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Introduction: Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia

(bvFTD) are the most common types of early-onset dementia. Early differentiation

between both types of dementia may be challenging due to heterogeneity and overlap of

symptoms. Here, we apply resting state functional magnetic resonance imaging (fMRI)

to study functional brain connectivity differences between AD and bvFTD.

Methods: We used resting state fMRI data of 31 AD patients, 25 bvFTD patients,

and 29 controls from two centers specialized in dementia. We studied functional

connectivity throughout the entire brain, applying two different analysis techniques,

studying network-to-region and region-to-region connectivity. A general linear model

approach was used to study group differences, while controlling for physiological noise,

age, gender, study center, and regional gray matter volume.

Results: Given gray matter differences, we observed decreased network-to-region

connectivity in bvFTD between (a) lateral visual cortical network and lateral occipital and

cuneal cortex, and (b) auditory system network and angular gyrus. In AD, we found

decreased network-to-region connectivity between the dorsal visual stream network

and lateral occipital and parietal opercular cortex. Region-to-region connectivity was

decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine,

intracalcarine cortex, and lingual gyrus.

Conclusion: We showed that the pathophysiology of functional brain connectivity is

different between AD and bvFTD. Our findings support the hypothesis that resting state

fMRI shows disease-specific functional connectivity differences and is useful to elucidate

the pathophysiology of AD and bvFTD. However, the group differences in functional

connectivity are less abundant than has been shown in previous studies.

Keywords: Alzheimer’s disease, frontotemporal dementia, functional connectivity, functional magnetic resonance

imaging, neurodegenerative disorders, resting state fMRI, resting state networks
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Introduction

The most common types of early-onset dementia are Alzheimer’s
disease (AD) and behavioral variant frontotemporal dementia
(bvFTD) (Ratnavalli et al., 2002). Patients with AD typically
present with deficits in episodic and working memory
(McKhann, 2011), whereas bvFTD is mainly characterized
by changes in behavior, personality, and motivation (Rascovsky
et al., 2011). However, symptoms may vary considerably, with
overlap of symptoms between AD and bvFTD, includingmemory
disturbances (Irish et al., 2014), and behavioral abnormalities
(Woodward et al., 2010). Due to this heterogeneity and overlap
of symptoms, clinical differentiation between both types of
dementia may be challenging, particularly early in the disease.
Therefore, to improve diagnostic accuracy and early differential
diagnosis, there is a strong need for early markers of brain
changes associated with the two types of dementia.

A substantial amount of dementia research used
neuroimaging to elucidate the pathophysiology of bvFTD
and AD (McMillan et al., 2014; Raamana et al., 2014).
Neuroimaging of brain structure shows typical AD pathology in
the hippocampus, precuneus, posterior cingulate cortex, parietal,
and occipital brain regions (Buckner et al., 2005; Seeley et al.,
2009; Krueger et al., 2010). BvFTD pathology is most often found
in the anterior cingulate cortex, frontoinsula, and frontal brain
regions (Seeley et al., 2009; Krueger et al., 2010).

Imaging of functional brain connectivity may be sensitive to
detect disease-specific network changes in neurodegenerative
diseases (Pievani et al., 2011). Former studies have shown
abnormalities in functional connectivity in a posterior
hippocampal-cingulo-temporal-parietal network known as
the default mode network in AD (Greicius et al., 2004; Allen
et al., 2007; Binnewijzend et al., 2012; Hafkemeijer et al., 2012)
and in an anterior frontoinsular-cingulo-orbitofrontal network
often called the salience network in bvFTD (Zhou et al., 2010;
Agosta et al., 2013; Filippi et al., 2013; Rytty et al., 2013).
Moreover, abnormalities in functional brain networks were
found in mild cognitive impairment (Binnewijzend et al., 2012;
He et al., 2014), subjective memory complaints (Hafkemeijer
et al., 2013), and asymptomatic subjects at genetic risk for
developing neurodegenerative diseases (Filippini et al., 2009;
Sheline et al., 2010; Chhatwal et al., 2013; Dopper et al., 2014;
Rytty et al., 2014), even in the absence of brain atrophy or
cognitive decline.

Previous studies compared functional brain networks between
dementia patients and controls, most often focusing on a priori
defined regions or networks of interest, showing decreased
functional connectivity in the default mode network in AD and
in the salience network in bvFTD (Greicius et al., 2004; Allen

Abbreviations: AD, Alzheimer’s disease; bvFTD, behavioral variant

Frontotemporal Dementia; CDR, Clinical Dementia Rating; FAB, Frontal

Assessment Battery; FIX, FMRIB’s ICA-based Xnoiseifier; fMRI, functional

magnetic resonance imaging; FSL, Functional Magnetic Resonance Imaging of

the Brain Software Library; FWE, Family-Wise Error; GDS, Geriatric Depression

Scale; GLM, General Linear Model; MMSE, Mini-Mental State Examination;

MNI, Montreal Neurological Institute; MRI, magnetic resonance imaging; TFCE,

Threshold-Free Cluster Enhancement.

et al., 2007; Binnewijzend et al., 2012; Agosta et al., 2013; Rytty
et al., 2013). The direct comparison of functional connectivity
between patients with AD and bvFTD, which is relevant for
clinical differentiation, has been studied less often (Zhou et al.,
2010; Filippi et al., 2013). In these studies, bvFTD patients
have consistently shown decreased salience network connectivity
compared with AD, while findings of default mode network
connectivity have been inconsistent (Zhou et al., 2010; Filippi
et al., 2013).

