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We examined network properties of genetic covariance between average cortical
thickness (CT) and surface area (SA) within genetically-identified cortical parcellations
that we previously derived from human cortical genetic maps using vertex-wise fuzzy
clustering analysis with high spatial resolution. There were 24 hierarchical parcellations
based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction;
in both cases the 12 parcellations per hemisphere were largely symmetrical. We
utilized three techniques—biometrical genetic modeling, cluster analysis, and graph
theory—to examine genetic relationships and network properties within and between
the 48 parcellation measures. Biometrical modeling indicated significant shared genetic
covariance between size of several of the genetic parcellations. Cluster analysis
suggested small distinct groupings of genetic covariance; networks highlighted several
significant negative and positive genetic correlations between bilateral parcellations.
Graph theoretical analysis suggested that small world, but not rich club, network
properties may characterize the genetic relationships between these regional size
measures. These findings suggest that cortical genetic parcellations exhibit short
characteristic path lengths across a broad network of connections. This property may
be protective against network failure. In contrast, previous research with structural data
has observed strong rich club properties with tightly interconnected hub networks. Future
studies of these genetic networks might provide powerful phenotypes for genetic studies
of normal and pathological brain development, aging, and function.

Keywords: imaging, genetic, twin, cortical thickness, surface area, network, small world, structural

Introduction

Discovery of organizational principles within the structure of human cortex will advance
understanding of normal and abnormal behavior. Gene expression findings (reviewed by Dahmann
et al,, 2011) and human imaging twin studies (e.g., Schmitt et al., 2008) highlight the importance
of genetics in determining structural patterning. We previously found orderly spatial patterns of
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genetic relationships between measures of brain size paralleling
those seen in mouse cortex and derived two genetically-informed
brain atlases based on cortical surface area (SA) (Chen et al.,
2011) and cortical thickness (CT), respectively (Chen et al., 2013).
(See Section Post-Processing and Image Analysis in Materials and
Methods for an explanation of SA and CT parcellations.) Higher-
level patterns of organization among measures of the size of
these genetically-derived parcellations remain to be discovered.
Previous studies have primarily examined correlations between
structural measures in groups of unrelated individuals and within
regions of interest based on cytoarchitecture such as Brodmann
areas, sulcal/gyral boundaries, or on functional or connectivity
data. Calculating regional size measures such as SA and mean
CT for our genetically-derived parcellations, and examining
patterns of association within a twin sample, could advance upon
previous studies and improve our understanding of higher order
patterning of brain structure.

Two main organizational patterns might be observed when
examining genetic correlation between cortical size measures,
and graph theory analysis has been used to discover properties
of brain structural networks. For example, graph theory analysis
applied to between-subject correlation matrices of regional size
measures has indicated “small world” properties (He et al., 2007).
Networks with small world properties are characterized by a
combination of dense local interconnectivity (i.e., clustering) and
short average path lengths between nodes (Watts and Strogatz,
1998). An example of a small world network is the C. elegans
neural network, in which path lengths are small and the number
of links required to connect the network is minimal, leading to
increased efficiency. Only one other study has examined network
properties emerging from genetic correlation matrices between
structural measures within human anatomical brain regions
(Schmitt et al., 2008). In this study of correlations among cortical
thickness measures within sulcal/gyral regions in children and
adolescents, small world properties were observed.

Another organizational principle that has been observed for
brain size data is that of a “rich club network,” characterized
by a highly integrated, connected group of high-level nodes
with the ability to easily transfer to several other nodes. This
organization protects the network from critical failure, as any rich
node can easily distribute to several other nodes. Power gradients
tend to have strong rich club properties, as hub stations can
easily distribute to many others to avoid failure of the system
(van den Heuvel and Sporns, 2011). An example of an absence
of such rich club properties might be neurons within a sparse
coding network, or modalities within the visual cortex, where
each node bears a relatively unique and irreplaceable function
(Lettvin et al., 1959). Previous studies have observed rich club
network properties within brain structural data (van den Heuvel
and Sporns, 2011; van den Heuvel et al., 2013; Collin et al.,
2014) but rich club properties have not been examined with
respect to genetic associations or using size measures within
genetically-defined parcellations as nodes of interest.

In the present study, we explored the genetic relationships
among SA and CT measures within genetically-informed
cortical parcellations using three techniques: biometrical genetic
modeling, cluster analysis, and graph theoretical models. We

show that shared genetic covariance between regional CT and
SA calculated in this way may exhibit small world, but not rich
club, network properties. These genetic network models may
serve to complement existing network models of anatomical and
functional relationships within the human connectome.

