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Recent studies pinpoint visually cued networks of avalanches with MEG/EEG data.

Co-activation pattern (CAP) analysis can be used to detect single brain volume activity

profiles and hemodynamic fingerprints of neuronal avalanches as sudden high signal

activity peaks in classical fMRI data. In this study, we aimed to detect dynamic patterns

of brain activity spreads with the use of ultrafast MR encephalography (MREG). MREG

achieves 10Hz whole brain sampling, allowing the estimation of spatial spread of an

avalanche, even with the inherent hemodynamic delay of the BOLD signal. We developed

a novel computational method to separate avalanche type fast activity spreads from

motion artifacts, vasomotor fluctuations, and cardio-respiratory noise in human brain

default mode network (DMN). Reproducible and classical DMN sources were identified

using spatial ICA prior to advanced noise removal in order to assure that ICA converges

to reproducible networks. Brain activity peaks were identified from parts of the DMN, and

normalized MREG data around each peak were extracted individually to show dynamic

avalanche type spreads as video clips within the DMN. Individual activity spread video

clips of specific parts of the DMN were then averaged over the group of subjects. The

experiments show that the high BOLD values around the peaks are mostly spreading

along the spatial pattern of the particular DMN segment detected with ICA. With also the

spread size and lifetime resembling the expected power law distributions, this indicates

that the detected peaks are parts of activity avalanches, starting from (or crossing)

the DMN. Furthermore, the split, one-sided sub-networks of the DMN show different

spread directions within the same DMN framework. The results open possibilities to

follow up brain activity avalanches in the hope to understand more about the system

wide properties of diseases related to DMN dysfunction.
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Introduction

A neuronal activity avalanche is a cascade of bursts of activity
in the nervous system. It has been stated that although this
phenomenon is highly robust and reproducible, its relation
to physiological processes in the intact brain is currently not
known (Beggs, 2007). Previous works from Beggs and Plenz
(2004) described the activity avalanches at the maximum spatial
scale of local field potentials (LFPs). It was shown for neuronal
avalanches, that the spatial and temporal distributions can be well
described by power laws, which indicates that the propagation
of spontaneous activity in cortical networks are organized into
a critical state in which event sizes show no characteristic scales
(Beggs and Plenz, 2003).

Palva and co-workers were able to use MEG/EEG (MEEG)
to pinpoint visually cued networks of avalanches (Palva et al.,
2013). However, the accuracy of this method is limited spatially
to the brain surface, while fMRI is a natively three dimensional
technique in space. It has been shown in fMRI data, that
avalanches of activity are ruled by the same dynamical and
statistical properties described previously for neuronal events
at smaller scales (Tagliazucchi et al., 2012). Also in fMRI data,
Liu and Duyn developed a co-activation pattern (CAP) analysis
in order to detect single brain volume activity profiles and
hemodynamic fingerprints of neuronal avalanches as sudden
activations of networks (Liu and Duyn, 2013). Yet, activity
avalanche detection has not been performed on temporally
ultra-fast sampled BOLD recordings like magnetic resonance
encephalography (MREG).

Classical 2 s TR BOLD scanning is slow in temporal resolution
causing aliasing of physiological signals into lower frequencies of
interest for instance. MREG is a novel BOLD MR sequence that
achieves a higher, 100ms whole brain sampling interval. It has
been proven (Jacobs et al., 2014b) that MREG data have higher
statistical power for analyzing for instance epileptic networks
than previously used sequences. Higher sensitivity compared to
conventional sequences in recent findings considering epilepsy
has also been shown (Jacobs et al., 2014a), and ultra-fast partial
k-space trajectory sequences allow a 20 times faster data sampling
rate (Assländer et al., 2013).

MREG therefore allows a more accurate spatio-temporal
profiling of the activity spread, even with the inherent
hemodynamic delay of the BOLD signal; if two connected
or neighboring regions activate one after the other, the
measured signal can follow the spread of neuronal activity
to connected or neighboring areas (Ogawa et al., 2000;
Tomatsu et al., 2008; Sung and Ogawa, 2009). There is
some criticism to this due to variations in hemodynamic
delays, especially in causality analytics. However, considering
a local spread, the hemodynamic delay is small and allows
accurate spatial estimations of avalanches (Misaki et al.,
2013).

The presence of CAP’s in fMRI data was initially described
within the default mode network (DMN). The DMN includes
precuneus/posterior cingulate cortex, medial prefrontal cortex
and medial, lateral and inferior parietal cortex. The DMN splits
often in high model order ICA (Abou-Elseoud et al., 2010).

It is a consistent pattern of deactivation across a network
of brain regions that occurs during the initiation of task-
related activity (Raichle et al., 2001). As stated by Broyd et al.,
the DMN concept, although only first introduced into the
published literature in 2001, has rapidly become a central theme
in contemporary cognitive and clinical neuroscience (Broyd
et al., 2009). DMN dysfunction has been found to be related
to dementia, schizophrenia, epilepsy, anxiety and depression,
autism and attention deficit/hyperactivity disorder (Broyd et al.,
2009). The DMN splits hierarchically in high model order ICA
into several sub-networks (Abou-Elseoud et al., 2010) and sliding
window ICA in the DMNhasmarked spatial dynamics even from
frame to frame (Kiviniemi et al., 2011).