Therefore, to further explore functional connectivity in both
types of dementia, the aim of this study was to compare whole-
brain functional connectivity between AD and bvFTD. To study
functional connections throughout the entire brain, voxel-based
network-to-region (Greicius et al., 2004; Seeley et al., 2009; Zhou
et al., 2010; Filippi et al., 2013) and region-to-region analyses
(Supekar et al., 2008; Brier et al., 2014; Zhou et al., 2015) were
applied. Given the differences in gray matter atrophy in AD and
bvFTD (Buckner et al., 2005; Seeley et al., 2009; Krueger et al.,
2010), we studied functional connectivity while controlling for
gray matter volume. We expected connectivity differences in the
posterior temporal-parietal regions of the brain in AD, and in the
anterior cingulate and frontoinsular regions in bvFTD.

Materials and Methods

Participants
We used resting state functional magnetic resonance imaging
(fMRI) scans of 31 patients with probable AD, 25 patients
with probable bvFTD, and 29 control participants (Table 1). All
subjects were recruited from two Dutch centers specialized in
dementia; the Alzheimer Center of the VU University Medical
Center Amsterdam, and the Alzheimer Center of the Erasmus
University Medical Center Rotterdam.

All patients underwent a standardized dementia screening
including medical history, informant-based history, physical,
and neurological examination, blood tests, extensive
neuropsychological assessment, and magnetic resonance
imaging (MRI) of the brain. Diagnoses were established in
a multidisciplinary consensus meeting according to the core
clinical criteria of the National Institute on Aging and the
Alzheimer’s Association workgroup for probable AD (McKhann,
2011) and according to the clinical diagnostic criteria for bvFTD
(Rascovsky et al., 2011). To minimize center effects, all diagnoses
were re-evaluated in a panel including clinicians from both
Alzheimer centers.

The control participants were screened to exclude memory
complaints, drug, or alcohol abuse, major psychiatric disorders,
and neurological or cerebrovascular diseases. They underwent
an assessment including medical history, physical examination,
extensive neuropsychological tests, and an MRI of the brain,
comparable to the work-up of patients.

Cognitive functioning of all participants was assessed using
neuropsychological tests. The neuropsychological test battery
included Mini Mental State Examination (MMSE) (Folstein
et al., 1975), Frontal Assessment Battery (FAB) (Dubois et al.,
2000), Clinical Dementia Rating scale (CDR) (Morris, 1993),
Geriatric Depression Scale (GDS) (Reisberg et al., 1982), the
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TABLE 1 | Characteristics of the study population.

Characteristic HC (n = 29) AD (n = 31) bvFTD (n = 25) AD vs. bvFTD (p-value)

Age (years) 62.8 (5.1) 65.3 (7.0) 61.8 (7.3) 0.076

Gender (male/female) 17/12 19/12 19/6 0.249

Study center (VUMC/LUMC)a 16/13 20/11 16/9 0.969

Level of educationb 5.4 (1.2) 4.9 (1.3) 5.1 (1.5) 0.580

Duration of symptoms (months) n/a 41.9 (30.7) 49.4 (48.3) 0.355

MMSE (max score: 30) 28.8 (1.4) 22.7 (2.8) 24.4 (3.7) 0.068

FAB (max score: 18) n/a 13.3 (3.4) 13.8 (2.8) 0.592

CDR (max score: 3) 0.0 (0.0) 0.8 (0.3) 0.7 (0.4) 0.545

GDS (max score: 15) 1.3 (1.5) 2.8 (2.9) 3.8 (3.3) 0.279

RAVLT immediate recall (max score: 15) 9.0 (2.3) 4.6 (1.6) 5.7 (1.8) 0.017

RAVLT delayed recall (max score: 15) 8.6 (3.2) 1.9 (1.8) 3.9 (3.5) 0.009

RAVLT total (max score: 75) 44.9 (11.3) 22.8 (8.2) 28.7 (9.1) 0.017

VAT (max score: 6) 5.9 (0.5) 3.3 (2.0) 4.8 (1.9) <0.001

Digit span, forward (max score: 30) 12.1 (3.7) 10.0 (2.9) 10.6 (3.8) 0.519

Digit span, backward (max score: 30) 8.2 (3.4) 6.2 (2.7) 7.1 (3.1) 0.286

TMT Ac 37.6 (14.0) 56.8 (32.3) 63.2 (52.0) 0.604

TMT Bc 79.5 (26.8) 145.4 (65.3) 137.7 (67.5) 0.744

Stroop Ic 46.6 (7.8) 56.1 (13.9) 58.7 (25.0) 0.637

Stroop IIc 60.2 (9.6) 80.3 (31.4) 83.0 (41.6) 0.793

Stroop IIIc 98.3 (20.1) 156.5 (48.8) 153.1 (95.2) 0.883

Categorical fluencyd 24.2 (5.4) 13.9 (5.1) 13.0 (4.7) 0.537

Letter fluencyd 12.8 (5.1) 9.7 (4.0) 6.8 (4.3) <0.001

LDSTd 34.1 (6.8) 19.0 (9.3) 25.9 (7.1) 0.020

AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; HC, healthy controls; MMSE, Mini-Mental State Examination; FAB, Frontal Assessment Battery; CDR,