Materials and Methods

Participants

Data were obtained as part of the Vietnam Era Twin Study of
Aging (VETSA), alongitudinal study of cognitive and brain aging
with baseline in midlife (Kremen et al., 2006, 2013). Participants
in VETSA were sampled from the Vietnam Era Twin (VET)
Registry, a nationally distributed sample of male-male twin pairs,
who served in the United States military at some point between
1965 and 1975 (Goldberg et al., 2002). Detailed descriptions of
the VET Registry’s composition and method of ascertainment
have been reported by Eisen et al. (1989) and Henderson et al.
(1990). Men (N = 1237) aged 51-60 participated in the primary
VETSA project, with a mean age = 55.4 years (SD = 2.5).
Participants were predominantly Caucasian (89.7%), with an
average education of 13.8 years (SD = 2.1). In comparison
to U.S. census data, participants in the VETSA are similar in
health and lifestyle characteristics to American men in their
age range (Schoeneborn and Heyman, 2009). In order to be
eligible for VETSA, both members of a twin pair had to agree
to participate and be between the ages of 51 and 59 at the time
of recruitment. We determined zygosity for 92% of the sample
by 25 microsatellite markers obtained from blood; zygosity for
the remainder was determined with combined questionnaire and
blood group methods. Past comparison of the two approaches in
the VETSA sample has demonstrated agreement of 95%. Eligible
participants were recruited to participate in the MRI portion
of the study. Data from the cortical parcellations derived from
the cluster analyses (imaging methods described below) were
available on 429 of the VETSA participants (100 MZ twin pairs,
70 DZ twin pairs, and 89 unpaired twins).

Participants chose either the University of California San
Diego (UCSD) or Boston University for a day-long protocol of
medical, physical, psychosocial, and neurocognitive assessments.
Informed consent was obtained from all participants prior
to data collection, the data collection was approved by the
relevant institutional review boards, and all research conformed
to relevant regulatory standards. Standard MRI exclusion criteria
were imposed in order to ensure participant safety (e.g., the
absence of metal in the body).

Imaging Acquisition

Neuroimaging was performed at either UCSD or the
Massachusetts General Hospital (MGH) in Boston. All images
were acquired on Siemens 1.5 Tesla scanners. Sagittal T1-
weighted MPRAGE sequences were employed with a TI =
1000 ms, TE = 3.31 ms, TR = 2730 ms, a flip angle = 7°, slice
thickness = 1.33 mm, and voxel size of 1.3 x 1.0 x 1.3 mm. Raw
DICOM MRI scans from both sites were transferred to MGH for
initial post-processing and quality control, and then to UCSD for
further image analysis.
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Post-processing and Image Analysis
SA expansion and CT mapping were conducted using methods
based on the publicly available FreeSurfer software package
(Fischl et al., 2002). The end result was a measure, at each vertex
(a very small triangle) on the surface of the brain (with <1 mm
mean vertex spacing), of both CT and SA. CT is the distance of a
line drawn between pial and white matter surfaces perpendicular
to the white matter at this point, and SA is the area of each
triangle that has to be expanded or contracted to fit a template.
We then calculated CT and SA within genetically-derived
parcellations of the cortical mantle; derivation of the boundaries
of these parcellations is described in Chen et al. (2012,
2013). Briefly, fuzzy cluster analysis was applied to the genetic
correlations between SA-values at each vertex on the cortical
surface and, separately, to the genetic correlations between CT-
values at each vertex on the cortical surface. CT measures were
adjusted for age, scanner and mean CT, and SA measures were
adjusted for age, scanner, and total SA. Based on a silhouette
coeflicient, 12 parcellations per hemisphere were determined
to be optimal for both CT and SA, with the parcellation
boundaries being very similar for left and right hemispheres.
Thus, the boundaries of each CT and SA parcellation used in
the present study are based on patterns of genetic correlation
among thickness or surface area values, respectively, at each
vertex. The boundaries of the parcellations were quite similar
for CT and SA, though not identical (see Chen et al,, 2013 for
discussion of differences). Regions are named for the general
vertex-wise cluster location, but the degree to which SA and
CT homologous regions overlap on the cortical surface varies
depending on the structure. Thus, for the present analysis,
CT parcellation boundaries were applied to the vertex-based
CT measures in order to calculate a mean CT within each
parcellation, and SA parcellation boundaries were applied to
vertex-based SA measures to calculate the SA of each region.
Thus, our process is analogous to more traditional analyses that
might use cytoarchitectonic or physical features to carve up the
cortex into mutually-exclusive regions and then calculate the
surface area and mean thickness within each of the anatomically-
based regions. In contrast, our boundaries were determined by
examining shared genetic influences across the cortex, which
should lead to more genetically-homogenous regions over which
to average (mean CT) or sum (SA) for our present analysis of
regional genetic associations. We have given each of these regions
a name based on the approximate anatomical location (Table 1)
and basically homologous regions in the CT and SA parcellation
schemes were given the same name.

