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A spindle detection method was developed that: (1) extracts the signal of interest (i.e.,

spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity

using complex demodulation, (2) accounts for variations of spindle characteristics across

the night, scalp derivations and between individuals, and (3) employs a minimum number

of sometimes arbitrary, user-defined parameters. Complex demodulation was used to

extract instantaneous power in the spindle band. To account for intra- and inter-individual

differences, the signal was z-score transformed using a 60 s sliding window, per channel,

over the course of the recording. Spindle events were detected with a z-score threshold

corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such

as amplitude, duration and oscillatory frequency, were derived for each individual spindle

following detection, which permits spindles to be subsequently and flexibly categorized

as slow or fast spindles from a single detection pass. Spindles were automatically

detected in 15 young healthy subjects. Two experts manually identified spindles from

C3 during Stage 2 sleep, from each recording; one employing conventional guidelines,

and the other, identifying spindles with the aid of a sigma (11–16Hz) filtered channel.

These spindles were then compared between raters and to the automated detection to

identify the presence of true positives, true negatives, false positives and false negatives.

This method of automated spindle detection resolves or avoids many of the limitations

that complicate automated spindle detection, and performs well compared to a group

of non-experts, and importantly, has good external validity with respect to the extant

literature in terms of the characteristics of automatically detected spindles.
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Introduction

Sleep spindles are brief (typically <1 s, up to 3 s) discrete
phasic bursts of sigma (∼11–16Hz) activity, with a waxing
and waning amplitude envelope, which characterize non-rapid
eye movement (NREM) sleep. Sleep spindles have garnered
much interest in terms of their physiological mechanisms and
cerebral correlates (Steriade, 2006; Schabus et al., 2007; Bonjean
et al., 2011), putative function for sleep maintenance (Nicolas
et al., 2001; Dang-Vu et al., 2010; Schabus et al., 2012), most
recently in terms of their function for memory consolidation
during sleep (Gais et al., 2002; Schabus et al., 2004; Fogel
and Smith, 2006, 2011; Nishida and Walker, 2007; Bergmann
et al., 2011), relationship to cognitive abilities (Smith et al.,
2004; Bódizs et al., 2005, 2008; Fogel and Smith, 2006, 2011;
Schabus et al., 2006; Fogel et al., 2007; Peters et al., 2007; Geiger
et al., 2011; Ujma et al., 2014) and clinical relevance (Gibbs
and Gibbs, 1962; Bixler and Rhodes, 1968; Shibagaki et al.,
1982; Limoges et al., 2005; Steriade, 2005; Ferrarelli et al., 2007).
Until recently, the study of the sleep spindle has been hindered
by the labor-intensive task of visually identifying thousands of
individual spindle events over the course of several hours of
sleep and the resulting difficulty in obtaining expertly scored,
publically available data sets for benchmarking. The investigation
of sleep spindles has invigorated the proliferation of a variety
of automated spindle detection methods (Broughton et al.,
1978; Campbell et al., 1980; Zeitlhofer et al., 1997; Crowley
et al., 2002; Mölle et al., 2002; Bódizs et al., 2009; Ray et al.,
2010; Martin et al., 2012; Wamsley et al., 2012). However,
the task of accurately detecting spindles has proven to be a
significant methodological challenge. These challenges include,
but are not limited to, the onerous task of analyzing lengthy,
high temporal resolution recordings, and the high variability
in signal-to-noise ratio over the course of the night, between
derivations and individuals. Resolving these issues is complicated
by the wide variety of methods being employed and incomplete
or inconsistent validation procedures for these methods. This
is further compounded by the absence of a “base truth” or
appropriate and publically available “gold standard” to compare
detection methods. Finally, validating automated detection
methods by comparing their performance to human scorers
may be insufficient as this assumes that: (1) human scorers are
superior at detecting spindle events, and (2) automated detectors
only perform correctly when functioning according to the narrow
definition for visual identification of spindles. The absence
of established method(s) could lead to erroneous scientific
results or produce findings that are difficult to interpret and
replicate.

Most commonly employed methods of spindle detection can
be broadly classified into several categories based on the way that
the signal of interest is extracted. These categories include: (1)
methods that employ counting the number of peaks in a defined
period of time, (2) band-pass filtering and root mean squared
(RMS) transformations, (3) Fourier-based, and (4) wavelet-
based techniques. In the following paragraphs, we compare and
contrast some of the most commonly employed methods used
to extract spindle-related activity for the purposes of automated

detection, highlighting some of the strengths and challenges of
each.

Techniques that employ counting the number of peaks or
zero crossings in a given time period (Principe and Smith, 1982;
Schimicek et al., 1994; Zeitlhofer et al., 1997; Ray et al., 2010) may
be advantageous to characterize spindle events once detected,
however as a means of extracting spindle-related activity for the
purposes of detection, these methods are susceptible to artifacts
and can be contaminated by other naturally occurring EEG
activity in other frequency bands of non-interest. As a result,
the effectiveness of these techniques depend on how the EEG
is preprocessed, thus making signal extraction relative to noise
a challenge, nonetheless they are suitable for the extraction of
the signal of interest. Similarly, band-pass filtering the signal
to the sigma band and further RMS transformation (Clemens
et al., 2007) does extract the signal of interest, and transforms
the signal into all positive values, however, the oscillatory nature
of the signal remains intact. This aids in characterizing spindle
events, however, detection of the onset, peak and offset directly
from an RMS transformed signal is no more straightforward
than identifying events in the raw EEG signal, and thus the
vastness of irregularities in the shape of the spindle, or changes
in the frequency content and amplitude of each spindle over
time, complicate detection and accurate identification of each
spindle event. Moreover, deviation from the ideal frequency
response of a band-pass filter (i.e., size of the transition band
and related ripple effects) is a function of the window type
and filter order. This is a potential challenge for slow spindles,
whereby the adjacent frequencies, such as alpha activity (due to
cortical arousals), may lead to false positives. In addition, given
that when the sigma band is further divided into smaller and
adjacent ∼1.5–2Hz bands for slow (e.g., 11–13.5Hz) and fast
(e.g., 13.5–16Hz) spindles, overlap between slow and fast spindle
activity could lead to difficulty discriminating between spindle
types. These issues could be overcome by employing filters with a
sufficiently high filter order, and also, if spindles are first detected
using the whole spindle bandwidth (e.g., 11–16Hz) and each
spindle is subsequently classified as slow or fast based on its
peak (or mean) frequency following detection, spindles can be
categorized orthogonally. These issues apply equally to other
methods employing filters (including the current method).

Techniques that employ filtering and Fast Fourier Transform
(FFT) techniques (Uchida et al., 1994; Huupponen et al., 2006)
can be advantageous, however, the frequency resolution of FFT
is determined by the sampling rate, window size and overlap.
In addition, while FFT is well suited to handle signals that
are linear and stationary, EEG is a dynamic, complex and
noisy signal that originates from a combination of cortical and
subcortical generators, whose relative contribution to scalp-
recorded oscillations, in various mixed frequencies, changes
dynamically over time. Thus, like many other biological signals,
the EEG is a non-stationary and non-linear signal. Frequency
extraction using Fourier-based methods can yield dramatically
different results (Klonowski, 2007) as the signal evolves over time
(i.e., time-domain information is lost). In relation to this caveat,
Fourier-based methods are not necessarily optimal for extracting
very brief phasic events, or to discriminate the activity of a phasic
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event from the ongoing EEG. Thus, the ability of FFT to extract
spindle-related activity is limited by selecting an appropriate
window type, size and resulting frequency resolution, and may
involve trial-and-error to select a multitude of appropriate model
parameters, thus, care must be taken when utilizing FFT and
similar techniques to extract spindle-related activity from the
ongoing EEG.

