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Studying task modulations of brain connectivity using functional magnetic resonance

imaging (fMRI) is critical to understand brain functions that support cognitive and affective

processes. Existing methods such as psychophysiological interaction (PPI) and dynamic

causal modeling (DCM) usually implicitly assume that the connectivity patterns are

stable over a block-designed task with identical stimuli. However, this assumption lacks

empirical verification on high-temporal resolution fMRI data with reliable data-driven

analysis methods. The present study performed a detailed examination of dynamic

changes of functional connectivity (FC) in a simple block-designed visual checkerboard

experiment with a sub-second sampling rate (TR = 0.645 s) by estimating time-varying

correlation coefficient (TVCC) between BOLD responses of different brain regions. We

observed reliable task-related FC changes (i.e., FCs were transiently decreased after

task onset and went back to the baseline afterward) among several visual regions

of the bilateral middle occipital gyrus (MOG) and the bilateral fusiform gyrus (FuG).

Importantly, only the FCs between higher visual regions (MOG) and lower visual regions

(FuG) exhibited such dynamic patterns. The results suggested that simply assuming a

sustained FC during a task block may be insufficient to capture distinct task-related FC

changes. The investigation of FC dynamics in tasks could improve our understanding of

condition shifts and the coordination between different activated brain regions.

Keywords: functional connectivity, dynamic connectivity, visual system, time-varying correlation coefficient,

sliding window

Introduction

Identifying brain connectivity, especially task-related connectivity, from functional magnetic
resonance imaging (fMRI) is critical to understand how brain is organized to support cognitive and
affective processes (Bullmore and Sporns, 2009, 2012; Friston, 2011; Passingham et al., 2013). The
inference of task-related connectivity changes can be achieved by dividing data samples of different
task periods into different conditions (after taking into account of hemodynamic delay) and then
calculating connectivity metrics of each condition separately. This branch of methods has been

Abbreviations: FC, FCs, functional connectivity; TVCC, time-varying correlation coefficient; MOG, middle occipital gyrus;

FuG, fusiform gyrus.
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widely applied to connectivity studies using structural equation
modeling (Zhuang et al., 2005) and Granger causality (Wen et al.,
2013). On the other hand, model-based methods, which generate
models with or without task-related connectivity changes to test
whether including additional parameters of task modulations can
significantly improve model fit, have also gained popularity. This
branch includes psychophysiological interaction (PPI), which
is based on a simple regression model (Rao et al., 2008), and
dynamic causal modeling (DCM), which is based on generative
differential equation models (Friston et al., 2003). However,
both branches of methods usually implicitly assume that the
connectivity is sustained during a block-designed task consisting
of identical stimuli.

The presumption of sustained connectivity during a
block-designed task period may not be true. Evidence
from high-temporal-resolution imaging techniques (such as
electroencephalography [EEG] and magnetoencephalography
[MEG]) has shown that stimuli or tasks could elicit rapid changes
of functional connectivity (FC) or effective connectviity (Ploner
et al., 2009; Hu et al., 2012; Zhang et al., 2012). In addition,
accumulating evidence has shown that even fMRI FCs during
the resting state are not sustained, but vary with time (Chang
and Glover, 2010; Kang et al., 2011; Kiviniemi et al., 2011;
Handwerker et al., 2012; Allen et al., 2014; Di and Biswal, 2015).
However, task-related FC dynamics within a certain task period
are seldom explored from fMRI data, which probably due to
the low temporal resolution of fMRI (usually > 1 s). From a
signal processing point of view, the low temporal resolution of
fMRI and the resultant limited number of data samples make the
estimation of connectivity dynamics in a short task period highly
variable and less reliable. Hence, there is little knowledge so far
about whether task-related FCs are sustained or transient in a
task.