Statistical Analyses

Structural equation modeling was used to examine genetic
contributions to individual differences in global-adjusted CT and
SA across the 48 parcellations (24 regional CT measures and 24
regional SA measures) using a standard model for bivariate twin
data. Details of biometric modeling procedures are described
below. Maximum likelihood-based genetic analysis of CT and SA
of all 48 parcellations in one multivariate model was not practical
due to sample size. Instead, we conducted a combination of
univariate (n = 48) and all possible bivariate analyses of the

TABLE 1 | Parcellation surface area and cortical thickness.

Parcellation Abbreviation
1. Motor—Premotor (Central) C

2. Occipital O

3. Postlateral temporal PLT

4. Superior parietal SP

5. Orbitofrontal OF or F
6. Superior temporal ST

7. Inferior parietal IP

8. Dorsomedial frontal DMF

9. Anteromedial temporal AMT or A
10. Precuneus PRC

11. Dorsolateral prefrontal DLP

12. Pars opercularis PRS

Abbreviations in Figures 2, 3, 6, 7 and Mean Nodal Degree.

Twin 1

Genetic
parcellation
phenotypes
1and 2

FIGURE 1 | Bivariate AE Cholesky framework, in which the covariance
of two phenotypes is decomposed into genetic (A) and unique
environmental (E) variance.

entire set of parcellations (n = 1128). Cluster and graph theory
analyses were employed to investigate the network properties of
the genetic covariance matrices.

Univariate ACE Analyses

The parcellation-based CT and SA regional measures were
analyzed using OpenMx (Boker et al, 2010), a package for
structural equation and other statistical modeling in the R
language (R Development Core Team, 2008). Model fitting
was conducted using full-information maximum likelihood.
This likelihood-based approach allows tests of the statistical
significance of parameters of interest from the original model, by
fixing them to pre-specified values to form a sub-model.

In the classical univariate twin design, the variance of a
phenotype is decomposed into the proportion of total variance
attributed to additive genetic (A) influences, common or shared
environmental (C) influences, and unique environmental (E)
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influences (Eaves et al., 1978; Neale and Cardon, 1992). The
name “ACE model” is derived from these three components of
variance. Additive genetic influences are assumed to correlate
1.0 between MZ twins who generally share 100% of their genes,
and 0.5 between DZ twins who on average share 50% of their
segregating genes. Shared environment is assumed to correlate
1.0 between both members of a twin pair, regardless of twin
zygosity. Unique environmental influences are assumed to be
uncorrelated between the members of a twin pair. Measurement
error is also included in the E term because it is also assumed to
be uncorrelated between twins.

The proportion of a phenotype’s total variance attributable to
additive genetic influences is considered the heritability of the
phenotype. The significance of genetic or shared environmental
influences was tested by fixing the parameter in question
to zero, and then comparing the fit of the reduced model
against the full model. For each of the 48 variables, we tested
the significance of change in model fit when genetic, shared
environmental or unique environmental variance components
were removed.

Under certain regularity conditions, the difference in twice
negative log-likelihood (-2InL) asymptotically follows a x?2
distribution, with degrees of freedom equal to the difference
in the number of free parameters in the two models. Variance
components such as a®> and ¢ do not meet these regularity
conditions, due to a lower bound of zero (Dominicus et al.,
2006; Wu and Neale, 2012). Under the null hypothesis, tests for
variance components are distributed as a 50:50 mixture of >
with one degree of freedom and zero, and are corrected by simply
halving the p-value.

Bivariate AE Analyses

To analyze the pattern of genetic relationships between the
regional measures of SA and CT, we adopted a bivariate AE
approach. The bivariate Cholesky decomposition of each pair of
regional size measures partitions the covariance due to genetic
(a®) and environmental (e?) origin. In this analysis, we left
out a shared environmental variance component (c?) from the
models due to a lack of any significant shared environmental
variance across all univariate analyses of the regional measures. A

TABLE 2 | ML parameter estimates and p-values from hypothesis testing of univariate ACE models of surface area.

