geschwind model explains that the auditory
stimuli process was associated with actions. The auditory stimuli
for the auditory cortex was processed by the auditory system into
meaningful information in Wernicke’s area, and transmitted to
Broca’s area by arcuate fasciculus. The auditory information was
transformed into motion coding output which led to all kinds
of movements (Rauschecker and Scott, 2009). Auditory system
and stimulation task were closely related (Anderson et al., 1999).
In this study, we developed experimental design to show that
the auditory stimulus was associated with the action, and the
source signals were found to be near Broca’s area. Auditory-action
recognition system relied on the action experience of the subject,
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thus the same sound can cause the motor cortex response. In F-
ICA, in combination with the prior knowledge of time-domain,
frequency-domain and airspace, one or more of the independent
components corresponding to a particular component in EEG
were identified. Thus, the interested components in the original
signals associated with the task were extracted. Our results
suggested that those interested components might be the cause of
the visual and auditory stimuli evoked EEG response associated
with movements. We used F-ICA method to analyze the spatial
patterns of visual and auditory stimuli evoked EEG response
associated with actions. We assume that the existing source
signals should produce EEG response mapping to the scalp.
Then, it is possible to get the spatial distribution of the source
signal in brain sensory-motor cortex region or visual, auditory
cortex region. It was of great significance that we identified the
location of visual and auditory stimuli evoked normal human
EEG response associated with actions. It was also an important
step to reveal the association of the EEG signals processing results
with the brain functions.

Action-related auditory stimulation (ARAS) could activate the
brain area related to the action. The sound coupled with specific
action content could serve as the stimulation. ARAS helped to
find the neuronal activity in F5 area, sensory-motor area and
Inferior Frontal Gyrus (IFG) of monkeys (Kohler et al., 2002;
Keysers et al., 2003). When the tearing sound occurred, 13% of
the neurons in the monkey’s Primary Motor Cortex (M1) area
were discharged. Once the monkeys heard the sounds related
to the action of hand throwing sticks, peeling peanuts etc., the
neurons in primary motor cortex area were also discharged,
because the response was triggered from hearing the sound
related to the same action. The action also activated the neuron
discharge in sensory-motor area. The white noise and sound
unrelated to the action, such as a monkey crying, could not
activate neuron discharge in sensory-motor area (Kohler et al.,

2002; Keysers et al., 2003). The human brain can also sense the
sound related to the hand-related action-Hanoi moving as it was
displayed in this research. We illustrated that the sounds related
to the action of hand moving Hanoi could induce the change in
the EEG signals distributed in the Primary Motor Cortex (M1) of
the sensory-motor cortex.

Conclusions

This study adopted Hanoi-moving video paradigm as an action-
related visual and auditory stimulation to evoke EEG source
signals, and used the F-ICA method to analyze the spatial
distribution of the EEG signal sources. The results indicate that
F-ICA is capable of distinguishing the two sources that were
responses to action-related visual and auditory stimuli in normal
healthy subjects. The C3 electrode near the sensory-motor region
is associated with auditory stimuli and motor cortex activation
with the movements and the electrode near Pz is associated with
visual stimuli. The method used in this study could be applied
to investigate the electrophysiological correlates of action-related
visual and auditory information processing, and be potentially
useful for the clinical diagnosis of conditions such as recognition

dysfunction, language retardation and mental developmental
disorders in the near future.
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