Tagliazucchi et al. have shown that resting state classical 2.5 s
TR BOLD activity between two inactive phases with an isolated
start of activation shows avalanche type properties (Tagliazucchi
et al., 2012). Liu and Duyn analyzed classical 2 s TR BOLD
signal avalanche fingerprints in DMN (Liu and Duyn, 2013).
The ultra-fast sampling rate of MREG offers the possibility to
detect the spatial and temporal spread of these and even faster
avalanche type activity spreads. However, since the MREG signal
is very sensitive to physiological noise, it is required to develop
advanced techniques to remove noise components such as
motion artifacts, vasomotor fluctuations, and cardio-respiratory
noise in order to detect accurately the activity avalanches. We
present a computational pipeline, comprising several steps to
filter the signal and separate the avalanche type activity spreads
in the DMN from physiological noise.

Methods

Overview of the activity avalanche detection system is shown in
Figure 1.

Measurement Data
The MR system is a Siemens 3T SKYRA with a 32-channel
head coil. MREG sequence obtained from Freiburg University
via collaboration with Jürgen Hennig group (Zahneisen et al.,
2012; Lee et al., 2013) was utilized. MREG is a three-dimensional
(3D) spiral, single-shot sequence that undersamples 3D k-space
trajectory for faster imaging (Assländer et al., 2013). It samples
the brain at 10Hz frequency (TR= 100ms, TE= 1.4ms, and flip
angle = 25◦) and offers thus about 20–25 times faster scanning
than conventional fMRI. Three-dimensional MPRAGE (TR =

1900ms, TE = 2.49ms, flip angle = 9◦, FOV = 240, and slice
thickness= 0.9) images were used to register theMREG data into
4mmMNI space.

FIGURE 1 | System components and data paths of activity detection.
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Data was collected from 10min long resting state MREG
measurements from 11 healthy control subjects (3 women,
27.2 ± 7.5 years old). The study protocol was approved by
the ethics committee of the Northern Ostrobothnia Hospital
District. Written informed consent was obtained from each
subject individually prior to scanning, in accordance with the
Helsinki declaration. During the 10-min MREG resting-state
study, subjects were instructed to lie quietly in the scanner with
their eyes open fixating at a cross on the screen and thinking
nothing particular. As criteria for the selection of appropriate
recordings for further study, both completeness of data as well
as performance against physiological noise removal by DRIFTER
(Särkkä et al., 2012) software were used.

Preprocessing Pipeline
MREG data are being preprocessed with FSL pipeline in the
same way as described by Korhonen et al. (2014). One hundred
and eighty time points are removed from the beginning for
minimizing T1-relaxation effects. Head motion was corrected
with FSL 5.01 MCFLIRT software (Jenkinson et al., 2002). The
translational and rotational movement of the subjects was used
in this study to exclude motion artifacts while detecting activity
avalanche peaks. The overview of the detection system steps is
shown in Figure 2.

Brain extraction was carried out after MCFLIRT with
optimization of the deforming smooth surface model, as
implemented in FSL 5.01 BET software (Smith, 2002) using
threshold parameters f = 0.3 and g = 0; and for 3D MPRAGE
volumes, using parameters f = 0.25 and g = 0.22 with neck
and bias field correction option. Spatial smoothing was done with

FIGURE 2 | Steps of the activity detection system. Preprocessing steps

for raw MREG data: motion correction, brain extraction, image registration,

and probabilistic independent component analysis across subjects resulting in

components part of the DMN as well. Activity peak detection on each DMN

ICA component: reduce cardio-respiratory physiological noise and calculate

slow vasomotor fluctuations, clean ICA component from physiological noise,

exclude time points and neighborhood affected by head motion, peak

detection on clean and motion-free signal. Visualization using data after

registration preprocessing step: crop MREG data around activity peaks and

extract slices as videos and frame tiles in the spatial region of interest.

fslmaths 5-mm FWHM Gaussian kernel. Three-dimensional
MPRAGE images were used to register the MREG data into
MNI space in 4-mm resolution usingMELODIC (Beckmann and
Smith, 2004) for group independent component analysis (ICA).

To separate resting state networks (RSN), such as DMN,
probabilistic ICA (PICA) was calculated for MREG data as
implemented in MELODIC. Group ICA was used to separate
noise sources from RSN sources with previous criteria (Kiviniemi
et al., 2003, 2009), model order was chosen to be 70. The
activity avalanche detection was performed on the selected ICA
components with analysis in time dimension.

Activity Peak Detection
This process consists of six steps (A-F), as shown in Figure 2,
and they are introduced with two example components. The
power spectra of two example ICA components, selected from
the same subject, are shown in Figure 3. The six steps (A-F)
are demonstrated separately in Figures 4, 5 for respiration and
cardiac physiological dominant signals, respectively.