Clinical Dementia Rating Scale; GDS, Geriatric Depression Scale; RAVLT, Rey Auditory Verbal Learning Test; VAT, Visual Association Test; TMT, Trail Making Test; LDST, Letter Digit

Substitution Test.

Values are means (standard deviation) for continuous variables or numbers for dichotomous variables. Scores on GDS were missing in 15 individuals, scores on TMT in 10, scores on

Stroop in 1, scores on Categorical fluency in 6, scores on Letter fluency in 9, scores on LDST in 19, and scores on Digit span in 8 individuals.
a Imaging was performed either in the Alzheimer Center of the VU University Medical center (VUMC) or in the Leiden University Medical Center (LUMC) in the Netherlands.
bLevel of education was determined on a Dutch 7-point scale ranging from 1 (less than elementary school) to 7 (university or technical college).
cTime in seconds.
dNumber of correct responses in 1min.

Dutch version of the Rey Auditory Verbal Learning Test (Rey,
1958), Visual Association Test (Lindeboom et al., 2002),Wechsler
Adult Intelligence Scale III subtest digit span (Wechsler, 1997),
Trail Making Test part A and B (Army Test Battery, 1994),
Stroop Color-Naming test (Stroop, 1935), Categorical and Letter
fluency (Thurstone and Thurstone, 1962), and the Letter Digit
Substitution Test (Jolles et al., 1995).

This study was performed in compliance with the Code
of Ethics of the World Medical Association (Declaration of
Helsinki). Ethical approval was obtained from the local ethics
committees [VU University Medical Center Amsterdam (CWO-
nr 11-04, METC-nr 2011/55) and Leiden University Medical
Center (2011/55 P11.146)]. Written informed consent from all
participants was obtained.

Data Acquisition
Imaging was performed on a 3 Tesla scanner either in the
VU University Medical Center (Signa HDxt, GE Healthcare,
Milwaukee,WI, USA) or in the LeidenUniversityMedical Center
(Achieva, Philips Medical Systems, Best, The Netherlands), using
a standard 8-channel head coil.

For each subject, a three-dimensional T1-weighted anatomical
image was acquired. Imaging parameters in the VU University
Medical Center were: TR = 7.8ms, TE = 3ms, flip angle = 12◦,
180 slices, resulting in a voxel size of 0.98 × 0.98 × 1.00mm.
Imaging parameters in the Leiden University Medical Center
were: TR = 9.8ms, TE = 4.6ms, flip angle = 8◦, 140 slices,
resulting in a voxel size of 0.88 × 0.88 × 1.20mm. In the
Leiden University Medical Center an additional high-resolution
echo planar imaging scan was acquired for registration purposes
(TR = 2.2 s, TE = 30ms, flip angle = 80◦, 84 slices, resulting in
a voxel size of 1.96 × 1.96 × 2.00mm, including 10% interslice
gap).

Resting state fMRI T2∗-weighted scans were acquired using
whole brain multislice gradient echo planar imaging. Imaging
parameters in the VU University Medical Center were: TR =

1.8 s, TE = 35ms, flip angle = 80◦, 34 slices, resulting in a
voxel size of 3.30 × 3.30 × 3.30mm, including 10% interslice
gap, 200 volumes, scan duration 6min. Imaging parameters in
the Leiden University Medical Center were: TR = 2.2 s, TE =

30ms, flip angle = 80◦, 38 slices, resulting in a voxel size of
2.75×2.75×2.99mm, including 10% interslice gap, 200 volumes,
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scan duration 7min and 33 s. Participants were instructed to lie
still with their eyes closed and not to fall asleep during the resting
state scan.

Data Analysis
Before analysis, all MRI scans were submitted to a visual quality
control check to ensure that no gross artifacts were present in
the data. Data analysis was performed with Functional Magnetic
Resonance Imaging of the Brain Software Library (FSL 5.0.1,
Oxford, United Kingdom) (Smith et al., 2004) and Matlab
version R2011b (MathWorks, Natick, MA, USA). Anatomical
regions were determined using the Harvard-Oxford cortical and
subcortical structures atlas integrated in FSL.