By contrast, wavelet-based decomposition and other bandpass
filtering techniques (Huupponen et al., 2006; Wamsley et al.,
2012) have the advantage of representing the signal in both time
and frequency domains, and thus can be advantageous with
respect to FFT, particularly for detecting brief events. However,
wavelet-based approaches are computationally intensive and
require a-priori assumptions about the signal of interest (e.g.,
spindles) in order to select the ideal “mother wavelet” (e.g.,
Meyer, Mortlet, or Mexican hat). Determining the wavelet type
may involve many trail-and-error decisions in order to be
optimized. As compared to other approaches, Wavelet-based
techniques have been found to perform well as compared to FFT
and RMS-based methods (Warby et al., 2014), however, they
have been found to be susceptible to filter distortions (Ktonas
et al., 2009), which could be problematic for brief events such as
spindles.

The proposed method employed complex demodulation (CD;
Walter, 1968) to extract the instantaneous power in a precise
frequency band, and is desirable in that it does not make
assumptions about the linearity or stationarity of the signal, and
thus is well suited to detect events, such as sleep spindles in
the EEG. CD has been shown to be an effective and flexible
method to analyze real signals such as EEG, with less distortion
(due to lowpass filtering) than Hilbert transformations, Wavelet
decomposition, and matching pursuit (Ktonas et al., 2009). CD
performs well compared to band-pass filtering, phase-locked
loop demodulation, peak amplitude and zero-crossing detection
(Ktonas and Papp, 1980). CD transforms the signal of interest
in such a way that detection is straightforward (n.b., yields a
time series in the same temporal resolution as the original, with
only positive data point values by demodulating the signal, in
µV2) and does not require any other a-priori decisions for signal
extraction, other than the determination of the frequency band
of interest, which for spindles is typically defined around 11–
16Hz (although it is important to note that there is considerable
variability in the definition of the spindle band in the extant
literature).

Over-and-above the challenges involved in signal extraction,
considerable differences exist in terms of sleep spindles between
individuals and over the course of the entire night, as well as
within each NREM period (Silverstein and Levy, 1976; Werth
et al., 1997; De Gennaro et al., 2000, 2005; Himanen et al., 2002;
Ray et al., 2010). A commonly used approach to individualize
detection amplitude thresholds is to use a detection threshold
that is, for example, at the 95th percentile of the entire recording
(Gais et al., 2002; Barakat et al., 2011; Nir et al., 2011; Cox
et al., 2014). While this aids in overcoming the inter-individual
differences in sleep spindles, it does not account for either
the significant changes in spindle-related activity relative to the
overall “background” sigma activity that evolves over the course

of individual NREM periods, or over the course of a whole night.
In addition, spindles vary from one electrode site to another, and
thus one amplitude threshold per subject may not be ideal for all
derivations. Here, instead of adapting the detection threshold to
the signal, or using multiple individualized thresholds, we have
employed a sliding window that spans several epochs of NREM
sleep (60 s; a period long enough to contain at least one spindle),
and transforms each data point of the CD EEG into z-scores,
based on the mean and standard deviation calculated from the
centered 60-s window. The use of a sliding window allows for
a single, fixed amplitude threshold, accounting for the changes
in sigma activity that occur within each NREM cycle (Himanen
et al., 2002), over the course of the entire night and across scalp
derivations.

Finally, one of the major challenges of automated spindle
detection, is the large number of aforementioned user-defined
parameters, including but not limited to: (1) filter type, (2)
window function (and related parameters, type, length, overlap,
etc.), and (3) wavelet choice. Other user-defined parameters are
often necessary to define attributes of the spindle including,
but not limited to: (1) amplitude threshold, (2) frequency band,
(3) minimum duration, (4) maximum duration, and (5) inter-
spindle interval. Depending on the particular method, there can
be a veritable infinite number of combinations of parameters
to decide upon, prior to detection. While the current method
is by no means parameter-free, an effort has been made to
minimize the number of parameters and arbitrary decisions that
are essential for maximum effectiveness and flexibility.

We automatically detected spindles on recordings
obtained from the Montreal Archive of Sleep Studies (MASS;
www.ceams-carsm.ca/en/MASS), an openly available database
of overnight sleep recordings. Here, we compared automatically
detected spindles to expert manual scoring using either
conventional AASM guidelines, or with the visual aid of a sigma
(11–16Hz) band-pass filtered channel. We also compared expert
manual scoring to the scoring of a group of non-experts using
the aid of the sigma-filtered channel. And finally, we compared
the automated detection to the non-experts to assess the utility
of crowd-sourcing techniques to serve as an efficient means to
develop a gold standard basis for comparison.

Here, we present a method for sleep spindle detection,
inspired by algorithms first introduced in an analog system
by Campbell et al. (Campbell et al., 1980; Hao et al., 1992;
Ktonas et al., 2009). The method in the current study: (1)
extracts the signal of interest (i.e., spindle-related phasic changes
in sigma) relative to ongoing “background” sigma activity
using CD; (2) accounts for intra-individual characteristics of
sleep spindles (e.g., changes over the course of the night,
and differences at various scalp locations) and the inter-
individual differences in spindle characteristics; (3) utilizes as
few, potentially arbitrary, user-defined parameters as possible
(e.g., to avoid a multitude of signal extraction/model parameters,
amplitude thresholds, minimum/maximum cut-offs, etc.), (4)
compares the performance of three different visual detection
approaches to one another and each visual detection method to
the automated detection, and finally, (5) validates this method
by comparing to established characteristics of spindles: (i) during
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Stage 2 sleep (NREM2) and slow wave sleep (SWS), (ii) at frontal
and parietal derivations, (iii) for fast and slow spindle types,
and (iv) across consecutive NREM sleep cycles. The current
method provides an alternative approach intended to address (or
circumvent) the major above-mentioned challenges for accurate,
automated spindle detection using a relatively straightforward
approach.

Methods

Participants and EEG Data Set
PSG recordings (including sleep stage scoring annotations)
were obtained from the publically available (upon
request) Montreal Archive of Sleep Studies (MASS;
www.ceams-carsm.ca/en/MASS) from the SS2 database (O’Reilly
et al., 2014) and included recordings from 19 subjects (11 female)
with a mean age of 23.6 years. Overnight PSG data were acquired
on a Grass Model 12 amplifier using Harmonie acquisition
software (V5.4, Natus Medical Inc., San Carlos, USA) from 21
EEG channels (Fp1, Fpz, Fp2, F7, F3, F4, F8, T3, C3, Cz, C4, T4,
T5, P3, Pz, P4, T6, O1, O2, A1, A2). EEG was recorded at 256
samples/s using -6 dB filters, 0.4 s time constant, low cutoff filter
at 0.3Hz, and computed linked reference from A1 to A2. Sleep
stages were scored according to Rechtschaffen and Kales (1968)
in 20 s epochs (Table 1). PSG records and sleep stage annotations
were converted from EDF+ to EEGlab format using in-house
file conversion software written for Matlab (R2014a, Mathworks,
Matick, MA, USA).