In the present study, we hypothesized that fMRI FCs in a
simple block-designed visual checkerboard experiment are not
sustained but change with time. To validate this hypothesis,
we performed a rigorous analysis of FC dynamics in a block-
designed visual experiment, where fMRI data were acquired with
a relatively shorter repetition time (TR) of 0.645 s (Nooner et al.,
2012) and could provide necessary high temporal resolution
to unravel FC dynamics within task blocks. As compared with
literature on dynamic FC, the novelty of this study is two-fold.
Firstly, most of previous task-related FC studies were focused on
difference of FC (1) during tasks and at rest, (2) in task periods
with different stimulation level, or (3) in different cohorts of
subjects. However, our study is aimed to investigate FC dynamics
of normal subjects during a task with repeatedly presented
identical stimuli. Secondly, the research on FC dynamics in the
resting state has gained popularity in recent years, but few have
investigated FC dynamics in a task. Our current study attempts
to explore transient and rapid dynamics of FC in a simple
visual task, which is largely different from previous investigation
on resting-state data. Therefore, this study could add new
information regarding the dynamic organization of the brain in a
task. Specifically, we focused on FCs among visual regions which
were consistently activated during visual stimulation and default
mode network (DMN) regions which did not show consistent

activations. The dynamics of FCs were studied in three steps:
(1) a sliding window approach was used to estimate time-varying
correlation coefficient (TVCC) at every time point before, during,
and after the task; (2) the slope of TVCC at each time point was
estimated to identify the temporal trend of TVCC; (3) correlation
coefficient in four non-overlap experimental sub-periods were
estimated and compared to validate the FC dynamics. In the
second step, the slope of TVCC was examined because the slope
of a line is an important parameter to describe both the direction
and the steepness of the line. Therefore, the slope of TVCC
at each sample can reflect along which direction the TVCC
changes (i.e., increase, decrease, or keep unchanged) and how
large the change is. In another word, the slope would provide a
quantitative measure to gauge the change of TVCC. Our results
showed that, FCs between higher visual regions and lower visual
regions exhibited significant temporal evolution. However, such
temporal evolution could not be observed from FCs between (1)
bilateral activated regions, (2) inactivated regions, (3) activated
regions, and inactivated regions. We also examined the dynamics
of BOLD responses and found that BOLD responses in activated
brain regions and FCs between activated brain regions showed
different changing patterns.

Materials and Methods

Task and fMRI Data Acquisition
We analyzed fMRI data from the enhanced Nathan Kline
Institute (NKI)/Rockland sample (Nooner et al., 2012)
of the international neuroimaging data-sharing initiative
(INDI) (http://fcon_1000.projects.nitrc.org/indi/enhanced/).
Institutional Review Board Approval was obtained for this
project at the Nathan Kline Institute and at Montclair State
University. Written informed consent was obtained for all study
participants (Nooner et al., 2012). Only the visual checkerboard
data with a TR of 645ms and the MPRAGE (magnetization-
prepared rapid acquisition with gradient echo) anatomical
images were used in the current analysis. The short TR ensured
that sufficient data samples in the task period (around 32 samples
within a short block period of 20 s) can be exploited to investigate
dynamics in FCs. Inclusion criteria for subjects in the enhanced
NKI/Rockland sample were: (1) they did not have mental or
physical disease that could affect brain functions, (2) their data
had small head motions (<3mm or 3◦), and (3) their data do
not violate standard fMRI safety criteria (Gountouna et al., 2010;
Tomasi et al., 2014). In total 20 subjects (18–60 years, mean =

31.7 years) from this dataset were included in current study.
The fMRI data were recorded from a simple checkerboard

visual experiment, where the checkerboard stimuli were
presented in the center of the screen with a flickering frequency
of 4Hz. With a block design, the scan started with a 20 s
rest condition (fixation) and followed by a 20 s checkerboard
condition with three repetitions. After the third checkerboard
block, there was an additional 35 s rest condition. The total scan
time was about 2m 35 s with totally 240 images acquired. The
fMRI data were scanned using a multiband echo planar imaging
(EPI) sequence with the following parameters: TR = 645ms;
TE = 30ms; flip angle = 60◦; voxel size = 3mm3 isotropic;
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number of slices= 40. The MPRAGE images were scanned using
the following parameters: TR = 1900ms; TE = 2.52ms; flip
angle= 9◦; voxel size= 1mm3 isotropic.