Step A: Selection of ICA Components in DMN
The ICA components, obtained with preprocessing, as explained
in Section Preprocessing Pipeline, were analyzed by an ICA
resting state neuroradiologist (Kiviniemi et al., 2003, 2009), and
five components dominated by anatomical areas of posterior
cingulate cortex and (ventro)medial prefrontal cortex of the
DMN were selected. One component representing medial
prefrontal cortex (DMNmpf), one representing ventromedial
prefrontal cortex (DMNvmpf) and three split ICA components
representing posterior cingulate cortex (DMNpcc) were selected
(Abou-Elseoud et al., 2011). To assure convergence of ICA
method and spatial accuracy of the DMN components,
physiological noise removal, and motion detection were
performed after this step. Further data processing (steps B-F)
on the selected ICA components in the DMN was done with
custom-made software implemented in Matlab (Release 2014b.
The MathWorks Inc. Natick, Massachusetts, United States).

Step B: Respiration and Cardiac Physiological Noise

Removal with DRIFTER
First, physiological noise removal was done for each original time
series of the selected group ICA components as separate runs
with DRIFTER, which is a Bayesian method for retrospective
elimination of physiological noise from fMRI data. In this
case, the main advantage of using DRIFTER compared to
other methods like RETROICOR (Glover et al., 2000) was
the possibility of physiological noise removal without reference
signals, only defining estimated frequency ranges. The algorithm
first estimates the frequency trajectories of the physiological
signals with the interacting multiple models (IMM) filter. The
frequency trajectories in this case were estimated from the fMRI
data since temporal resolution was high enough (fs = 10Hz).
Frequency ranges for trajectory estimation as seen on Figure 3

were 8–24 bpm (0.13–0.4Hz) with 0.2 bpm (0.0033Hz) steps
and 45–65 bpm (0.75–1.08Hz) with 0.4 bpm (0.0067Hz) steps
for respiratory and cardiac noise, respectively. The estimated
frequency trajectories are then used in a state space model
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FIGURE 3 | Power spectrum estimations of the introduced respiration

and cardiac noise dominant DMN ICA components. The signals were

taken for the whole recording and normalized to zero mean and one variance

before spectrum estimations, to become comparable. The frequency ranges

given for DRIFTER for physiological noise filtering are shown together with

the power average in those ranges.

in combination of a Kalman filter (KF) and Rauch–Tung–
Striebel (RTS) smoother, which separated the signal into an
activation related cleaned signal, physiological noise, and white
measurement noise components (Särkkä et al., 2012).

DRIFTER physiological noise removal method did not
succeed for all components. There were more 10min longMREG
recordings for which DRIFTER succeeded in all five components
(see Section Step A: Selection of ICA Components in DMN),
therefore, the broad spatial distribution of an ICA component
could not be the reason behind it. The phase shifts of the
dominant frequencies to track made the IMM filter of DRIFTER
succeed at 65.5% of the data. Successful outputs per subjects
were varying between one and five. To evaluate the quality of
the frequency trajectory estimation, own scores (referred later as
“Dscores”) were introduced which reflect the standard deviation
of the frequency values of the trajectory. This method was
derived from the experimental observation that noise removing
performance was poor when the trajectory tracking approached
the minimum or maximum of the predefined frequency range
quickly, resulting in low variance of frequency values of the
trajectory estimation at the same time. Experimental limit for
scores with good noise removing performance was one, which
was exceeded by 97.3% of the DRIFTER outputs.

Step C: Removal of Vasomotor Fluctuations with

Savitzky–Golay Filter
Meanwhile, slow vasomotor fluctuations were estimated
also from the original time series of the selected group

ICA components with the Savitzky–Golay polynomial filter
(polynomial order 2, window size 513) for which over 80% of
the power of these estimated signals were under 10−2 Hz. This
filter minimizes least-squares error on the given time window
with the polynomial fit, and is widely used on physiological data
(Hargittai, 2005).

Step D: Cleaning Components from Noise Identified

in Steps B and C
Short-term avalanche type activity spreads appear on top of the
“base activity,” thus, the activity peak detection needed to be
independent from the vasomotor fluctuations. Therefore, the
polynomial smoothed signal was subtracted from the signal
resulted by the cardio-respiratory physiological noise removal
by DRIFTER. With this step, we are both removing vasomotor
fluctuations and physiological noise while normalizing the signal
to a close to zero mean, which enables to compare group
ICA components appearing in different spatial (anatomical)
areas.

Step E: Exclusion of Potentially Motion Affected Time

Points
For each time signal, the motion correction data of the
MREG measurement was used to exclude time points around
motion artifacts. Velocity information was calculated by
differentiating translational and rotational correction data along
time dimension. Separately, the absolute values of translational
and rotational velocity data were summed in all three MNI
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FIGURE 4 | Six step process (A–F) of activity peak detection: example on a 4min time window of an ICA component dominated by respiration

physiological noise, also shown in Figure 3.

spatial dimensions, resulting in a translational and rotational
speed representation. An example of results is illustrated in
Figures 4–6. Time points and their neighborhood, where the

sum of translational speed exceeded 0.2mm per sample, or
the rotational speed exceeded 10−3 radians per sample were
excluded. In order to confirm that the results are clean from
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FIGURE 5 | Six step process (A–F) of activity peak detection: example on a 4min time window of an ICA component dominated by cardiac

physiological noise, also shown in Figure 3.

motion artifacts, the excluded neighborhood was the same as the
range of later cropped MREG data around found peaks. This
is 5 s preceding and 10 s following the detected activity peak.