All subjects had a Beck Depression Score <13 and did not
report any history of mental disorders. Subjects did not take
antidepressant medications and were not currently (or within the
last 10 years) diagnosed with major mental illness or personality
disorder. Upon visual inspection of the data, four subjects were
excluded from analyses, two for excessive alpha intrusion (01-02-
0004, 01-02-0016), one for frequent EEG arousals indicative of
a sleep disorder (01-02-0008) and one due to intermittent poor
quality EEG for one of the channels of interest (01-02-0015).
Ethical approval to use the MASS SS2 PSG and sleep scoring
annotations was obtained by the local Ethics Review Board at
Western University, London, Ontario, Canada.

Expert Manual Spindle Scoring
Two experts from different sites (Expert 1: London, Ontario;
Expert 2: Montreal, Quebec) manually scored spindles from C3
in NREM2 displayed in 20-s epochs, for the entire recording in all

TABLE 1 | Sleep architecture results (M ± SD).

Sleep stage Duration (minutes) Duration (% TST)

Wake 60.93± 44.21

NREM1 39.27± 21.19 6.3± 3.40

NREM2 360.03± 46.37 55.7± 6.17

SWS 114.27± 41.17 17.4± 5.43

REM 133.03± 23.02 20.6± 3.74

Total 646.60± 55.98

15 subjects included in the study. These annotations are available
from the MASS database. The visual identification method
employed by each expert differed with the exception that: Expert
1 visually identified and manually marked the beginning and end
of each spindle from a duplicate C3 channel, filtered to the sigma
band (11–16Hz), and did not use any explicit minimum duration
criteria. This visualization technique is used to help identify
spindles that would otherwise be obscured by slow wave activity
(e.g., by k-complexes, delta waves), and to identify spindles that
have a short duration and small amplitude. This method allows
the Expert scorer to visualize activity in a way that is closer
to how many spindle detection algorithms “see” the EEG, with
the intention that this may improve the accuracy of manual
detection and make for a more valid comparison to automated
detection methods. Otherwise, spindle scoring conformed to
AASM guidelines (Iber, 2007). On the other hand, Expert 2
adhered to AASM guidelines, did not score using the duplicate,
filtered channel, and scored spindles greater than 0.5 s in
duration. The spindle duration, amplitude and frequency of each
spindle event were calculated in the same way as the automated
detection (see Section Automated Spindle Detection, below).

Non-expert Manual Spindle Scoring
Sleep spindles were also manually identified by a group of
non-expert scorers using Amazon’s web-based crowd sourcing
platform (Amazon Mechanical Turk: https://www.mturk.com/
mturk/) in order to collect spindle scoring from a large sample
of non-experts (see Supplementary Figures 1–5). Two recordings
were not included (01-02-0018 and 01-02-0019) in the non-
expert scoring data set described above (see Section Participants
and EEG Data Set), as a result of changes to Amazon’s terms
and conditions mid-way through data collection. This policy
change restricted use of the Mechanical Turk payment service
to residents of the United States, preventing data collection to
be completed. The remaining data from the 13 EEG recordings
(199,860 s of data from NREM2) sleep were divided into
segments of about 2000 s. This was done in order to provide
small, manageable amounts of data to be manually scored by the
non-experts, for which they were compensated for their time.
There was no limit on how many segments each individual non-
expert could score from the dataset, but the same non-expert was
permitted to score the same segment only once. A total of 406
unique non-experts contributed to the manual spindle scoring by
marking at least one 2000 s segment. On average, 18.4 (SD = 1.2,
range 15–20) non-experts scored each ∼2000 s segment of data.
Similar to the method used by Expert 1, the interface itself
(Supplementary Figure 1) displayed EEG in 20 s epochs for the
sigma (11–16Hz) filtered C3 channel. This was done in order
to simplify the task of identifying spindles for non-experts, to
reduce ambiguity and to simplify and minimize the amount
of training required (Supplementary Figure 2). One advantage
of using the sigma-filtered channel was that non-experts were
not required to learn anything about EEG and very little about
sleep spindles per se (Supplementary Figure 3). Rather, they
were trained by exemplars on a de-noised signal, making event
identification more straightforward than spindles embedded in
ongoing EEG in NREM2. Non-experts were required to become

Frontiers in Human Neuroscience | www.frontiersin.org 4 September 2015 | Volume 9 | Article 507

http://www.ceams-carsm.ca/en/MASS
https://www.mturk.com/mturk/
https://www.mturk.com/mturk/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ray et al. Automated sleep spindle detection

familiarized with a simple set of 3 tools in order to use the web-
based interface (Supplementary Figure 4). These tools allowed
them to navigate from one epoch to another (Supplementary
Figure 5, #1), highlight spindles (Supplementary Figure 5, #2)
and to indicate when there were no spindles present on the epoch
(Supplementary Figure 5, #3).

Automated Spindle Detection
EEG processing was carried out using EEGlab (V13) and Matlab
(R2014a) (Figure 1) on the same data set (see Section Participants
and EEGData Set) using the same EEG channel (C3) as the expert
and non-expert scorers. Thus, the validation between automated
detection and visual raters is limited to NREM2 sleep from a
single central (C3) derivation. Spindles were also detected from
additional channels at frontal (F3) and parietal (P3) sites in both
NREM2 and SWS across the first four NREM cycles to further
explore the characteristics of the automatically detected spindles,
in order to provide additional validation of known topographic
distribution (Werth et al., 1997; Zeitlhofer et al., 1997), temporal
patterns (Werth et al., 1997; De Gennaro et al., 2000) and the
characteristics (Bódizs et al., 2009) of spindles. Prior to detection,
the EEG was low-pass filtered at 35Hz. Movement artifact was
detected from the EMG channel (highpass filtered at 10Hz) when
the second order derivative of the signal exceeded 20µV/ms.
The EEG was marked as “bad data” ±3 s about the detected
movement.

CD was employed on the normally filtered (0.3–35Hz) EEG,
to extract the instantaneous power (in µV2) about the frequency
of interest (13.5Hz), while eliminating all other frequencies

outside the spectrum of interest (11–16Hz). CD is carried out
in two principle steps on the original data (X(t)), that is taken to
be the signal of interest, plus everything else (Z(t)). Amplitude
(A) and phase (P) vary with respect to the carrier frequency (ω),
defined mathematically as:

X (t) = A (t) cos
(

ωt + P(t)
)

+ Z (t)

In the first step of the CD, the frequency spectrum of interest,
about a carrier frequency (in this case, 13.5Hz), is shifted left
by the demodulating frequency, toward the origin (i.e., zero
frequency) by multiplying X(t) by exp {−iωt} according to the
method originally described by Walter (1968):

Y (t) = X(t) exp {−iωt}

This can also be written as its analytical analog, as follows, which
reveals 3 terms (a, b, c):

Y (t) =
A (t)

2
exp {iP (t)} (a)

+
A (t)

2
exp

{

−1
(

2ωt + P(t)
)}

(b)

+ Z (t) exp {−iωt} (c)

The result Y(t) contains the shifted component at 0Hz (term a),
and a second component that varies at twice the shifted carrier
frequency 2 ω (term b), plus all other frequency components
(term c). In the second step, the signal is low pass filtered (infinite
impulse response, 4th order butterworth filter, using “filtfilt” from

FIGURE 1 | Automated spindle detection method processing steps. (A) Step 1, the EEG was filtered using a high pass 0.3Hz filter, low pass 35Hz filter, and

bad data and artifact was identified. (B) Step 2, the EEG was transformed using complex demodulation (CD), producing a new time series of instantaneous

magnitude (µV2 ) in the frequency band of interest (e.g., 11–16Hz). (C) Step 3, the CD time series was normalized to Z-scores calculated from a 60-s sliding window

about each data point. Spindle onsets were detected when Z > 2.33 (i.e., 99th percentile). To more accurately measure the entire length of the spindle, the onset was

adjusted to be the first point at which Z = 0.5 prior to the amplitude threshold Z, and the offset as the first point at which Z = 0.5 after the amplitude threshold Z.