Variance components (lower; upper 95% ClI)

Hypothesis test

p-Values?

a2 c? e? A c AC
LEFT
Motor—Premotor 0.58 (0.30;0.69) 0.00 (0.00;0.23) 0.42 (0.31;0.55) 0.00 1.00 0.00
Occipital 0.38 (0.00:0.71) 0.24 (0.00;0.56) 0.38 (0.28:0.51) 0.05 0.23 0.00
Postlateral temporal 0.69 (0.43:0.77) 0.00 (0.00:0.23) 0.31 (0.23;0.42) 0.00 1.00 0.00
Superior parietal 0.53 (0.11;0.72) 0.09 (0.00;0.46) 0.38 (0.28;0.51) 0.01 0.67 0.00
Orbitofrontal 0.51 (0.24;0.63) 0.00 (0.00;0.22) 0.49 (0.37;0.64) 0.00 1.00 0.00
Superior temporal 0.49 (0.07:0.62) 0.00 (0.00;0.36) 0.51 (0.38;0.66) 0.02 1.00 0.00
Inferior parietal 0.40 (0.14;0.55) 0.00 (0.00;0.00) 0.60 (0.45,0.77) 0.01 1.00 0.00
Dorsomedial frontal 0.61 (0.32;0.71) 0.00 (0.00;0.25) 0.39 (0.29;0.52) 0.00 1.00 0.00
Anteromedial temporal 0.46 (0.10;0.59) 0.00 (0.00;0.31) 0.54 (0.41;0.69) 0.02 1.00 0.00
Precuneus 0.61 (0.33:0.71) 0.00 (0.00;0.24) 0.39 (0.29:0.51) 0.00 1.00 0.00
Dorsolateral prefrontal 0.65 (0.41;0.74) 0.00 (0.00;0.20) 0.35 (0.26;0.48) 0.00 1.00 0.00
Pars opercularis 0.57 0.15:0.71) 0.04 (0.00;0.39) 0.39 (0.29:0.53) 0.01 0.84 0.00
RIGHT
Motor-Premotor 0.57 (0.28;0.68) 0.00 (0.00;0.00) 0.43 (0.32;0.57) 0.00 1.00 0.00
Occipital 0.53 (0.09;0.64) 0.00 (0.00;0.38) 0.47 (0.36;0.61) 0.02 1.00 0.00
Postlateral temporal 0.51 (0.21:0.63) 0.00 (0.00;0.24) 0.49 (0.37;0.64) 0.00 1.00 0.00
Superior parietal 0.54 (0.32;0.66) 0.00 (0.00;0.17) 0.46 (0.34;0.61) 0.00 1.00 0.00
Orbitofrontal 0.53 (0.12;0.65) 0.00 (0.00;0.34) 0.47 (0.35;0.62) 0.01 1.00 0.00
Superior temporal 0.34 (0.00;0.58) 0.11 (0.00;0.47) 0.56 (0.42;0.74) 0.21 0.66 0.00
Inferior parietal 0.45 (0.21;0.59) 0.00 (0.00;0.17) 0.55 (0.41:0.73) 0.00 1.00 0.00
Dorsomedial frontal 0.62 (0.40;0.72) 0.00 (0.00;0.00) 0.38 (0.28;0.51) 0.00 1.00 0.00
Anteromedial temporal 0.50 (0.11;0.61) 0.00 (0.00;0.34) 0.50 (0.39:0.64) 0.02 1.00 0.00
Precuneus 0.42 (0.10;0.56) 0.00 (0.00;0.25) 0.58 (0.44:;0.75) 0.02 1.00 0.00
Dorsolateral prefrontal 0.60 (0.16;0.73) 0.04 (0.00;0.43) 0.36 (0.27;0.49) 0.01 0.85 0.00
Pars opercularis 0.56 (0.25:0.67) 0.00 (0.00;0.26) 0.44 (0.33:0.58) 0.00 1.00 0.00

@ p-Values reflect tests of the hypotheses of no genetic effect on phenotypic variance (A), no shared environmental effect (C), and no familial (AC) effects. Statistically significant effects

(o = 0.05) are shown in boldface.
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simplified diagram of this bivariate Cholesky model is presented
in Figurel. The genetic correlation between every pair of
parcellation-based CT and SA measures was calculated by
standardizing the shared genetic covariance between each pair of
parcellation size measures. Analyses of all 1128 pairwise models
populated a 48 x 48 genetic correlation matrix. The precision of
the genetic correlations varies due to the total amount of genetic
variance, so these derived statistics are unsuitable summary
statistics for confirmatory factor analysis. However, they are
useful for cluster and graph theory analyses (Schmitt et al,
2008).

Cluster Analysis

We then conducted exploratory analyses of the genetic
correlation matrix using cluster analysis and graph theoretical
modeling. The 48 x 48 genetic correlation matrix was visualized
using the heatmap.2 function in the gplots package of R (Warnes
et al., 2015). The heatmap.2 function performs hierarchical
analysis using Euclidian distances and a stepwise clustering

strategy to create a hierarchy of distance-based mapping. Genetic
regions are spatially proximal in the matrix corresponding to the
likeness of their correlational patterns.