This particularly strict method results in the exclusion of 77%
of the detected peaks with the remaining signal representing
motion-free data.
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FIGURE 6 | Peak detection result overview for a single subject.

The motion data with the time points selected to exclude are in

the first plot. In the following four plots there are ICA components

of a single subject and the steps of the activity peak detection as

an overview in each plot, also containing the detected activity

peaks.

Step F: Finding Activity Peaks in Clean Time Series
Peak detection was performed on the clean signal. Peaks with
higher value than the 150% of the signal standard deviation
were initially marked. The minimum distance between found
peaks was 50 samples (5 s), and not the first, but always the
highest peak within the minimum distance (search window) was
marked.

Size and Lifetime of an Activity Peak
Using MREG data, which is critically sampled for cardiac and
respiratory physiological noise, introduces new possibilities, but
also limitations for previously used methods. One of these is,
that it measures physiological signals so accurately, that methods
described earlier to define size and length of an activity spread
around a peak (Tagliazucchi et al., 2012) would only measure
respiration fluctuations at many anatomical points in the brain,
including parts of the DMN. As stated earlier, it is currently not
possible to clean the four dimensional BOLD data directly from
physiological noise without unacceptable data loss, which is also
the reason for searching activity peaks in ICA time series. Thus,
we needed to develop own methods to estimate size and lifetime

of activity spreads belonging to found peaks in the clean ICA
components.

The size of an activity spread was estimated by the sum of
the absolute values of normalized BOLD ICA values during the
spreading lifetime in the single clean ICA time series where the
activity peak was detected. The lifetime of an activity spread was
defined as the widest continuous time range around the detected
peak where no value falls under the peak detection threshold (see
Section Step F: Finding Activity Peaks in Clean Time Series). This
estimation is clearly limited (due to the limitations described in
the previous paragraph), because activity spreads are not local
to the spatial distribution of an ICA component, but the power
reaching the area still enables us to make a rough estimation of
size and lifetime.

Visualization
The steps described in Section Activity Peak Detection result in
peak detection, and furthermore reflect avalanche type activity
spreads (see Section Single Activity Avalanches). The retrieved
information was used for processing registered MREG data
(registration step in preprocessing, Figure 2) to visualize the
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obtained results. First of all, the BOLD values were normalized
for the whole time length to zero mean and one variance.
This was done for effective visualization and valid comparison.
The aim of the visualization was to inspect spatial spread and
distribution of the avalanches detected from the clean signal,
which on top of a standard anatomical image allows observation
of MREG data.

For all detected peaks, the MREG data was cropped in the
following way: 50 samples preceded and 100 samples followed
the sample of the activity peak. This leads to 151 time samples
(15.1 s) long four dimensional MREG data for all detected peaks.
Three orthogonal slices were observed according to MNI space
for which the spatial intersection point was the highest value in
the spatial distribution of the actual ICA component within the
DMN. The normalized and color coded MREG data was overlaid
on a standard anatomy image. Color coding was the following
with the three traditional color channels: red at maximum in case
the voxel value is positive, blue at maximum in case the voxel
value is negative, and green channel at the normalized absolute
value of the actual voxel. This results in red to yellow and blue to
cyan color scales for positive and negative values, respectively.

Results

After finding the activity peaks, it was verified that the found
peaks really refer to an activity flash in the selected DMN areas
in an average case, and the peaks are not just a side effect
of neighboring activities from which only parts can be seen
through the spatial masks of the ICA components. For this, the
peak videos were averaged, as explained in Section Group Mean
Activity.

In Figure 6, we illustrate the result of an activity peak
detection for a single subject. One of the important goals was
the complete rejection of the motion affected time points. In
this example, the first 4min of motion estimation showed a lot
of head motion exceeding our very low threshold. We can see
time points with similarly high activity peaks in the starting
region as the points marked in the second half of the recording,
but the peaks around possible head motion were not marked.
In the motion free time range, we can observe time points
unmarked, with similarly high activity peaks as the marked
ones. This is to prevent overlapping during the visualization,
thus, only the highest peak within a certain search window was
marked. This is not the case across different components, because
the overlapping is not a disturbing issue while visualizing the
activity avalanches in different planes for different components.
With keeping these two exceptions in mind, we can observe in
Figure 6 that clearly the highest activity peaks were marked for
visualization.

Single Activity Avalanches
For every subject, five DMN ICA components were processed.
Even with the strict exclusion of the possibly motion affected
time points, 130 single activity peaks were found. However,
a sample point of an activity peak is not perfectly punctual
because, as a result of smoothing in DRIFTER, the peak might
be shifted with several samples. To obtain an estimation of

this error, the starting points of activity spreads were manually
observed. As in the example of Figure 7, the starting point of an
activity spread can be clearly seen in the concerned anatomical
area with global thresholds over all subjects and components.
By manual inspection of such extracted frame tiles, the actual
difference of the activity spread starting point from frame zero
was determined. Thus, the standard deviation around frame zero
of the starting points resulted in 4.20 frames (0.42 s).