Gray Matter Volume
Structural MRI scans were analyzed with a voxel-based
morphometry (VBM) analysis (Ashburner and Friston, 2000)
to study group differences in gray matter volume. First, the
structural images were brain extracted and tissue-type segmented
(Zhang et al., 2001). The resulting gray matter partial volume
images were aligned to the gray matter MNI-152 standard space
image (Montreal Neurological Institute, Montreal, QC, Canada)
(Jenkinson et al., 2002), followed by non-linear registration
(Andersson et al., 2007a). The images were averaged to create a
study-specific template. Next, all native gray matter images were
non-linearly registered to this study-specific graymatter template
(Ashburner and Friston, 2000; Good et al., 2001). To correct
for the contractions and enlargements due to the non-linear
registration, each voxel of each registered gray matter image was
multiplied by the Jacobian of the warp field, which defines the
direction (larger or smaller) and the amount of modulation. The
modulated segmented images were spatially smoothed with an
isotropic Gaussian kernel with a full width at half maximum of
7mm.

To study group differences in gray matter volume, a general
linear model (GLM) approach using analysis of variance F-
tests with post-hoc Bonferroni adjusted t-tests was applied.
Age, gender, and study center were included as covariate in
the statistical model. Voxel-wise non-parametric permutation
testing (Nichols and Holmes, 2001) with 5000 permutations
was performed using FSL-randomize correcting for multiple
comparisons across space (statistical threshold set at p < 0.05,
Family-Wise Error (FWE) corrected), using the Threshold-Free
Cluster Enhancement (TFCE) technique (Smith and Nichols,
2009).

Preprocessing of Resting State fMRI Data
The preprocessing of the resting state data consisted of motion
correction (Jenkinson et al., 2002), brain extraction, spatial
smoothing using a Gaussian kernel with a full width at half
maximum of 3mm, and high-pass temporal filtering (cutoff
frequency of 0.01Hz). To quantify movement in the fMRI signal,
the mean square of the absolute head movement was calculated.
Patients with AD showed a mean square of 0.16mm, patients
with bvFTD 0.25mm, and controls 0.19mm. No significant
group differences in movement values were found.

After preprocessing, the functional images were registered
to the corresponding T1-weighted images using Boundary-
Based Registration (Greve and Fischl, 2009). T1-weighted images
were registered to the 2mm isotropic MNI-152 standard space
image (Montreal Neurological Institute, Montreal, QC, Canada)
using non-linear registration (Andersson et al., 2007b) with a
warp resolution of 10mm. High-resolution echo planar images
(only available for subjects scanned in the Leiden University
Medical Center) were used for an additional registration step
between functional images and T1-weighted images. In order
to achieve better comparison across voxels, subjects, and
centers, standardization on a voxel-by-voxel basis has been
recommended (Yan et al., 2013). We used the Z-standardization
approach in which individual resting state fMRI time series were
normalized (standardized to z scores) on a voxel-by-voxel basis
using the mean and standard deviation of each individual resting
state signal across time (previously described in Yan et al., 2013).

Single-session independent component analysis was
performed on the preprocessed resting state data to decompose
the data into distinct components for denoising purposes
(Beckmann and Smith, 2004). The standard training-dataset
of FMRIB’s ICA-based Xnoiseifier 1.05 (FIX) was used to
auto-classify components into “good” (i.e., functional signal)
and “bad” (i.e., noise) components (Salimi-Khorshidi et al.,
2014). FIX removed unique variance related to “noise”
components and motion confounds from the preprocessed
fMRI data to denoise the resting state data and to increase
the signal-to-noise ratio. Manual classification of data from
18 participants, equally distributed over groups and centers,
showed that between 75 and 100% of the hand-labeled “noise”
components and none of the “signal” components were
removed.

Functional Connectivity Analysis: Network-to-region

Connectivity
Voxel-based group differences in network functional
connectivity were studied using the dual regression method
of FSL (previously described in Filippini et al., 2009). We used
eight standard resting state networks as reference to study
functional connectivity in a standardized way (Khalili-Mahani
et al., 2012; Hafkemeijer et al., 2013). Resting state functional
connectivity was determined in terms of similarity of the BOLD
fluctuations in the brain in relation to characteristic fluctuations
in the eight predefined resting state networks (Beckmann et al.,
2005; Damoiseaux et al., 2006). These standardized resting state
networks parcellate the brain into eight templates that represent
over 80% of the total brain volume (Khalili-Mahani et al., 2012):
network I) calcarine sulcus, precuneal cortex, and primary
visual cortex (medial visual network), network II) superior and
fusiform areas of lateral occipital cortex (lateral visual network),
network III) superior temporal cortex, insular cortex, anterior
cingulate cortex, auditory cortex, operculum, somatosensory
cortices, thalamus (auditory system network), network IV)
precentral and post-central somatosensory somatomotor areas
(sensorimotor system network), network V) rostal medial
prefrontal cortex, precuneal cortex, posterior cingulate cortex
(default mode network), network VI) medial and inferior
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prefrontal cortex, anterior cingulate and paracingulate gyri,
prefrontal cortex (executive control network), networks VII
and VIII) frontal pole, dorsolateral prefrontal cortex, parietal
lobule, paracingulate gyrus, posterior cingulate cortex (dorsal
visual stream networks) (for further details, Beckmann et al.,
2005; Khalili-Mahani et al., 2014). To account for noise,
even after FIX, a white matter, and a cerebrospinal fluid
template were included in the analysis (Fox et al., 2005; Birn,
2012).