fMRI Pre-processing and Analysis
Functional MRI data were preprocessed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/) under MATLAB7.6
environment (http://www.mathworks.com/). Before processing,
the first 14 functional images (around 9 s) were discarded. We
have not performed slice timing since this dataset was scanned
using a multiband imaging technique, in which multiple slices
were excited simultaneously. The remaining images were motion
corrected for each subject, and co-registered to the subject’s
high resolution anatomical image. The anatomical image was
segmented using the new segment routine in SPM8. Then,
the deformation field obtained from the segmentation step
was applied to all the functional images to normalize them
into standard MNI space (Montreal Neurological Institute).
All functional images were smoothed using a Gaussian
kernel (FWHM = 8mm). Finally, the functional images were
temporally filtered by a second order Butterworth lowpass filter
with a cutoff frequency of 0.75Hz. To quantify the amount of
head motion, we calculated mean frame-wise displacement (FD)
in the translational and rotational directions for each subject
(Yan et al., 2013). The mean FD values in translation and rotation
across subjects were 0.06mm and 0.03◦, respectively, while the
maximum mean FD values in translation and rotation across
subjects were 0.11mm and 0.06◦, respectively.

General linear model (GLM) was used to estimate activations
relating to checkerboard presentations. A box-car function
representing the checkerboard presentation block was convolved
with the canonical hemodynamic response function (HRF).
Other regressors in the GLM included six rigid body head
motion parameters, their first order temporal derivatives, the
first five eigenvariates from the signals in the white matter,
and the first five eigenvariates from the signals in the
cerebrospinal fluid (CSF). A default high-pass filter with a
cutoff frequency of 1/128Hz was incorporated in the GLM
model. The beta maps representing activations of the visual
stimuli were obtained by GLM from all subjects and then
were entered into a second level analysis to assess consistent
activations across subjects by using a one-sample t-test model.
Four activated regions of interest (ROIs) were defined based
on our previous study of an independent data set (Fu et al.,
2014) to minimize selection bias (Kriegeskorte et al., 2009).
The four activated ROIs were left middle occipital gyrus
(LMOG) (MNI coordinates: −21, −91, −5), right middle
occipital gyrus (RMOG) (24, −91, 1), left fusiform gyrus
(LFuG) (−33,−61,−14), and right fusiform gyrus (RFuG)
(36,−58,−11). Among the four visual ROIs, left MOG, and
right MOG are lower visual areas while left FuG and right FuG
are higher visual areas. Two inactivated ROIs in DMN: medial
prefrontal cortex (mPFC) (0, 51, 32) (Dosenbach et al., 2010)
and posterior cingulate cortex (PCC) (−5, −49, 40) (Jang et al.,
2011) were also defined for comparison. The definitions of overall
six ROIs were shown in Figure 1. ROIs were defined as 8mm
spheres centered at the MNI coordinates. The BOLD response

FIGURE 1 | The group-level BOLD activation map for visual

checkerboard stimuli (hot color coded). Six ROIs used in the current

analyses were displayed in red (activated) or blue (inactivated). The four

activated ROIs were left middle occipital gyrus (LMOG) [MNI coordinates: right

middle occipital gyrus (RMOG) (24, −91, 1), left fusiform gyrus (LFuG)

(−33, −61, −14), and right fusiform gyrus (RFuG) (36, −58, −11). The two

inactivated ROIs were medial prefrontal cortex (mPFC) (0, 51, 32) and

posterior cingulate cortex (PCC) (−5, −49, 40)].

of each ROI was the average of all voxels in this ROI. The first
eigenvariate time-series data from the ROIs were extracted after
adjusting for head motion parameters, signals from the white
matter and CSF, and low-frequency drifts.