Figure reproduced from Fogel et al. (2014b).
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Matlab, to avoid phase shifts) so that the first term is preserved,
and the frequency content of the complex signal outside the
frequency band of interest may be considered negligible (Ktonas
et al., 2009). Filtering removes the unwanted 2nd (b) and 3rd (c)
terms and smoothes the resulting signal (with a length of 2T − 1,
where T = 2π/ω is the demodulation period), to retain the
demodulated and smoothed amplitude time series, where prime
indicates smoothed:

Y ′ (t) = 1/2A
′ (t) exp

{

iP′ (t)
}

Following the CD transformation, the present method
transforms the data from each channel, by normalizing the
signal using a z-score transformation derived from a centered
60-s sliding window. This is similar to other methods that
employ an individualized amplitude threshold (Gais et al., 2002;
Barakat et al., 2011; Nir et al., 2011; Cox et al., 2014), calculated
from a percentile score of the whole recording (e.g., 95%), except
that instead of adapting the detection threshold on a per-subject
basis, here, the signal is transformed so that a single threshold
can be applied to all subjects, at all scalp derivations, across the
entire recording that accounts for the variation of spindle-related
activity to ongoing sigma over time.

To detect spindle events, an amplitude threshold
corresponding to the 99th percentile (Z = 2.33) was used.
Events occurring during “bad data” and outside NREM sleep
were subsequently removed. Finally, the onset and offset of the
spindle event is determined to be when the amplitude approaches
zero, in this case, Z = 0.5 and the duration (offset-onset, in
seconds) encompassing the whole spindle event can then be
calculated. Spindle event markers (onset and offset) were then
moved to the EEG prior to demodulation, filtered from 11 to
16Hz so that the mean frequency (peak-to-peak mean distance,
in Hz) and peak amplitude (max peak-to-peak value, in µV)
could be calculated in the same units as the original EEG signal.
For the purposes of further characterizing the automatically
detected spindles at frontal (F3) and parietal (P3) sites in NREM2
and SWS (see Section Characteristics of Automatically Detected
Spindles), each individual spindle event was categorized and
binned into either slow (11–13.5Hz) or fast (13.5–16Hz)
spindles based on the mean frequency of each spindle event.
Further, to investigate the changes in spindle characteristics
over the course of the night, spindles were binned into the first
four NREM cycles. NREM cycles were defined as periods of
consolidated NREM sleep comprising at least 15 consecutive
minutes (forty-five 20 s epochs) of NREM sleep separated by
consolidated REM sleep comprising at least 2 consecutive
minutes (six 20 s epochs) of REM sleep.

Inter-rater Reliability
The inter-rater agreement between methods (either between
visual scoring methods, or automated detection vs. Experts, or
compared to non-experts) was tested using a method adapted
from Ray et al. (2010). Three second epochs were used to identify
the presence or absence of spindles to count true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). This was done so that TN could be easily quantified

in some meaningful way. Consensus between non-experts was
simply calculated as the proportion of non-expert scorers that
identified a spindle at the same point in time. For non-expert
comparisons, this was carried out at 10 different levels of
consensus among raters, ranging from 0.1 to 0.9 (Supplementary
Figure 6). Statistics were calculated for the level of consensus
where the mean F1 score (the harmonic mean of recall and
precision, a composite score that represents a single measure of
inter-rater agreement) was maximal.

More precisely, in the case where there was an overlap
between spindles scored by one scorer and the other (expert,
automatic or non-expert), the 3-s epoch was counted as TP,
otherwise it was counted as FN. In the case where the other
scorer scored a spindle, and there was no overlap with an event,
the 3-s epoch where the “spindle” occurred was counted as FP.
In the case where there was no spindle scored from either scorer,
this 3-s epoch was counted as TN. Each comparison could only
be made once.

Spindles are sparsely distributed throughout the total duration
of NREM2. This leads to a disproportionate number of TN
results, which can inflate sensitivity. The 3 s windows were
used to judge inter-rater agreement in order to minimize this,
however, it does not completely eliminate the issue. Thus, the
recall (TP/(TP + FN)) and precision (TP/(TP + FP)) were
used in addition to the conventional measures of agreement
that can be biased by a high proportion of TN (e.g., specificity,
negative predictive value (NPV) and false positive rate). Despite
the employment of a relatively large 3 s window to judge the inter-
rater agreement, there were still a disproportionate number of
TN judgments (Table 2). Thus, the F1 scores and the phi (8)
coefficient (another balanced single measure that is appropriate
when classes are of different sizes, where 1 represents perfect
agreement and -1 represents complete disagreement between
judges) were also reported. The statistical significance of 8 can
also be determined. Importantly, the F1 score and phi coefficient
are advantageous in that they are unbiased by the direction of the
comparison between judges.

Results

Inter-rater Agreement for Visual Identification of
Spindles
Expert 1 vs. Expert 2
Overall, Expert 1 had a high mean proportion of correctly
identified events relative to the total number of events identified
by Expert 2 (i.e., precision = 0.85, ±0.21), but Expert 2 had a
low mean proportion of spindles that were correctly identified
relative to the total number of events scored by Expert 1 (i.e.,
recall= 0.40,±0.14). There was a very high proportion of periods
without spindles that were correctly identified by Expert 2 as
compared to Expert 1 (i.e., specificity = 0.97, ±0.04) and a high
proportion of 3 s periods of EEG without spindles identified by
Expert 2 (NPV = 0.80, ±0.07), with a false positive rate of only
0.03, ±0.04. When recall and precision are both maximal (i.e.,
equal to 1), this represents perfect performance, and when recall
and precision are plotted against one another (Figure 2A), data
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TABLE 2 | Group mean percent and marginal totals (±SD) of true positive,

false positive, true negative and false positive epochs comparing expert

vs. expert, expert vs. non-expert and expert vs. automatically detected

spindles.