Graph Theory

Finally, we constructed alternate visualizations of the
relationships between parcellation-based CT and SA using
graph theoretical models. In our data, significant edges (lines)
were defined by genetic correlations significant at « < 0.05.
No correction for multiple testing was applied because these
analyses were exploratory. We identified significant edges by
comparing the fit of a bivariate Cholesky decomposition with a
submodel in which the path allowing for genetic covariance was
removed.

From this network graph, we calculated statistical properties
of the network: characteristic path length (L) and the clustering
coefficient (C) (Watts and Strogatz, 1998). Within the present
data, values of L and C for the system as a whole were
calculated by taking mean values for all nodes in the graph.

TABLE 3 | ML parameter estimates and p-values from hypothesis testing of univariate ACE models of cortical thickness.

Variance components (lower, upper 95% ClI)

Hypothesis test

p-Values?

a2 c? e? A c AC
LEFT
Motor—Premotor 0.21 (0.00;0.45) 0.09 (0.00;0.39) 0.70 (0.55;0.87) 0.47 0.72 0.00
Occipital 0.34 (0.00;0.66) 0.22 (0.00;0.56) 0.44 (0.33;0.59) 0.14 0.35 0.00
Postlateral temporal 0.26 (0.00;0.62) 0.25 (0.00;0.55) 0.49 (0.37;0.65) 0.27 0.30 0.00
Superior parietal 0.15 (0.00;0.58) 0.33 (0.00;0.55) 0.52 (0.40;0.66) 0.53 0.18 0.00
Orbitofrontal 0.46 (0.00;0.59) 0.00 (0.00;0.43) 0.54 (0.41;0.71) 0.09 1.00 0.00
Superior temporal 0.53 (0.08:0.65) 0.00 (0.00;0.39) 0.47 (0.35;0.61) 0.02 1.00 0.00
Inferior parietal 0.37 (0.00;0.51) 0.00 (0.00;0.34) 0.63 (0.49,0.79) 0.08 1.00 0.00
Dorsomedial frontal 0.42 (0.00;0.68) 0.16 (0.00;0.53) 0.42 (0.32;0.55) 0.06 0.51 0.00
Anteromedial temporal 0.52 (0.07;0.65) 0.03 (0.00;0.43) 0.45 (0.35;0.58) 0.02 0.88 0.00
Precuneus 0.09 (0.00;0.51) 0.31 (0.00;0.50) 0.60 (0.47;0.74) 0.74 0.22 0.00
Dorsolateral prefrontal 0.28 (0.00;0.57) 0.17 (0.00;0.51) 0.55 (0.43;0.70) 0.31 0.56 0.00
Pars opercularis 0.34 (0.00;0.59) 0.12 (0.00;0.48) 0.54 (0.41,0.69) 0.16 0.60 0.00
RIGHT
Motor-Premotor 0.44 (0.00;0.57) 0.00 (0.00;0.40) 0.56 (0.43;0.72) 0.07 1.00 0.00
Occipital 0.41 (0.00:0.60) 0.07 (0.00;0.47) 0.52 (0.40:0.68) 0.10 0.78 0.00
Postlateral temporal 0.14 (0.00:0.49) 0.19 (0.00;0.43) 0.67 (0.51;0.84) 0.61 0.44 0.00
Superior parietal 0.33 (0.00;0.61) 0.17 (0.00;0.55) 0.50 (0.39;0.63) 0.20 0.54 0.00
Orbitofrontal 0.55 (0.30;0.67) 0.00 (0.00;0.18) 0.45 (0.33;0.61) 0.00 1.00 0.00
Superior temporal 0.20 (0.00;0.58) 0.25 (0.00;0.51) 0.55 (0.41;,0.71) 0.40 0.23 0.00
Inferior parietal 0.00 (0.00;0.42) 0.32 (0.00;0.45) 0.68 (0.55;0.82) 1.00 0.16 0.00
Dorsomedial frontal 0.44 (0.09;0.56) 0.00 (0.00;0.29) 0.56 (0.44,0.72) 0.02 1.00 0.00
Anteromedial temporal 0.20 (0.00;0.55) 0.21 (0.00;0.48) 0.59 (0.45;0.75) 0.42 0.35 0.00
Precuneus 0.38 (0.00;0.52) 0.00 (0.00:0.34) 0.62 (0.48;0.78) 0.06 1.00 0.00
Dorsolateral prefrontal 0.53 (0.27;0.65) 0.00 (0.00;0.20) 0.47 (0.35;0.62) 0.00 1.00 0.00
Pars opercularis 0.17 (0.00:0.56) 0.26 (0.00;0.51) 0.56 (0.43:0.72) 0.48 0.25 0.00