Similarly to the starting point, the length of the activity
avalanche can be also manually observed in the four dimensional
data. This is different from the lifetime estimation, which is
computed, and not amanual observation. The standard deviation
of the activity avalanche lengths was 2.33 frames (0.233 s) around
the mean value of 3.75 frames (0.375 s). This is a length of
activity which can only be observed with ultrafast sampling MR
sequences like MREG. The short length also excludes the thought
that the effect of the cardiac or respiratory noise would be seen
directly, since such a rapid change is in a higher frequency range
than the heart rate or respiration of a resting individual.

The activity spreads were analyzed by a resting state specialist,
and quick, avalanche type activity spreading was observed. In
Figure 7, the activity spread in DMNmpf is a typical detected
phenomenon. The spreads in DMNpcc left and DMNpcc right

demonstrate the left and right splitting of DMN ICA components
and their different activity spread directions.

The distribution estimations of the size and lifetime of an
activity peak are shown in Figure 8. These were calculated as
described in Section Size and Lifetime of an Activity Peak. It has
been proven in previous works, that activity spreads extracted
around BOLDpeaks have avalanche type properties (Tagliazucchi
et al., 2012; Liu and Duyn, 2013). With this small number of
detected activity spreads it is not possible to verify completely
the avalanche properties described previously (Beggs and Plenz,
2003; Tagliazucchi et al., 2012). However, we apply a very similar
definition of activity spreads as is used for avalanches, i.e.,
selecting high data values preceded and followed by still data.
With this definition, the resulting trends for the detected activity
spreads are as expected from theory for avalanches (marked
by lines in Figure 8), supporting our choice to call the activity
around the detected peaks as avalanche type activity spreads.
With the small amount of data, the roughness of the size, and
lifetime estimates could be responsible for the many outliers,
but there is no better method currently available for critically
sampled fMRI data, i.e., where the cardiac and respiration signals
do not alias into lower frequencies.

Group Mean Activity
From the single peaks, an average was created for all ICA
component separately, i.e., cropped data around all found activity
peaks in a single component of a single subject was averaged
among peaks into a single 151 frames long (15.1 s) data set. As a
second step, with equal weight for each subject, a groupmean was
calculated along subjects resulting in five 151 frame long data sets
representing the originally selected five DMN ICA components.
In Figure 9, the group mean frames for all five ICA components
around the peak detection point are shown in a selected plane.
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FIGURE 7 | Visualization of single activity avalanches in DMNmpf

and DMNpcc by frame tiles with vertical time flow (from top to

bottom) and 100ms frame distances. The top frames are the analyzed

ICA components cut and saturated at z-score thresholds 3 and 7,

respectively. The vertically following frames are normalized BOLD data,

cut and saturated at absolute threshold value 1.7 and 3.5, respectively.

Values are color coded from low to high as red to yellow and blue to

cyan, for positive and negative values, respectively. Activity data was

smoothed with a Gaussian kernel (mean 0, standard deviation 1.2 pixels),

and the voxel values outside the brain set to zero. Activity avalanche in

DMNmpf and in DMNpcc left starts at frame three, in DMNpcc right starts

at frame two. All three shown activity avalanches are five frames long.

The BOLD values are spatially registered and thus overlaid on a standard

anatomy image.

As explained in Section Single Activity Avalanches, the signal
smoothing during physiological noise removal may result in few
frames shift of the activity peak. Therefore, the mean frames
provide dominant spatial information of the avalanche type
activity spreads instead of holding accurate timing information.
Importantly, we observed that the avalanches belonging to
DMNpcc components split to the left and the right side are
dominant on different sides of the brain, according to the
original ICA component. We provide the whole 151 frame
data for the DMN(v)mpf and DMNpcc components presented in
both Figures 7, 9 in video format as Supplementary Material.
Note, that visualization data is not clean from physiological
noise.

For the group mean data, the spatial focus of high BOLD
activity remains in the region of interest anatomically. Thus, the
activity spreads, including activity avalanches, started from or at
least crossed this anatomical area.

Discussion and Future Prospects

Activity avalanches and their momentous fingerprint CAP’s in
fMRI have recently been detected with classical BOLD scans
of 2(-2.5) s TR (Tagliazucchi et al., 2012; Liu and Duyn, 2013;
Palva et al., 2013). Our results show that by combining ultra-
fast MREG imaging with advanced signal processing, one can
detect spatial spread of avalanche type brain activity with 100ms

Frontiers in Human Neuroscience | www.frontiersin.org 9 August 2015 | Volume 9 | Article 448

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Rajna et al. Activity avalanche detection with MREG

FIGURE 8 | Distribution estimation of size and lifetime of activity

spreads. The desired power law functions are marked with lines.

time-frame accuracy. A key issue is the proper detection of RSN
signal sources prior to excess MREG signal filtering, which seem
to diminish the skewness and kurtosis of RSN sources for ICA to
separate them from the data. After that, motion and other noise
sources need to be excluded for the detection of suitable peaks
for avalanche type activity spreads in the brain. Even though
the BOLD signal has inherent hemodynamic delay, one can still
detect successive spread of neuronal event within sufficiently
similar regions (Ogawa et al., 2000; Tomatsu et al., 2008; Sung
and Ogawa, 2009).