In the dual regression, individual time series were first
extracted for each template, using the eight resting state networks
(Beckmann et al., 2005) and the two additional white matter and
cerebrospinal fluid maps (Fox et al., 2005; Birn, 2012), in a spatial
regression against the individual fMRI data set (regression 1).
The resulting matrices described temporal dynamics for each
template and individual. Next, the 10 temporal regressors were
used to fit a linear model to the individual fMRI data set
(regression 2), to estimate the spatial maps for each individual.
This results in 10 3D images per individual, with for each voxel
z scores representing the functional connectivity to each of the
templates. The higher the absolute value of the z score, the
stronger the connectivity to a network. Z scores were calculated
for voxels both inside and outside the networks. Z scores of
voxels outside a network indicate the strength of the functional
connections between that outside region and the average of the
network, while z scores of voxels inside the network indicate the
strength of the connection between the average of the network
and that region within the network. If functional connectivity is
decreased in specific voxels inside the network, this indicates a
less homogeneous fMRI signal in the network (i.e., less functional
connectivity).

To study group differences in functional connectivity, a
GLM approach using analysis of variance F-tests with post-hoc
Bonferroni adjusted t-tests was applied. The data used in this
study were collected from two centers. Although the distribution
of participants between centers did not differ significantly
between groups, we followed previous approaches to account
for the potential effects of center and included center in all
statistical models (Kim et al., 2009; Zhou et al., 2010). In
addition to center, age, and gender were included as covariate.
To account for potential effects of local structural gray matter
differences within and between the two groups, segmented
structural data were used to include gray matter volume of
each voxel as subject-wise and voxel-wise covariates in the
GLM design (Oakes et al., 2007). Voxel-wise non-parametric
permutation testing (Nichols and Holmes, 2001) with 5000
permutations was performed using FSL-randomize correcting
for multiple comparisons across voxels (statistical threshold
set at p < 0.05, FWE-corrected), using the TFCE technique
(Smith and Nichols, 2009).

Functional Connectivity Analysis: Region-to-region

Connectivity
In addition to the network analysis, we studied connections
throughout the entire brain using correlation analyses. The
whole brain was divided into 110 cortical and subcortical brain
areas based on the probabilistic Harvard-Oxford cortical and

subcortical structural atlas integrated in FSL (which we split into
left and right hemisphere regions) to calculate the functional
connectivity between pairs of anatomically defined brain areas.
The preprocessed and denoised resting state data were voxel-
based weighted with the gray matter partial volume estimate
obtained with the FMRIB’s Automated Segmentation Tool. Then,
to calculate the average signal per probabilistic brain area, we
averaged each voxel weighted by their probability per region
(with a minimum of 25%) resulting in 110 time courses per
subject. The full correlation between each pair of the 110 time
signals was calculated, forming a weighted correlation matrix for
each subject. Fischer-Z transformation was used to transform
the correlations to z scores. The GLM approach using analysis
of variance F-tests (IBM SPSS Statistics Version 20, IBM Corp.,
Somers, NY, USA) with post-hoc Bonferroni adjusted t-tests was
applied to compare functional connectivity between pairs of
anatomical regions in bvFTD and AD. The same statistical model
as used in the network analysis was applied with age, gender,
and study center included as covariates. To correct for multiple
comparisons, we applied the false discovery rate (FDR) approach
(p < 0.05) (Genovese et al., 2002). Group average of the control
group was used as reference value in the post-hoc plots.

Results

Demographic Characteristics
Demographic data for all participants are summarized in Table 1.
There were no significant differences between the groups
with regard to age, gender, study center distribution, level of
education, and duration of symptoms (all p > 0.05). As
expected, both dementia groups performed worse on cognitive
tests compared with controls (all p < 0.05). Patients with AD
performed worse compared with bvFTD patients on memory
tests (Rey Auditory Verbal Learning Test, p = 0.009) and Visual
Association Test, p < 0.001) and furthermore on the Letter Digit
Substitution Test (p = 0.020). Patients with bvFTD performed
worse compared with AD patients on Letter fluency (p < 0.001),
which is an attention and executive function test. No significant
differences between both dementia groups were found on the
other cognitive tests (p > 0.05).

Gray Matter Volume
The voxel-wise structural analysis revealed group differences
in gray matter volume (Figure 1). Patients with AD showed
less gray matter in precuneal cortex, posterior cingulate cortex,
frontal medial cortex, temporal gyrus, hippocampus, lateral
occipital cortex, and operculum cortex compared with controls
(Figure 1A). Patients with bvFTD showed less gray matter in
anterior cingulate cortex, insular cortex, frontal pole, frontal
gyrus, temporal pole, temporal gyrus, and temporal fusiform
gyrus compared with controls (Figure 1B). AD patients had
less gray matter compared with bvFTD in precuneal cortex,
posterior cingulate cortex, and angular gyrus (Figure 1C).
Patients with bvFTD had less gray matter compared with AD in
anterior cingulate gyrus, frontal pole, and superior frontal gyrus
(Figure 1D).
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FIGURE 1 | Group differences in gray matter volume. Differences in gray

matter volume between behavioral variant frontotemporal dementia (FTD),

Alzheimer’s disease (AD), and healthy controls (HC) (TFCE, FWE-corrected).