@ p-Values reflect tests of the hypotheses of no genetic effect on phenotypic variance (A), no shared environmental effect (C), and no familial (AC) effects. Statistically significant effects

(o = 0.05) are shown in boldface.
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We compared these calculations with those from 1000 simulated
Watts—Strogatz networks, each with the same number of nodes
and edges as the real data. In the simulations, for each of i
edges, two nodes were identified by sampling from a pool of
48 nodes (with replacement) with uniform probability. Analysis
and visualization of graphs was performed using Watts—Strogatz
functions in the igraph 0.6.5 (Csardi, 2013) and the qgraph
(Epskamp et al., 2012) packages for R.

We also examined the extent to which networks evidenced
rich club properties. Rich club properties were operationalized
using the k coefficient, as defined by

2E

_— 1
N>k (N>k_ 1) ( )

¢k =

Where E is the number of connections between nodes greater
than degree k, and N is the number of nodes greater than degree
k. The high degree of interconnectedness among nodes of a
high degree makes the rich club network distinctive and protects
the network from critical failure, as any rich node can easily
distribute to several other nodes. Across genetic parcellations, we

derived the number of nodes exhibiting connections exceeding
degree k, and calculated the ratio of twice the number of
connections between the >k nodes relative to the maximum
number of connections possible. A larger ®k reflects rich club
properties and suggests some integration of the rich nodes.
If ®k is found to be greater than 1, the larger likelihood of
node connections as the number of nodes increases can then be
managed by weighting ®k:
K2

Dunc(k) ~ T

k koo (k)N @

where kmay is the maximum degree of any node. The subsequent
calculation of pync(k) = ®k/Dync(k) provides a weighted ratio in
which values >1 indicate the presence of rich club properties.

Results

Variance Component Analyses
Variance decomposition demonstrated substantial heritability of
SA within a majority of genetically-derived SA parcellations
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(ranging from 0.34 for right superior temporal to 0.69 for
left postlateral temporal; median = 0.53) and for mean CT
within some genetically-derived CT parcellations (ranging from
0.0 for right inferior parietal to 0.55 for right occipital;
median = 0.34). Tables 2, 3 present heritability estimates for
the parcellation-based regional measures, as well as tests of
the statistical significance of genetic and shared environmental
effects. Genetic variance was more consistently substantial for
SA in many regions, and the shared environment appeared to
have no significant effect on observed variability in SA within
the parcellations. Genetic variance was substantial for CT in
some of the regions, and shared environment appeared to have
no significant effect on observed inter-individual variability in
parcellation-based thickness in all areas.

Bivariate Genetic Analyses
Color mapping of the genetic correlation matrix is shown in
Figure 2. In these analyses, shared environmental variance

(c?) was excluded from the models due to a lack of any
significant shared environmental variance across all univariate
analyses of the regional measures. Genetic correlations
derived from AE models between SA of the parcellations
ranged from —0.56 to 1.0. Genetic correlations between
parcellation-based mean CT ranged from —0.71 to 1.0. As
can be seen on the diagonal of the heatmaps, bilaterally
homologous regions were more likely to be positively genetically
correlated.

Cluster Analysis

Pictured in Figure 3 are results from a cluster analysis with
a dendrogram depicting similarity in the patterns of genetic
correlations across both SA and CT parcellation values. As
can be observed in the figure, the CT and SA parcellation
values tend to cluster together in small groups, though the
clusters are not entirely divided based on the type of measure
(CT or SA).
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FIGURE 3 | Cluster analysis of the genetic correlations and
respective dendrogram for all 48 parcellation phenotypes
combined. Heatmap2.0 for R includes specifications allowing the order
of the parcellations to vary along the x and y axis, according to the
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strength of genetic relationship between parcellations. Here, a
corresponding dendrogram is depicted along the left and upper edges
of the diagram, indicating the observed genetic structure of the cluster
groups.
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Graph Theoretical Properties

Using genetic correlations with p < 0.05 as a threshold for
edge placement, we used only the lower half of the matrix and
identified 222 unique edges connecting the 48 parcellation-based
measures of CT and SA. We used binarized edges for the network
analyses resulting in undirected, non-weighted graphs. The mean
degree of the network (4.63) was greater than the natural log
of the number of nodes (3.87), thus small world properties
were estimable (Watts and Strogatz, 1998; Achard et al., 2006).
We modeled the distribution of the clustering coeflicient for
1000 Watts-Strogatz networks generated using permutations of
observed (unweighted) data, and the observed data fell within
the Watts—Strogatz network distribution at 0.10 for the 48 nodes,
and 0.24 and 0.08 for CT and SA, respectively. Average path
lengths were 0.08, 0.11, and 0.17, for all 48 nodes and for CT
and SA, respectively. Sigma, defined as the ratio of the clustering
coefficient to the characteristic path length, was 1.25 for the
48 nodes. The quantity of significant genetic correlations is
comparable in this sample relative to what would be expected
from a small world network.