Importantly, the activity spread needs to be distinguished
from cardiac and respiratory pulsations. Our ultra-fast MREG
system enables critical sampling of the cardio-respiratory noise
that can be extracted from the signal with some prerequisites.
Also our preliminary QPP analyses suggest markedly differential
spatio-temporal spread of cardio-respiratory pulsations in the
human brain and thus also exclude their participation as a source
in signal change.

ICA has become one of the main tools in separating brain
activity sources, whether activated, spontaneous or inherent in
origin (McKeown and Sejnowski, 1998; Calhoun et al., 2001;
Kiviniemi et al., 2003; Greicius et al., 2004; Beckmann et al.,
2005). One puzzling question has been the splitting of the
detected brain networks, including the DMN, into several sub-
networks with increasing model orders (Ma and Wang, 2008;
Abou-Elseoud et al., 2010, 2011). Splitting has been suggested
to be a sign of over-fitting the ICA model, but our results
suggest, at least in model order 70, an activity avalanche based
origin for the splitting. Figures 7, 9 (along with Supplementary
Videos) illustrate that within these networks, the avalanches type
activity spreads are indeed different in the split sub-networks,
emphasizing the avalanche activity on the side of the detected
sub-network. Therefore, the spatial ICA splitting in higher model
orders seems to be a sign of neuronal activity spread difference
of separate events. In lower model orders, these events become

FIGURE 9 | Visualization of activity avalanche group means for all

selected ICA components in DMN(v)mpf and DMNpcc by frame tiles in

(Continued)
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FIGURE 9 | Continued

single planes with vertical time flow (from top to bottom) and 100ms

frame distances. The top frames are the analyzed ICA components cut and

saturated at z-score thresholds 3 and 7, respectively. The vertically following

frames are normalized BOLD data, cut and saturated at absolute threshold

values, from left to right: 1 and 2; 0.8 and 1.5; 0.8 and 1.5; 0.4 and 0.8; 0.8

and 1.5, respectively. Values are color coded from low to high as red to yellow

and blue to cyan, for positive and negative values, respectively. Activity data

was smoothed with a Gaussian kernel (mean 0, standard deviation 1.2 pixels),

and the voxel values outside the brain set to zero. The BOLD values are

spatially registered and thus overlaid on a standard anatomy image.

grouped together as a lower hierarchical system due to summed
explanation of variance.

One of the main difficulties in obtaining clear results is that
the physiological noise is hardly separable from higher frequency
neuronal activity. Our novel idea was to use the DRIFTER
for the peak detection only on single time series, and not
already on the reconstructed MREG signal (see preprocessing
step), after which ICA analysis leads to inaccurate components.
As a result, we cleaned the already spatially accurate group
ICA output signals from vasomotor fluctuations and cardio-
respiratory physiological noise. This indeed involved many steps,
but also showed the richness of MREG data and the use of its
high time resolution. By showing, that the group mean of activity
peaks and their neighborhood keep their focus on the anatomical
area of the ICA component in the DMN, and individually high
activities tend to happen in a fraction of a second, we consider
found time peaks belonging to avalanche type activity spreads,
which when cleaned from other physiological effects, must be
activity avalanches.

Current tools defining spatial accuracy are not perfect. If the
registration of the MREG data on the brain anatomy could be
done more precisely, and the spatially sparse parts of a single ICA
component could be segmented, a higher overall and DRIFTER
performance would be achieved. Here, we used DRIFTER for
removing physiological noise, however, experiments showed the
limitations of its performance in some cases. Accordingly, also
other methods instead of DRIFTER could be taken into account
or compared, like temporal ICA, novel MREG sequences, or
improvements on DRIFTER by using the actual measured
cardiac and respiration data. A clear limitation is the number
of subjects included in the study and thus the amount of data
analyzed.

It is a future goal to compare the findings with other
data modalities. We have collected simultaneous multimodal
data, where we have scalp DC-EEG, near-infrared spectroscopy
(NIRS), noninvasive blood pressure (NIBP) and full anesthesia
monitoring during MREG scanning for subjects in this study,

using our HEPTA-scan concept (Korhonen et al., 2014). Our
aim is to model EEG source avalanches and analyze how
their spread might be connected with MREG avalanches. Other
modalities, like NIRS and NIBP data, could be also used to
model local oxy/deoxy concentration changes and vasomotor
waves around the detected points. Currently, all subjects were
healthy volunteers. In the future, we plan to include and compare

epileptic subjects, either as a group or individually. Considering
the higher statistical power of MREG data for analyzing epileptic
networks (Jacobs et al., 2014b), there is a potential in research
toward using our method also for subjects with diseases.

Furthermore, a method to quantify dynamics of three
dimensional spread patters would also have a lot of benefits,
and would shorten the time spent on visual inspections and
interpretation of the results, among improving current rough
anatomical alignments. On long term this is the superior feature
of MRI data in analyzing activity avalanches since the recording
is performed natively in three spatial dimensions, however,
this involves advanced signal processing techniques accordingly.
Future work combining multi-modal EEG, NIRS, and NIBP will
further increase accuracy of separating signal sources from the
continuously active brain.