(A) Patients with AD showed less gray matter in precuneal cortex, posterior

cingulate cortex, and frontal medial cortex compared with controls. (B)

Patients with bvFTD showed less gray matter in anterior cingulate cortex,

insular cortex, frontal pole, frontal gyrus, and middle temporal gyrus compared

with controls. (C) AD patients had less gray matter compared with bvFTD in

precuneal cortex and posterior cingulate cortex. (D) Patients with bvFTD had

less gray matter compared with AD in anterior cingulate gyrus and frontal pole.

Functional Connectivity: Network-to-region
Connectivity
Functional connectivity analysis showed main effect of group for
resting state network II, network III, network V, and network
VIII. For the other four resting state networks, no group
differences in functional connectivity were observed.

The results of post-hoc testing showed decreased functional
connectivity in bvFTD compared with controls between network
III (auditory network) and inferior temporal gyrus, middle
temporal gyrus, superior temporal gyrus, post-central gyrus, and
supramarginal gyrus (Table 2). In AD, functional connectivity
was decreased compared with controls between network V
(default mode network) and posterior cingulate gyrus, precuneal
cortex, and lateral occipital cortex (Table 2).

The results of post-hoc testing showed decreased functional
connectivity in bvFTD compared with AD between network
II (lateral visual cortical network) and the lateral occipital
cortex and cuneal cortex (Table 2, Figure 2A). Patients with AD
showed decreased functional connectivity between network VIII
(dorsal visual stream network) and lateral occipital cortex and
parietal opercular cortex (Table 2, Figure 2B). We also observed
“negative” (i.e., anti-correlated) connectivity: bvFTD patients
showed less negative functional connectivity between network
III (auditory system network) and the angular gyrus (Table 2,
Figure 2C).

To illustrate group differences between both types of dementia
and how network-to-region connectivity compares to controls,
subjects’ mean z scores of regions with differences in functional
connectivity between the two patient groups are plotted in
Figure 2D. Boxplots show mean z scores from: lateral occipital
cortex and cuneal cortex (blue areas in A), lateral occipital and
parietal opercular cortex (blue areas in B), and angular gyrus
(blue areas in C).

Functional Connectivity: Region-to-region
Connectivity
In a second analysis, we studied connections throughout the
entire brain using correlation analyses between 110 cortical and
subcortical brain areas and found a main effect of group. The
results of post-hoc testing showed decreased pairwise connectivity
in bvFTD compared with AD between the right superior
temporal gyrus (Figure 3A, blue area, coronal slice) and the right
cuneal cortex (Figure 3A, yellow, p < 0.0001), left cuneal cortex
(p = 0.0002), the right supracalcarine cortex (Figure 3A, blue,
p = 0.0002), left supracalcarine cortex (p = 0.0001), the right
intracalcarine cortex (Figure 3A, pink, p = 0.0001), and the right
lingual gyrus (Figure 3A, green, p = 0.0002).

To further illustrate these group differences and how
region-to-region connectivity compares to controls, functional
connectivity with the right superior temporal gyrus is plotted
in separate boxplots (Figure 3B) for the cuneal cortex (yellow),
supracalcarine cortex (blue), intracalcarine cortex (pink), and
lingual gyrus (green).

Discussion

We studied functional connections throughout the brain in AD
and bvFTD and showed that functional connectivity is different
between both types of dementia. Given the gray matter atrophy,
we observed decreased connectivity in bvFTD compared with
AD between (a) the lateral visual cortical network and the
lateral occipital cortex and cuneal cortex, and (b) between the
auditory system network and the angular gyrus. Patients with
AD showed decreased functional connectivity between the dorsal
visual stream network and lateral occipital cortex and parietal
opercular cortex. The decreased cuneal connectivity found
in bvFTD patients was also found with the region-to-region
connectivity analysis showing decreased connectivity between
superior temporal gyrus and cuneal cortex, supracalcarine,
intracalcarine cortex, and lingual gyrus. These findings support
the hypothesis that resting state fMRI shows disease-specific
functional connectivity differences and is useful to elucidate the
pathophysiology of AD and bvFTD.

The region-to-region connectivity analysis showed decreased
temporal gyrus connectivity in patients with bvFTD. This part of
the brain is particularly vulnerable for FTD pathology, with gray
matter atrophy located in this area (Whitwell et al., 2011; Farb
et al., 2013). Decreased functional connectivity in the temporal
lobe has earlier been found in bvFTD when compared with
controls (Whitwell et al., 2011; Farb et al., 2013). In AD, we did
not find differences in region-to-region connectivity, although
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TABLE 2 | Group differences in network functional connectivity.