We then mapped edges as they were observed in the data.
Table 1 presents the parcellation abbreviations for reference.
Sparsity of the binarized SA and CT correlation matrices
was 0.109 and 0.174, respectively, using a standard sparsity

degree. Figure 4 presents changes in network attributes as a
function of sparsity degree across different p-value thresholds.
A radial convergence diagram, Figure 5, depicts both SA and
CT regional measures combined, with SA on the right and
CT on the left. In this figure, associations of p < 0.05 were
mapped with the positive associations in green and negative
associations in red. Sparsity of the binarized lower triangular
matrix of genetic correlations p < 0.05 for all 48 nodes
was 0.197. The lower triangular matrix of genetic correlation
values with only non-significant p-values exhibited a sparsity of
0.803.

Finally, we examined strength of genetic association via the
spatial proximity of nodes. Note that this does not refer to spatial
proximity of the cortical parcellations on the surface of the brain,
but rather how “close” they are in the network, which depends
of the strength and pattern of the genetic intercorrelations. All
48 nodes, as pictured in Figure 6, exhibited ®k = 0.58. Again,
values >1.0 are suggestive of rich club properties. E in this
network = 134 and N = 22, with a larger ratio of E to N being
more indicative of rich club properties. In this network, increased
edges stemmed from right central SA, right dorsomedial CT, and
left orbitofrontal CT. Figure 7 presents the average nodal degree
for each of the 48 parcellations, with yellow bars indicating those
with degree >1 standard deviation from the mean.

FIGURE 4 | Network properties for SA and CT using different
p-value thresholds as a function of sparsity degree. (A) The
clustering index decreased as sparsity degree increased. (B) The

characteristic path length increased as sparsity degree increased.
(C) Local and (D) global efficiency decreased as sparsity
increased.
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FIGURE 5 | The observed data for SA and CT of the parcellations
combined. Table 1 presents the parcellation abbreviations for reference.
Edges represent genetic correlations where p < 0.05. Red edges denote
negative genetic correlations, and green edges denote positive genetic
correlations. The right side of the diagram depicts SA cluster nodes (in blue)

and the left side depicts CT cluster nodes (in orange). Darker shaded circles
denote parcellations with the highest nodal degree within SA or CT, and red
lettering denotes parcellations with highest nodal degree across all 48
parcellations. The bilaterally symmetrical CT correlations are sparser than
bilateral SA correlations.

It is possible that the small world properties could be an
artifact of sparse connective properties across two different types
of size measures, rather than within genetic CT- and SA-values.
Therefore, we also separated parcellation-based CT- and SA-
values and examined ®k within each. CT and SA network mean
degrees were 6.5 and 3.0, respectively. Given that the log of the
number of nodes (24) is 3.17, only the CT network mean degree
met this threshold, and only small world values for CT were
estimable.

Within-SA connections exhibited no evidence of rich club
properties (SA pynck = 0.75, &k = 1.23, E = 72, N = 13), while
within-CT did indicate possible rich club properties, such that
the weighted ratio pynck was > 1.0 (CT pypck = 1.8, Pk = 0.69,
E = 45, N = 9). When parcellations are graphed such that edge
length corresponds to strength of correlation, increased local
genetic connections appear to surround right frontal SA and left
medial CT parcellations (Figure 6).

Discussion

This study used biometric modeling and graph theoretical
approaches to examine emergent organizational principles from

genetic associations among regional measures of brain size (both
CT and SA), where the boundaries of the parcellations were
determined a priori based on genetic relationships. Overall,
results from these analyses suggest that (1) genetic covariances
between structures in SA are less than in CT; (2) the genetic
covariance between CT and SA for each structure is low;
(3) the genetic covariance between SA and CT overall is low
and basically negative; (4) the genetic correlations between
homologous structures were the highest for SA and CT, and all
positive.