Positive Negative Total

EXPERT 1 vs. EXPERT 2 DETECTIONS

True 11.48% 69.22% 3882± 451.83

False 1.97% 17.34% 928± 194.45

Total 647 ± 232.70 4164 ± 413.58 4811± 323.14

EXPERT 1 vs. NON-EXPERT DETECTIONS

True 25.36% 62.58% 3552.93± 325.84

False 8.27% 3.79% 487.23± 178.64

Total 1358.54 ± 284.08 2681.62 ± 220.40 4040.16± 252.24

EXPERT 2 vs. NON-EXPERT DETECTIONS

True 9.76% 78.89% 3568.15± 232.16

False 7.67% 3.68% 456.77± 149.07

Total 701.31 ± 172.87 3323.61 ± 208.37 4024.92± 190.62

EXPERT 1 vs. AUTOMATED DETECTIONS

True 19.94% 63.66% 4024.73± 380.99

False 7.48% 8.91% 789.14± 230.50

Total 1320.27 ± 231.83 3493.60 ± 379.66 4813.87± 305.74

EXPERT 2 vs. AUTOMATED DETECTIONS

True 10.10% 68.77% 3795.13± 376.78

False 17.83% 3.30% 1016.74± 176.37

Total 1343.67 ± 242.89 3468.20 ± 310.25 4811.87± 276.57

NON-EXPERT vs. AUTOMATED DETECTIONS

True 53.69% 13.58% 1142.68± 326.11

False 26.08% 6.65% 555.92± 196.02

Total 1354.92 ± 211.88 343.68 ± 310.25 1698.60± 261.07

points crowd the upper-right hand corner. However, as shown in
Figure 2A, data points were dispersed along the left hand side
of the plot, which resulted in low F1 scores (Figure 2B; mean
F1 = 0.54, ±0.17), and a low and non-statistically significant phi
coefficient (8 = 0.49,±0.18, p > 0.05).

Expert 1 vs. Non-expert Consensus
Overall, and consistent with a previous report (Warby et al.,
2014), Expert 1 and the consensus of non-experts performed with
very high agreement (Figures 2A,B). The non-expert detection
of spindles had both a high proportion of spindles that were
correctly identified relative to the total number of expert events
(i.e., recall = 0.87, ±0.08) and a high proportion of correctly
identified events relative to the total number of spindles detected
by the group of non-experts (i.e., precision = 0.75, ±0.13).
There was also a very high proportion of actual periods without
spindles that were correctly identified by non-experts (i.e.,
specificity = 0.88, ±0.07) and a high proportion of correctly
identified 3 s periods of EEG without spindles identified by non-
experts (NPV = 0.94, ±0.05), with a false positive rate of only
0.12, ±0.07. Finally, the F1 scores were high (F1 = 0.81 ±0.07,
Figure 2B) with points crowding the upper-right hand corner
of the recall-precision plot (Figure 2A), and the phi coefficients
[mean 8 = 0.72, ±0.07, χ2

(1)
= 6.82, p < 0.001] were high, and

statistically significant, suggesting excellent overall agreement
between Expert 1 and the consensus of non-experts.

Expert 2 vs. Non-expert Consensus
In contrast to the comparison to Expert 1, the non-experts
correctly identified fewer spindles relative to the total number of
Expert 2 events (i.e., recall= 0.73,±0.20) and a lower proportion
of correctly identified events relative to the total number of
spindles detected by the group of non-experts (i.e., precision =

0.56, ±0.18) with agreement also being more variable across
recordings (Figure 2A). There was a very high proportion of
actual periods without spindles that were correctly identified
by non-experts (i.e., specificity = 0.91, ±0.05) and a high
proportion of correctly identified 3 s periods of EEG without
spindles identified by non-experts (NPV = 0.96, ±0.05), with a
false positive rate of only 0.09±0.05. However, when considering
measures unbiased by TN events, the F1 scores were on average
lower (mean F1 = 0.63 ±0.16) although the phi coefficient did
reach statistical significance [mean8 = 0.57,±0.19,χ2

(1)
= 4.27,

p = 0.039].

Characteristics of Visually Identified Spindles
The most apparent differences in the characteristics of spindles
identified by the various visual scoring approaches were for
spindle duration and amplitude. In general, Expert 1 and non-
experts identified spindles with very similar distributions of
durations (Cohen’s d = 0.14) ranging from about 0.2–3 s
in length (Figure 3A), whereas Expert 2 identified spindles in
a more restricted range between about 0.5 and 2 s in length
(Figure 3A), whose distribution overlapped less with Expert 1
(Cohen’s d = 0.85) and the consensus of the non-experts
(Cohen’s d = 0.63). A similar pattern was observed for amplitude
whereby Expert 1 tended to score more spindles with smaller
amplitudes (Figure 4A) than Expert 2 (Cohen’s d = 0.63), with
the distribution of non-expert spindle amplitudes overlapping to
a greater extent with Expert 1 (Cohen’s d = 0.2) than Expert 2
(Cohen’s d = 0.37), respectively (Figure 4A). By contrast, there
was considerable overlap between visual scoring approaches for
mean frequency (Figure 5A) between Experts 1 and 2 (Cohen’s
d = 0.08), Expert 1 and non-experts (Cohen’s d = 0.16)
and between Expert 2 and non-experts (Cohen’s d = 0.23). In
terms ofmean frequency, however, from inspection of Figure 5A,
it appears that non-experts tended to identify more spindles
with a slower frequency than either Expert 1 or 2, perhaps due
to mistakenly identifying brief arousals (i.e., alpha activity) as
spindles.

Expert 1 vs. Expert 2
Spindles scored by Expert 1 and Expert 2 (Table 3) differed
significantly in terms of spindle duration [t(14) = 13.42, p <

0.001], amplitude [t(14) = 2.76, p = 0.015], total number [t(14) =
5.26, p < 0.001], but not mean frequency (p > 0.7). Despite these
differences, the characteristics of the spindles identified by the
two experts were linearly related to one another; suggesting that
the experts systematically (and consistently) identified spindles
differently across recordings on average, for duration [Figure 3B,
r(13) = 0.69, p = 0.004], amplitude [Figure 4B, r(13) = 0.96,
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FIGURE 2 | (A) High precision and recall across recordings when comparing Expert 1 to non-expert spindle scoring (black), low recall and variable precision across

recordings when comparing Expert 1 to Expert 2 (open), and intermediate precision and recall between Expert 2 and non-experts (gray). (B) Inter-rater agreement was

consistently high across subjects for Expert 1 vs. non-expert detections, ranging from 0.60 to 0.90 (Mean F1 = 0.81, ±0.07), low and variable agreement between

Expert 1 and Expert 2 ranging from 0.10 to 0.80 (Mean F1 = 0.54, ±0.17), and intermediate and variable agreement between Expert 2 and non-experts ranging from

0.10 to 0.80 (mean F1 = 0.63, ±0.16). F1 score = harmonic mean of recall and precision.

FIGURE 3 | (A) There was a great deal of overlap between Expert 1 and non-experts in terms of spindle duration (Cohen’s d = 0.14), but less overlap with Expert 2

(Cohen’s d = 0.85) or between Expert 2 and non-experts (Cohen’s d = 0.63). Spindle duration of automatically detected spindles were generally shorter in duration

than Expert 1 (Cohen’s d = 1.12), Expert 2 (Cohen’s d = 0.57), or non-experts (Cohen’s d = 0.91). Spindle duration among visual identification methods (B–D) and

between automatic and visual detection (E–G) were all highly inter-correlated (all p < 0.05).
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FIGURE 4 | (A) There was the greatest deal of overlap between non-experts and the automatically detected spindles in terms of spindle amplitude (Cohen’s

d = 0.24), but less overlap between the non-experts and Expert 1 (Cohen’s d = 0.85) or Expert 2 (Cohen’s d = 0.63). Spindle amplitudes of automatically detected

spindles were generally smaller than Expert 2 (Cohen’s d = 0.68) and overlapped the most with Expert 1 (Cohen’s d = 0.05). Spindle amplitude among visual

identification methods (B–D) and between automatic and visual detection (E–G) were all highly inter-correlated (all p < 0.05).