Network Brain structurea Side Peak voxel Peak T-score

coordinates (MNI)

x y z

Default mode network AD < HC Posterior cingulate gyrus R −2 −44 42 3.55

Precuneal cortex L −16 −62 12 2.90

Lateral occipital cortex R 50 −74 26 3.74

Auditory system network bvFTD < HC Inferior temporal gyrus L −42 −60 0 3.82

Middle temporal gyrus L −52 −60 6 3.05

Superior temporal gyrus L −60 −2 0 3.63

Post−central gyrus L −50 −18 34 4.37

Supramarginal gyrus L −52 −30 36 4.05

Lateral visual cortical network bvFTD < AD Lateral occipital cortex/Angular gyrus L −40 −76 12 5.30

Cuneal cortex L 0 −86 32 4.39

Cuneal cortex R 22 −72 24 4.63

Lateral occipital cortex R 46 −78 10 3.86

Dorsal visual stream network AD < bvFTD Lateral occipital cortex L −28 −72 52 5.05

Parietal opercular cortex L −54 −24 24 4.36

Lateral occipital cortex L −38 −70 22 4.18

Auditory system network bvFTD < AD Angular gyrus R 52 −62 44 5.22

MNI, Montreal Neurological Institute, Montreal, QC, Canada; AD, Alzheimer’s disease; HC, healthy controls; bvFTD, behavioral variant frontotemporal dementia; R, right; L, left.
aFull list of structures with group differences in network functional connectivity. Between group effects are independent of physiological noise, age, gender, study center, and gray matter

volume. For each peak voxel x-, y-, and z-coordinates in the MNI-152 standard space image are given.

decreased connectivity with the hippocampus has been reported
by others (Allen et al., 2007).

The network-to-region analysis showed that functional
connectivity of the angular gyrus was decreased (less negative)
in patients with bvFTD. Differences in angular gyrus functional
connectivity have been found in bvFTD compared with healthy
controls (Farb et al., 2013; Rytty et al., 2013). An association
between angular gyrus functional connectivity and stereotypical
behavior has been found in bvFTD (Farb et al., 2013), suggesting
an important role of the angular gyrus in the typical behavior
of patients with bvFTD. However, the exact role of the angular
gyrus in the behavior of bvFTD is not clear. Longitudinal changes
in bvFTD have been found to be related to insular, not angular,
connectivity (Day et al., 2013). Moreover, decreased angular
functional connectivity was found in AD when compared with
healthy controls (Wang et al., 2015) or with bvFTD patients
(Zhou et al., 2010).

Functional connectivity between the dorsal visual stream
network and the lateral occipital cortex and parietal opercular
cortex is increased in bvFTD compared with AD. A recent study
reported atrophy in the opercular cortex in patients with bvFTD,
but no differences in functional connectivity in this brain area
were reported in that study (Rytty et al., 2013). The opercular
cortex overlies the insula, which is one of the brain regions first
affected in bvFTD (Seeley et al., 2008). Patients with bvFTD
show differences in insula functional connectivity compared
with healthy controls (Farb et al., 2013) and patients with AD

(Zhou et al., 2010). The differences in functional connectivity in
this brain area may relate to the impaired social behavior that
typically occurs in bvFTD, since the insula has an important role
in social-emotional processing (Couto et al., 2013).

We found differences in functional connectivity in the so-
called auditory system network that encompassed temporal
cortex, insular cortex, anterior cingulate cortex, auditory cortex,
operculum, somatosensory cortices, and thalamus, areas which
are related to social-emotional processing (Seeley et al., 2007).We
found decreased negative, not positive, functional connectivity
between this network and the angular gyrus in patients
with bvFTD. It has been suggested that negative functional
connectivity indicates an anti-correlation between brain areas
(Fox et al., 2005; Hampson et al., 2010). The interpretation of
anti-correlations in resting state data is not straightforward (Fox
et al., 2009; Yan et al., 2013) and its biological meaning is a subject
of debate (Chai et al., 2012).

In addition to the direct comparison of AD and bvFTD
patients, we compared functional connectivity between patients
and control participants. As expected, we found decreased
connectivity in AD compared with controls between the default
mode network and posterior cingulate gyrus, precuneal cortex,
and lateral occipital cortex. In bvFTD, functional connectivity
was decreased compared with controls between the auditory
network (temporal cortex, insular cortex, anterior cingulate
cortex, auditory cortex, operculum, somatosensory cortices,
thalamus) and temporal gyrus, supramarginal gyrus, and
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FIGURE 2 | Functional connectivity in bvFTD vs. AD: network-to-region connectivity. Differences in functional connectivity between green networks and blue

voxels in behavioral variant frontotemporal dementia (FTD) and Alzheimer’s disease (AD) (TFCE, FWE-corrected). (A) Decreased functional connectivity between lateral

visual cortical network (green) and lateral occipital cortex and cuneal cortex (blue) in bvFTD compared with AD. (B) Decreased functional connectivity between dorsal

visual stream network (green) and lateral occipital cortex and parietal opercular cortex (blue) in AD compared with bvFTD. (C) Less negative functional connectivity

between auditory system network (green) and angular gyrus (blue) in bvFTD compared with AD. Images are overlaid on the MNI-152 standard anatomical image.