Conclusion

This study has shown, that it is possible to find avalanche type
activity spreads in the DMN which promise the opportunity
for further analyzing activity avalanches in these regions with a
natively three dimensional imaging technique in space. With the
time resolution of ultra-fast MREG, activity avalanche detection
has not been performed before, while comparing and following
up individual activity spreads, based on this peak detection
method, is in a reachable sight now. Furthermore, considering
the analyzed brain areas, it is a step toward developing detection
of features with diagnostic value in DMN dysfunction related
diseases, which include dementia, schizophrenia, anxiety and
depression, autism and attention deficit/hyperactivity disorder.

Acknowledgments

The authors acknowledge the support of the Academy of Finland
Grant 275352, VTR and Medical Research Center of Oulu
University Hospital grants.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2015.00448

References

Abou-Elseoud, A., Littow, H., Remes, J., Starck, T., Nikkinen, J., Nissilä, J.,

et al. (2011). Group-ICA model order highlights patterns of functional brain

connectivity. Front. Syst. Neurosci. 5:37. doi: 10.3389/fnsys.2011.00037

Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., and Kiviniemi,

V. (2010). The effect of model order selection in group PICA. Hum. Brain

Mapp. 31, 1207–1216. doi: 10.1002/hbm.20929

Assländer, J., Zahneisen, B., Hugger, T., Reisert, M., Lee, H. L., LeVan, P.,

et al. (2013). Single shot whole brain imaging using spherical stack of

Frontiers in Human Neuroscience | www.frontiersin.org 11 August 2015 | Volume 9 | Article 448

http://journal.frontiersin.org/article/10.3389/fnhum.2015.00448
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Rajna et al. Activity avalanche detection with MREG

spirals trajectories. Neuroimage 73, 59–70. doi: 10.1016/j.neuroimage.2013.

01.065

Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M. (2005). Investigations

into resting-state connectivity using independent component analysis. Philos.

Trans. R. Soc. Lond. B Biol. Sci. 360, 1001–1013. doi: 10.1098/rstb.2005.1634

Beckmann, C. F., and Smith, S. M. (2004). Probabilistic independent component

analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging.

23, 137–152. doi: 10.1109/TMI.2003.822821

Beggs, J. M. (2007). Neuronal avalanche. Scholarpedia 2, 1344. doi:

10.4249/scholarpedia.1344

Beggs, J. M., and Plenz, D. (2003). Neuronal avalanches in neocortical circuits.

J. Neurosci. 23, 11167–11177. Available online at: http://jneurosci.org/content/

23/35/11167.full

Beggs, J. M., and Plenz, D. (2004). Neuronal avalanches are diverse and precise

activity patterns that are stable for many hours in cortical slice cultures.

J. Neurosci. 24, 5216–5229. doi: 10.1523/JNEUROSCI.0540-04.2004

Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., and

Sonuga-Barke, E. J. (2009). Default-mode brain dysfunction in mental

disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296. doi:

10.1016/j.neubiorev.2008.09.002

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). Spatial

and temporal independent component analysis of functional MRI data

containing a pair of task-related waveforms. Hum. Brain Mapp. 13, 43–53. doi:

10.1002/hbm.1024

Glover, G. H., Li, T. Q., and Ress, D. (2000). Image-based method for retrospective

correction of physiological motion effects in fMRI: RETROICOR. Magn.

Reson. Med. 44, 162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-

MRM23>3.0.CO;2-E

Greicius, M. D., Srivastava, G., Reiss, A. L., and Menon, V. (2004). Default-

mode network activity distinguishes Alzheimer’s disease from healthy aging:

evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–4642.

doi: 10.1073/pnas.0308627101

Hargittai, S. (2005). Savitzky-Golay least-squares polynomial filters in ECG signal

processing. Comput. Cardiol. 2005, 763–766. doi: 10.1109/cic.2005.1588216

Jacobs, J., Menzel, A., Ramantani, G., Körbl, K., Assländer, J., Schulze-Bonhage,

A., et al. (2014a). Negative BOLD in default-mode structures measured with

EEG-MREG is larger in temporal than extra-temporal epileptic spikes. Front.

Neurosci. 8:335. doi: 10.3389/fnins.2014.00335

Jacobs, J., Stich, J., Zahneisen, B., Assländer, J., Ramantani, G., Schulze-

Bonhage, A., et al. (2014b). Fast fMRI provides high statistical power

in the analysis of epileptic networks. Neuroimage 88, 282–294. doi:

10.1016/j.neuroimage.2013.10.018

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved

optimization for the robust and accurate linear registration and

motion correction of brain images. Neuroimage 17, 825–841. doi:

10.1006/nimg.2002.1132

Kiviniemi, V., Kantola, J. H., Jauhiainen, J., Hyvärinen, A., and Tervonen, O.

(2003). Independent component analysis of nondeterministic fMRI signal

sources. Neuroimage 19(2 Pt 1), 253–260. doi: 10.1016/S1053-8119(03)00097-1

Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., et al. (2009).

Functional segmentation of the brain cortex using high model order group

PICA. Hum. Brain Mapp. 30, 3865–3886. doi: 10.1002/hbm.20813

Kiviniemi, V., Vire, T., Remes, J., Elseoud, A. A., Starck, T., Tervonen, O., et al.