FIGURE 5 | (A) There was nearly complete overlap between the four scoring methods employed (all Cohen’s d < 0.25). Spindle frequency among visual identification

methods (B–D) and between automatic and visual detection (E–G) were all very highly inter-correlated (all p < 0.05).
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TABLE 3 | Group mean (± standard deviation) spindle characteristics for

automatically and manually detected spindles by experts and a group of

non-experts.

Detection Duration Frequency Amplitude Number

Method (s) (Hz) (µV)

Expert 1 1.20± 0.16 13.47±0.30 34.34± 6.84 1422±410.62

Expert 2 0.82± 0.06*,# 13.51±0.30 40.60± 6.44* 772.73±386.35*,#

Non-experts 1.10± 0.11 13.35±0.28 36.12± 5.17 1140±339.53

Automatic 0.69± 0.09*,+,# 13.37±0.24 34.06± 7.52+ 1438±240.14+,#

*Indicates significant difference from Expert 1, + indicates significant difference from Expert

2, and # indicates significant difference fromNon-experts, p< 0.05, two-tailed t-test. Mean

values for number reported for non-experts.

p < 0.001] mean frequency [Figure 5B, r(13) = 0.86, p < 0.001]
and number [r(13) = 0.81, p < 0.001]. Taken together, this
suggests that Experts 1 and 2 identified spindles with different
characteristics, and did so systematically across recordings.

Expert 1 vs. Non-expert Consensus
By contrast, there were no significant differences (Table 3) in the
characteristics of the spindles identified by Expert 1 as compared
to the consensus of the non-experts in terms of spindle duration
(p > 0.05), mean frequency (p > 0.2), amplitude (p > 0.4)
or total number identified (p > 0.06). Given these similarities,
it is not surprising that there was also a very high correlation
for duration [Figure 3C, r(13) = 0.82, p < 0.001], amplitude
[Figure 4C, r(13) = 0.93, p < 0.001] mean frequency [Figure 5C,
r(13) = 0.96, p < 0.001] and number [r(13) = 0.71, p =

0.003] across subjects. Thus, suggesting that Expert 1 and non-
experts identified spindles with similar characteristics and did so
consistently across recordings.

Expert 2 vs. Non-expert Consensus
By contrast, the characteristics of the spindles identified by Expert
2 differed significantly from non-experts (Table 3) in terms of
spindle duration [t(14) = 11.47, p < 0.001] and total number
[t(14) = 2.83, p = 0.013], but not frequency (p > 0.1)
and amplitude (p > 0.05). Despite the differences in spindle
characteristics between Expert 2 and non-experts, there was
a significant linear relationship for the spindle characteristics
between Expert 2 and non-experts for duration [Figure 3D,
r(13) = 0.80, p < 0.001], amplitude [Figure 4D, r(13) = 0.89,
p < 0.001], mean frequency [Figure 5D, r(13) = 0.81, p < 0.001]
and total number [r(13) = 0.83, p < 0.001]. Thus, similar to the
comparison between Expert 1 and Expert 2, in general, Expert 2
identified spindles with different characteristics than non-experts
and did so in a consistent manner across recordings.

Automated Detection vs. Visual Scoring
Automated Detection vs. Expert 1
The automated detection method had both a high proportion of
spindles that were correctly identified relative to the total number
of events identified by Expert 1 (i.e., recall = 0.69, ±0.11) and a
high and balanced proportion (with respect to recall) of correctly
identified events relative to the total number of automatically
detected events (i.e., precision = 0.73, ±0.15) (Figure 6A).

As expected, there was a high proportion of actual periods
without spindles that were correctly identified (i.e., specificity =
0.89, ±0.05) and a high proportion of correctly identified 3 s
periods of EEG without spindles (NPV = 0.88, ±0.08), with
a false positive rate of only 0.11, ±0.05. Overall, we observed
high agreement between the automated and manual detection by
Expert 1 [F1 = 0.71, ±0.06 and 8 = 0.60, ±0.06, χ2

(1)
= 5.31,

p = 0.021; Figure 6B].

Automated Detection vs. Expert 2
By contrast, while the automated detection identified a high
number of spindles relative to the total number of events
identified by Expert 2 (recall = 0.75, ±0.23) there was a low
number of correctly identified events relative to the number
of automatically detected events (precision = 0.36, ±0.17)
(Figure 6A). Specificity (0.79, ±0.04) and negative predictive
value (0.95, ±0.04) were also high, with a low false positive
rate (0.21, ±0.04), however these metrics are likely inflated by
the high number of TN. When taken into consideration, the F1
scores (F1 = 0.49, ±0.04) and phi coefficient (8 = 0.42, ±0.20,
p > 0.05) were low and non-statistically significant. Thus,
suggesting that the automated detectionmethod also detected the
majority of spindles identified by Expert 2, but made additional
detections that Expert 2 did not.

Automated Detection vs. Non-expert Consensus
Similar to Expert 1, the automated detection method performed
comparatively as well or better as compared to the consensus
of non-experts (Figure 6A), as indicated by high recall =

0.80, ±0.11, precision = 0.67, ±0.10, specificity = 0.85, ±0.08,
negative predictive value = 0.92, ±0.03 and a low false positive
rate = 0.15, ±0.08. The F1 scores (Figure 6B) were also
consistently high F1 = 0.73, ±0.04, as was the phi coefficient
[8 = 0.62, ±0.07, χ

2
(1)

= 5.00, p = 0.025]. In summary,

the automated detection method performed well as compared
to Expert 1 and the consensus of non-experts, but with less
agreement and consistency as compared to Expert 2.

Characteristics of Automatically Detected
Spindles
Characteristics of Automatically Detected Spindles

vs. Visually Detected Spindles
The automated detection method identified spindles that were
smaller both in terms of duration (Table 3 and Figure 3A) as
compared to Expert 1 [t(14) = 19.45, p < 0.001], Expert 2 [t(14) =
5.41, p < 0.001] and non-experts [t(14) = 17.25, p < 0.001],
supporting the notion that even with the use of a highly filtered
channel to simplify and aid in the visual identification of sleep
spindles, automated methods are able to identify and measure
smaller spindles. Expert 2 identified spindles that were also larger
in terms of amplitude [t(14) = 2.73, p = 0.016], whereas Expert
1 (p > 0.9) and non-experts (p > 0.4) identified spindles
of the same amplitude as the automated detection (Table 3).
Spindle frequency did not differ from visual scoring (all p > 0.1).
Spindle duration (Figures 3E–G), amplitude (Figures 4E–G) and
frequency (Figures 5E–G) for automatically detected spindles
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FIGURE 6 | (A) High precision and recall across recordings when comparing automated to Expert 1 spindle scoring (black) and to non-experts (open), but low

precision and high, but variable recall when comparing Expert 2 to automatic spindle detection (gray). (B) Inter-rater agreement was consistently high across

recordings scored by Expert 1 vs. automatic detections, ranging from 0.60 to 0.80 (Mean F1 = 0.71, ±0.06) and in non-experts vs. automatic detection, ranging from

0.60 to 0.80 (F1 = 0.73, ±0.04), but was low and variable between Expert 2 and the automatic detection, ranging from 0.10 to 0.70 (Mean F1 = 0.49, ±0.04). F1

score = harmonic mean of recall and precision.

were significantly correlated with the spindles identified by visual
scoring (all p < 0.05).