Our finding of generally higher heritability for SA compared
to CT measures is consistent with our previous findings within
regions whose boundaries were determined based on sulcal/gyral
anatomy (Kremen et al., 2010). Thus, using genetically-derived
boundaries did not eliminate the apparent stronger contribution
of genetic factors to SA vs. CT. Strong genetic associations
between bilateral homologous regions are also consistent with
earlier genetic research on bilateral brain structure in pediatric
twins and siblings (Schmitt et al., 2008) and our own study in this
sample using sulcal/gyral-based parcellations (Eyler et al., 2014).
The current clustering findings illustrated in the dendrogram
show some separation of SA from CT measures in terms of
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Surface Area Parcellations

FIGURE 6 | Above is a final network representation of genetic
correlations where p < 0.05, and where the proximity of the edges
denotes strength of genetic correlation between parcellations.
Table 1 presents parcellation abbreviations for reference. Red edges reflect
negative genetic correlations, and green edges reflect positive genetic

LoM

R.C

correlations. SA parcellations are outlined in blue and CT cluster nodes are
outlined in orange. R- and L-prefixes denote right and left hemispheric
parcellations. Note increased edges stemming from right frontal SA, right
central SA, and left medial CT. Two distinct local networks appear to
surround the right frontal SA and left medial CT parcellations.

genetic correlations, which is consistent with previous results
based on lobar parcellations (Panizzon et al., 2009) and based on
the same parcellations used in the present analyses (Chen et al.,
2012). However, by combining the two size measures (CT and
SA) in a single correlation matrix, we were also able to examine
whether unique regions in each hemisphere formed small distinct
subunits of shared genetic covariance. It is possible that shared
genetic covariance may reflect communalities in brain function
or ontogeny.

A relatively dense local genetic network was observed
between CT of orbitofrontal, superior temporal, precuneus, and
dorsolateral prefrontal parcellations. Preliminary evidence of
tight interconnected CT nodes, and sparse nodes of lower degree,
indicate the possibility of a genetic CT network with rich club
properties.

Graph theory has been applied to the brain in a wide variety
of biological contexts, such as mapping of human brain circuitry
and the human connectome (for a review, see Bullmore and
Sporns, 2009; Filippi et al., 2013). Methods and tools to map
networks continue to evolve (e.g., Cramer et al., 2010; Rubinov
and Sporns, 2010; Borsboom et al., 2011; Borsboom and Cramer,

2013) and the use of graph theory has been especially fruitful
for genetic imaging of development (Schmitt et al, 2008).
Only Schmitt et al. have examined network properties emerging
from genetic covariance matrices between brain regions. In that
study, network properties were examined in genetic relationships
between structural measures within anatomical brain regions
in a pediatric sample. That study only focused on regional CT
measures and not SA, and our results are consistent with that
study, in that small world properties were observed in the genetic
relationships between structurally-determined regions.

Notably, we found in the present study that SA was
significantly negatively genetically associated with CT across a
number of the connected parcellations. One possible explanation
for negative genetic associations could be a competition or
a “balancing out” between regions, e.g., for space within the
physical confines of the skull, whose maximum size may be
evolutionarily limited by the size of the birth canal. Another
possibility is that cortical stretching might lead to a complex
configuration of regional relationships between SA and CT.
Globally, SA and CT have been observed to be genetically distinct
(Panizzon et al., 2009; Vuoksimaa et al., 2015); however, our
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networks controlling for global measures of SA and CT suggest
there are regional differences in the genetic correlations between
SA and CT.

Research has identified unique rich club networks of
the cortical connectome across species, and within human
samples such networks have succeeded in differentiating healthy
individuals from individuals with psychiatric disorders (van
den Heuvel and Sporns, 2011; van den Heuvel et al., 2013;
Collin et al., 2014). Our findings are from a healthy sample of
individuals and do not say anything about psychiatric illness.
However, results from this study suggest that future research
could glean additional information from examination of genetic
parcellation networks (particularly CT) in the context of aging
and neurological disorders. One example would relate to whether
genetic correlations between genetic parcellations are disparate
across samples selected for family risk of disorder, or across
healthy twins and twins discordant for disorder.

One caveat to these findings relates to the relatively small
number of nodes examined. We chose 12 nodes in each
hemisphere because that was the preferred number of clusters
for both SA and CT in the original genetic parcellation study
(Chen et al, 2012). However, genetic parcellation methods
could be varied, in order to maximize the number of nodes
or the regional shared genetic covariance between parcellations.
Including size measures from a larger number of genetically-
informative parcellations could help to further assess rich
club and small world connectivity. Future research might
also include joint analysis of subcortical measures with the
cortical measures used here. However, even larger sample sizes
would be needed to analyze more structures, and complications

due to combining three different size measures (SA, CT, and
volume) in the same statistical analysis may arise. Overall, future
studies of genetically-informed imaging data would benefit from
further characterization of genetic networks as potentially useful
phenotypes for neuropsychological health and development.
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