(2011). A sliding time-window ICA reveals spatial variability of the default

mode network in time. Brain Connect. 1, 339–347. doi: 10.1089/brain.2011.0036

Korhonen, V., Hiltunen, T., Myllylä, T., Wang, X., Kantola, J., Nikkinen, J.,

et al. (2014). Synchronous multiscale neuroimaging environment for critically

sampled physiological analysis of brain function: hepta-scan concept. Brain

Connect. 4, 677–689. doi: 10.1089/brain.2014.0258

Lee, H. L., Zahneisen, B., Hugger, T., LeVan, P., and Hennig,

J. (2013). Tracking dynamic resting-state networks at higher

frequencies using MR-encephalography. Neuroimage 65, 216–222. doi:

10.1016/j.neuroimage.2012.10.015

Liu, X., and Duyn, J. H. (2013). Time-varying functional network information

extracted from brief instances of spontaneous brain activity. Proc. Natl. Acad.

Sci. U.S.A. 110, 4392–4397. doi: 10.1073/pnas.1216856110

Ma, Z., and Wang, Z. J. (2008). Dynamic analysis of probabilistic boolean network

for fMRI study in Parkinson’s disease. Conf. Proc. IEEE Eng. Med. Biol. Soc.

2008, 161–164. doi: 10.1109/iembs.2008.4649115

McKeown, M. J., and Sejnowski, T. J. (1998). Independent component analysis of

fMRI data: examining the assumptions. Hum. Brain Mapp. 6, 368–72.

Misaki, M., Luh, W. M., and Bandettini, P. A. (2013). Accurate decoding

of sub-TR timing differences in stimulations of sub-voxel regions

from multi-voxel response patterns. Neuroimage 66, 623–633. doi:

10.1016/j.neuroimage.2012.10.069

Ogawa, S., Lee, T. M., Stepnoski, R., Chen, W., Zhu, X. H., and Ugurbil, K. (2000).

An approach to probe some neural systems interaction by functional MRI

at neural time scale down to milliseconds. Proc. Natl. Acad. Sci. U.S.A. 97,

11026–11031. doi: 10.1073/pnas.97.20.11026

Palva, J. M., Zhigalov, A., Hirvonen, J., Korhonen, O., Linkenkaer-Hansen,

K., and Palva, S. (2013). Neuronal long-range temporal correlations

and avalanche dynamics are correlated with behavioral scaling laws.

Proc. Natl. Acad. Sci. U.S.A. 110, 3585–3590. doi: 10.1073/pnas.12168

55110

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and

Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.

U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Särkkä, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., Vanni, S.,

et al. (2012). Dynamic retrospective filtering of physiological noise in BOLD

fMRI: DRIFTER. Neuroimage 60, 1517–1527. doi: 10.1016/j.neuroimage.2012.

01.067

Smith, S. M. (2002). Fast robust automated brain extraction.Hum. BrainMapp. 17,

143–155. doi: 10.1002/hbm.10062

Sung, Y. W., and Ogawa, S. (2009). Using FMRI for elucidating dynamic

interactions. Methods Mol. Biol. 489, 243–254. doi: 10.1007/978-1-59745-

543-5_11

Tagliazucchi, E., Balenzuela, P., Fraiman, D., and Chialvo, D. R. (2012). Criticality

in large-scale brain fMRI dynamics unveiled by a novel point process analysis.

Front. Physiol. 3:15. doi: 10.3389/fphys.2012.00015

Tomatsu, S., Someya, Y., Sung, Y. W., Ogawa, S., and Kakei, S. (2008).

Temporal feature of BOLD responses varies with temporal patterns

of movement. Neurosci. Res. 62, 160–167. doi: 10.1016/j.neures.2008.

08.003

Zahneisen, B., Hugger, T., Lee, K. J., LeVan, P., Reisert, M., Lee, H. L., et al. (2012).

Single shot concentric shells trajectories for ultra fast fMRI.Magn. Reson. Med.

68, 484–494. doi: 10.1002/mrm.23256

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Rajna, Kananen, Keskinarkaus, Seppänen and Kiviniemi. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 12 August 2015 | Volume 9 | Article 448

http://jneurosci.org/content/23/35/11167.full
http://jneurosci.org/content/23/35/11167.full
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Detection of short-term activity avalanches in human brain default mode network with ultrafast MR encephalography
	Introduction
	Methods
	Measurement Data
	Preprocessing Pipeline
	Activity Peak Detection
	Step A: Selection of ICA Components in DMN
	Step B: Respiration and Cardiac Physiological Noise Removal with DRIFTER
	Step C: Removal of Vasomotor Fluctuations with Savitzky–Golay Filter
	Step D: Cleaning Components from Noise Identified in Steps B and C
	Step E: Exclusion of Potentially Motion Affected Time Points
	Step F: Finding Activity Peaks in Clean Time Series

	Size and Lifetime of an Activity Peak
	Visualization

	Results
	Single Activity Avalanches
	Group Mean Activity

	Discussion and Future Prospects
	Conclusion
	Acknowledgments
	Supplementary Material
	References