Distribution of Spindle Frequencies during NREM2

and SWS at Frontal and Parietal Regions
Consistent with previous reports (Zeitlhofer et al., 1997) Figure 7
reveals that a greater number of faster frequency spindles
predominated parietal regions whereas a greater number of
slower frequency spindles predominated frontal regions in both
NREM2 (Figure 7A, Cohen’s d = 0.43) and SWS (Figure 7B,
Cohen’s d = 0.78). This dissociation was supported by significant
spindle type (fast, slow) × site (frontal, parietal) ANOVAs on
automatically detected spindle density in NREM2 and SWS,
which revealed that fast spindles predominated parietal regions
as compared to slow spindles at frontal regions in both NREM2
[F(1,14) = 149.62, p < 0.001], and SWS [F(1, 14) = 194.19,
Table 4].

Spindle Density
Spindle characteristics over the course of NREM cycles and across
frontal and parietal regions followed well-established patterns
(Figure 8). A cycle (NREM cycle 1–4) × spindle type (fast,
slow) × site (frontal, parietal) ANOVA for spindle density
revealed a significant three-way interaction [F(3, 42) = 3.98,
p = 0.014]. This was driven by a higher density of slow spindles
(3.38, ±0.62) than fast spindles (1.16, ±0.54) at F3 as compared
to a higher density of fast spindles (3.31, ±0.91) than slow
spindles (1.52, ±0.69) at P3 [F(1, 14) = 149.62, p < 0.001].
Spindle density also differed across NREM cycles in a U-shaped

pattern (Himanen et al., 2002), but more so for fast spindles than
slow spindles, as indicated by a significant type by NREM cycle
interaction [F(3, 42) = 4.74, p = 0.006].

Spindle Duration
A similar pattern of results was observed for spindle duration,
however the cycle by spindle type by site three-way interaction
was not significant (p > 0.4). Slow sleep spindles (0.63, ±0.01)
were longer in duration than fast spindles (0.47,±0.06) at F3, but
not at P3 (slow = 0.61, ±0.19, fast = 0.66, ±0.07), as supported
by a significant spindle type by site interaction [F(1, 14) = 38.91,
p < 0.001]. Spindle duration also varied over the course of the
night as a function of: (1) spindle type, whereby slow spindles
flowed an inverted U-shaped pattern more so than fast spindles
[F(3, 42) = 5.31, p = 0.003], and (2) site, whereby spindles at
P3 regions followed an inverted U-shaped more so than at F3
[F(3, 42) = 6.27, p = 0.001].

Spindle Amplitude
In terms of spindle amplitude, there was a significant cycle
by spindle type by site three-way interaction [F(3, 42) = 3.01,
p = 0.041], whereby fast spindles increased over the course of
NREM cycles at frontal regions and decreased over the course
of NREM cycles at parietal regions. However, there were no
other significant interactions or main effects, thereby suggesting
that spindle amplitude was relatively stable over the course of
the night at frontal and parietal regions for both slow and fast
spindles.
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FIGURE 7 | Histogram of mean spindle frequencies at frontal and

parietal sites during NREM2 (A) and SWS (B). Fast spindles predominated

parietal regions, whereas slow spindles predominated frontal regions.

TABLE 4 | Group mean (± standard deviation) of fast and slow spindle

density during NREM2 and SWS at frontal and parietal regions.

NREM2 SWS

F3 P3 F3 P3

Fast 1.16 ± 0.14 3.31 ± 0.24 0.78 ± 0.12 3.66 ± 0.30

Slow 3.38 ± 0.16 1.52 ± 0.18 4.47 ± 0.22 1.49 ± 0.22

Spindle Frequency
By contrast, spindle frequency was very stable over the course
of the night as a function of site (p > 0.9) and spindle
type (p > 0.4), and there was no cycle by spindle type by
site three-way interaction. However, fast spindles were faster
at F3 (14.12, ±0.11) than fast spindles at P3 (13.76, ±0.15)
whereas slow spindles did not differ at F3 (12.80, ±0.14) and P3
(12.75, ±0.10) as supported by a significant site by spindle type
interaction [F(1, 14) = 11.85, p = 0.004].

Discussion

In summary, the strengths of this automated detection method
are: (1) CD was used to extract the signal of interest; a

FIGURE 8 | Spindle characteristics over the course of the first four

NREM periods, at frontal and parietal regions for fast and slow spindle

types, including density (A), duration (B), amplitude (C) and

frequency (D).
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method that is appropriate for brief events in a well-defined
frequency range for non-linear, non-stationary signals such as
EEG, and transforms the signal to a waveform that makes
event detection straightforward; (2) a sliding window was used
to calculate theM and SD for the z-score normalization to
account for intra-individual changes in the ratio of spindle-
related sigma to the changes in ongoing sigma over time, and
standardizes the amplitude of the signal across scalp locations
and individuals; and (3) this method permits the effective use of
a single, intuitive, user-defined amplitude parameter, with very
few other parameters to extract the signal of interest, that are
relatively intuitive (although sometimes non-trivial) to decide
upon (e.g., spindle frequency bandwidth and normalization
window duration). The validation was conducted on a freely
available database of EEG, independently scored by two experts
that employed two different methods to visually identify spindles,
using spindle annotations that are available to other researchers
for comparison. Thus, future direct comparisons to other
detection methods are possible. Improving the reliability and
validity of automated spindle detection will enable researchers to
investigate the neural and functional correlates of spindles with
greater confidence and reproducibility.

The results of the comparison between experts, highlights the
difficulty in comparing automated detection methods to human
visual scoring. Here, one expert (Expert 2) used conventional
guidelines (e.g., AASM), while the other expert (Expert 1) utilized
the aid of a sigma filtered channel to help identify spindles that
are either difficult to discriminate from the ongoing EEG (i.e.,
spindles obscured by slow activity, or are small, or have unusual
morphology in the normally filtered signal, e.g., 0.3–35Hz).
There were considerable differences between Expert 1 and Expert
2 in terms of low inter-rater agreement and in the characteristics
of the spindles that were identified. Expert 1 also had a much
higher level of agreement and identified spindles with similar
characteristics as compared to the consensus of non-experts (who
also used a sigma filtered channel to identify spindles) and the
automated detection, than did Expert 2. By having human scorers
view the EEG in a way that is closer to how the algorithm “sees”
the EEG, this may have putatively improved agreement between
automated and visual scoring and also may have minimized
the differences in the characteristics of the spindles that were
identified between automated and visual scoring. These results
suggest that the use of the additional filtered channel allowed
Expert 1 and non-experts to identify spindles that were difficult
to visually identify, whereas Expert 2 identified far fewer spindles
in general, that differed in their characteristics. This highlights
the caveats of validating spindle detectionmethods against expert
scoring as they can vary considerably from one individual to
another (Warby et al., 2014), and also depending on adherence
to established guidelines. To compare the automated detection to
a potentially less idiosyncratic detection, here, we also compared
the automated detection to a group of non-experts, to assess
the utility of crowd-sourcing techniques. Overall, non-experts
performed with a very high level of agreement as compared to
the automated detection method. Thus, suggesting that manual
scoring using web-based crowd sourcing tools could serve to
generate a valid gold standard, and could even replace automated

detection of spindles, if the goal is to perform as close to
the ideal performance of an expert scorer as possible. That
said, automated detection methods do have their advantages
over humans in terms of cost effectiveness and speed. They
are also superior at precisely calculating the beginning and
ending of individual spindles, can be tuned to perform better,
can be used to identify spindles on multiple channels, and can
perform well in the face of large amplitude, slow oscillations
that visually obscure spindles. This is particularly advantageous
in slow wave sleep where manual spindle detection is more
challenging.