(D) Subjects’ mean z scores were extracted from brain areas with group differences in functional connectivity (blue areas). Boxplots show median, lower, and upper

quartile, and sample minimum and maximum z scores for patients with AD, patients with bvFTD, and healthy controls (HC, dotted lines).

post-central gyrus. These findings reproduced connections that
are comparable with other studies that compared functional
brain networks between dementia patients and controls, showing
decreased functional connectivity in the posterior temporal-
parietal default mode network in AD and in the anterior cingulo-
frontoinsular salience network in bvFTD (Greicius et al., 2004;
Allen et al., 2007; Binnewijzend et al., 2012; Agosta et al., 2013;
Rytty et al., 2013).

Decreased functional connectivity between regions within the
default mode network has been found in AD compared with
bvFTD (Zhou et al., 2010). The present study and the study
by Filippi et al. (2013) were not able to replicate these default
mode network disease-related differences. Although functional
connectivity between patient and controls differed as expected,
the group differences between AD and bvFTD were smaller than
those in previous studies. This variability among studies may
be due to multiple factors, including variations in the study
cohort. Compared with other resting state fMRI studies in bvFTD
and AD (Zhou et al., 2010; Filippi et al., 2013), we included a
relatively large sample of patients in an early stage of the disease
with very mild to mild symptoms. Hence it is possible that they
are less severely affected compared with those in other studies.
Furthermore, since early differential diagnosis between AD and
bvFTD may be challenging, the possibility of misdiagnosis of
the patients cannot be ruled out. The diagnosis FTD or AD
can only be confirmed by brain autopsy after a person dies.

In this study, postmortem data was not available. Nevertheless,
all patients underwent an extensive dementia screening. Only
dementia patients that fulfilled themost recent criteria for bvFTD
(Rascovsky et al., 2011) and AD (McKhann, 2011) were included.

As expected, both dementia groups performed worse on
cognitive functioning compared with controls. Patients with AD
showed lowest scores onMMSE, which is a general measurement
of cognitive performance (Folstein et al., 1975). Moreover, AD
patients performed worse in memory functioning compared
with controls and bvFTD. Patients with bvFTD performed,
as expected, worse on executive functioning compared with
controls. We further expected lower executive functioning scores
in the bvFTD group compared with AD, however, AD patients
did not differ from bvFTD in most executive functioning tests.
Overall, the AD patients showed low scores in all cognitive
domains, not only in the memory domain, but also in executive
functioning. Although executive functioning could be useful to
differentiate AD from bvFTD (Iavarone et al., 2004; Slachevsky
et al., 2004), some studies reported that executive functioning,
measured with FAB, does not discriminate AD from bvFTD
patients (Lipton et al., 2005; Castiglioni et al., 2006). It has been
suggested that testing multiple cognitive domains is required
to differentiate both types of dementia rather than focus on
one cognitive test (Lipton et al., 2005). In the current study,
all patients underwent extensive neuropsychological assessment.
Diagnoses were established according to the core clinical criteria
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FIGURE 3 | Functional connectivity in bvFTD vs. AD: region-to-region connectivity. Differences in pairwise functional connectivity between behavioral variant

frontotemporal dementia (FTD) and Alzheimer’s disease (AD). (A) Decreased functional connectivity between right superior temporal gyrus (blue area, coronal slice)

and cuneal cortex (yellow), supracalcarine cortex (blue), intracalcarine cortex (pink), and lingual gyrus (green) in bvFTD compared with AD. Images show brain areas

based on the probabilistic Harvard-Oxford structural atlas overlaid on coronal and sagittal slices of the MNI-152 standard anatomical image. (B) Subjects’ correlation

scores were extracted from brain areas with differences in functional connectivity between the two patient groups (right cuneal, supracalcarine, intracalcarine cortex,

and lingual gyrus). Boxplots show median, lower, and upper quartile, and sample minimum and maximum correlation scores for patients with AD, patients with bvFTD,

and healthy controls (HC, dotted lines).

for probable AD (McKhann, 2011) and for bvFTD (Rascovsky
et al., 2011) and therefore were not based on one single
neuropsychological test score.

This study showed data that were collected in two centers.
The strengths of multicenter studies are the larger number
of participants that can be included and the increased
generalizability of the study findings. However, multicenter
studies have also limitations, since the data will be less
homogeneous than in single center studies. To increase
homogeneity between centers in the current study, we evaluated
all patients in a multidisciplinary panel including clinicians
from different centers specialized in dementia, we used a
standardization approach in order to achieve better comparison
across voxels, subjects, and centers (Yan et al., 2013), and we
added center as covariate in all statistical models, following
previous approaches (Kim et al., 2009; Zhou et al., 2010).

Conclusion

In the present study, we used resting state fMRI to study
functional connections throughout the entire brain and
showed that resting state functional brain connectivity is
different between AD and bvFTD. Our findings support the
hypothesis that resting state fMRI shows disease-specific
functional connectivity differences and is useful to elucidate the
pathophysiology of AD and bvFTD. However, the findings of
the present study suggest that group differences in functional
connectivity between both dementia types are less abundant than
has been shown in previous studies.
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