Importantly, in addition to comparing this method to experts
and non-expert visual scoring methods, we investigated the
characteristics of the spindles that were automatically detected
to determine whether these spindles conform to known patterns
from the extant literature. In summary, a greater density of
fast spindles were observed at parietal than frontal regions,
whereas a greater density of slow spindles were observed at
frontal regions than parietal regions (Bódizs et al., 2009), and
the change in spindle density followed the previously reported
U-shaped pattern (for spindle power) over the course of the
night (Himanen et al., 2002). Moreover, slow spindles were
longer in duration than fast spindles at frontal regions and
longer than both slow and fast spindles at parietal regions
(Bódizs et al., 2009), whereas amplitude and frequency were
relatively stable over the course of the night. Thus, many of
the characteristics of the automatically detected spindles were
consistent with known characteristics. Ultimately, given that
scalp-recorded spindles are generated by the oscillatory firing
of thalamocortical neurons (Steriade, 2006), future validation
work comparing scalp-detected spindles to intracranial (e.g., unit
activity) (Frauscher et al., 2015) may permit automated detection
of spindles recorded from the scalp to be validated and identified
more precisely.

The current method does not use any explicit minimum
duration criteria for spindle detection and, due to the inherently
straightforward approach used to extract the signal of interest
(i.e., CD) minimizes - but does not eliminate—the number of
parameters that require trial-and-error adjustment to optimize
detection. Many existing definitions are based on minimum
duration criteria (e.g., 0.5 s) derived from spindles large enough
to be observed in the raw, mixed-frequency EEG (∼ 0.5–
35Hz) by the naked eye alone. By excluding spindles <0.5 s
in duration, this could possibly exaggerate inter-individual and
group differences or lead to a systematic bias in the detection
of large spindles. Of note, as can be seen in Figure 8B, the
vast majority of fast frontal spindles that were automatically
detected were < 0.5 s in duration. Automated techniques that
require aminimum spindle duration to be decided a-priori, could
benefit from loosening this criteria to determine the functional
significance of short-duration spindles. This could be particularly
problematic for elderly and psychiatric populations that have
smaller spindles. Despite having no minimum duration criteria,
the current method did not detect virtually any spindles shorter
than 0.2 s. This likely contributed to the difference in spindle
duration between expert and automated spindle detections,
however, it is also likely that the ability to manually and
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precisely score spindle duration is dependent on several factors,
most notably the manual dexterity of the scorer, visual display
settings, temporal resolution, and precision of the marking tool.
In addition, the automated detection is able to detect and
precisely measure (i.e., to the data point) very short duration
events. This interpretation is supported by the fact that spindle
duration was significantly and linearly related between visual
and automated methods, thus suggesting that while visual and
automated methods differ overall, there is a linear relationship
between them, and thus, the difference may be due to the human
scorer marking events systematically longer than the automated
detection method (n.b., compare range of values for x-axis vs.
y-axis in Figure 3E).

Both sigma power and spindles vary over the course of a night
of sleep, and within individual NREM periods (De Gennaro and
Ferrara, 2003; De Gennaro et al., 2005). In addition, spindles
are relatively stable from night-to-night within an individual,
but there are considerable inter-individual differences. Thus, it is
crucial for automated spindle detection methods to account for
these dynamic changes for accurate detection. Previous methods
have accounted for inter-individual differences by adjusting the
detection threshold that can be set to, e.g., the 95th or 99th
percentile of the entire recording (Gais et al., 2002; Barakat et al.,
2011; Nir et al., 2011; Cox et al., 2014). However, in order to
account for variations, not only per individual and per derivation,
here we employed the use of a sliding window to normalize
the signal to the 99th percentile to adaptively detect spindles as
the size of spindles change over the course of the night relative
to the “background” non-spindle-related sigma activity. While
intuitively, this may improve spindle detection, it is possible that
for extremely intense periods of spindle activity (e.g., when the
mean sigma activity is extremely elevated), that some smaller
spindles may go undetected, and by contrast, in periods with very
little spindle activity (e.g., when mean sigma activity is extremely
low), that some very small spindles may be detected, or even lead
to false detections. We feel however that this is unlikely as the
window size employed is sufficiently long (60 s, equivalent to in
this case, 3 epochs of consecutive NREM sleep), and thus would
be unlikely to have very sustained periods of either high or low
spindle activity great enough to systematically introduce a high
number of false positives or false negatives. That said, additional
work may be required to either optimize the size of the sliding
window, or refine the method to automatically adapt the size of
the sliding window.

Based on previously reported oscillatory frequency,
topographic (Zeitlhofer et al., 1997) and functional activation
differences between slow and fast spindles (Schabus et al.,
2007), sleep spindles can be categorized as either slow or
fast. Many current detection methods detect slow and fast
spindles in two separate detection passes (Ray et al., 2010). For
example, the frequency limits are set to detect slow spindles
(e.g., 11–13.5Hz), and then in a separate run on the same data,
frequency limits are set to detect fast spindles (e.g., 13.5–16Hz).
This approach will invariably result in (perhaps the majority

of) the same spindle events to be detected twice, due to the
overlap of the frequency extraction of the two adjacent bands.
The current method detects spindles in the full band (e.g.,
11–16Hz) in one pass and categorizes spindles post-hoc as
either slow or fast, based on each individual spindle events’
mean oscillatory frequency. This approach is advantageous such
that the categorization of slow and fast spindles is orthogonal
(i.e., so that the same spindle is not identified as both slow
and fast).

The present investigation used a sample of young healthy
subjects to validate the automated detection of spindles. In
order to assess how this method preforms in populations where
spindles are generally less frequent and smaller, such as elderly
subjects (Martin et al., 2012), in clinical populations (Limoges
et al., 2005; Steriade, 2005; Ferrarelli et al., 2007) or in noisy
recordings, such as simultaneous EEG-fMRI, formal validation
would also be required. However, preliminary validation results
show automated detection using the present method, had
a high inter-rater reliability with an established method in
young and older subjects (r = 0.98) (Fogel et al., 2014b)
and in EEG recorded simultaneously with fMRI (Fogel et al.,
2014a).

The main advantage of this method is the employment of CD
in conjunction with the normalization of the signal over time
to account for inter- and intra-individual differences in spindles.
An effort was made to minimize the number of parameters that
require trial-and-error or arbitrary decisions, and the detection
method has been validated against two experts employing
different approaches (from a freely available repository) and a
group of non-experts. In conclusion, the present method resolves
or avoids many of the limitations of automated spindle detection,
and performs well compared to a group of non-experts, and
importantly, has good external validity with respect to the extant
literature in terms of the characteristics of automatically detected
spindles.
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