Analysis of Connectivity Dynamics
Point-wise Time-varying FC Estimation
We used a sliding window TVCC estimation method to
investigate the dynamics of FCs among different ROIs over
the whole scan. The sliding-window TVCC estimation method
may be the most fundamental and most widely-used method
to infer the dynamic patterns of FCs (Hutchison et al.,
2013a). The box-car task design function convolved with the
canonical HRF was first regressed out to remove its impact on
FC estimation (Whitfield-Gabrieli and Nieto-Castanon, 2012).
Correlation coefficient between two ROIs was calculated at
each time point using data samples within a Gaussian window
Kh(u) = exp(−u2/h){|u|≤h/2}, where h is the specified window
size of 24 samples (16 s). This window size is shorter than the
task block, so that important details of FC dynamics during the
task period would not be overlooked. Also, since the fMRI data
we used have a short TR of 645ms, a window of 16 s includes
around 24 samples in estimating the correlation coefficient.
In literature, a window covering 24 samples is sufficient for
estimating dynamic FC. For example, a window of 15 samples
was used in Hutchison et al. (2013b) and a window of 16 samples
was used in Handwerker et al. (2012). Other window sizes (14
and 18 s) were also used to calculate TVCCs and the results can
be found in the Supplementary Materials.

Detection of Changes in BOLD and FC
To investigate the changes of BOLD responses and FCs
introduced by the task stimulation, we first examined whether
BOLD or FC at each time sample after the stimulus onset was
significantly different from the baseline values within the pre-
stimulus period (−10 to 0 s). TVCCs were Fisher’s z-transformed
before the following analyses. For each subject, BOLD responses
or FCs were averaged across three block cycles, and the mean of
each BOLD or FC within the pre-stimulus period (−10 to 0 s)
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was the baseline value of this subject. Two-tailed one sample t-
test was applied to check whether BOLD or FC at each time point
after the stimulus onset was larger or smaller than their baselines
at the group level. The significance threshold was corrected by
the false discovery rate (FDR) procedure to address the problem
of multiple comparisons (Benjamini and Hochberg, 1995).

Trend Analysis of BOLD and FC
Further, we estimated the temporal trends of BOLD responses
and FCs at each time point. For each subject, BOLD responses
and FCs were averaged across three block cycles and then the
slopes of each time point were estimated by a least-squares linear
fitting of the samples within a rectangular window of 16 s. Two-
tailed t-test was applied to check whether slope at each time
point was significantly larger than zero (indicating an increasing
trend) or smaller than zero (indicating a decreasing trend). The
significance threshold was corrected by the FDR procedure to
address the problem of multiple comparisons (Benjamini and
Hochberg, 1995). The resulting time-varying slopes denoted
whether BOLD or FC at each time point increased (larger
than 0), decreased (smaller than 0), or sustained (not significantly
different from 0).

FC in Different Experimental Sub-periods
The sliding window method had unavoidable (and maybe large)
estimation bias, because FCs or slopes of BOLD and FCs at one
time sample were estimated from adjacent data samples, which
may not have the same properties as the data at this time sample
(Zhang et al., 2011). For example, when the window size for FC
estimation is 16 s, the FC estimates in the range of 0–15 s after
the stimulus onset were estimated from some samples before the
stimulus onset. To further validate the FC dynamics estimated
from the sliding window method, we examined the FCs within
four non-overlapping sub-periods: (1) the pre-stimulation period
(PRE-STIM: −10 to 0 s), (2) the early period of stimulation
(EARLY-STIM: 0–10 s), (3) the late period of stimulation (LATE-
STIM: 10–20 s), and (4) the post-stimulation period (POST-
STIM: 20–30 s), where “0 s” denoted the onset time of one visual
presentation block. FC in each sub-period was calculated as
the correlation coefficients between data samples at two regions
within one sub-period and averaged across three cycles after
Fisher’s z-transformed. A one-way repeated measure analysis of
variance (ANOVA) was performed to examine whether there
was any difference between FC in four experimental sub-
periods (PRE-STIM, EARLY-STIM, LATE-STIM, and POST-
STIM). Once ANOVA found significant difference (p < 0.05),
post-hoc pairwise comparisons (paired t-test) were performed
between two adjacent sub-periods to identify the temporal
changes of FCs. The significance threshold was corrected by the
FDR procedure to address the problem of multiple comparisons
(Benjamini and Hochberg, 1995).

Results

BOLD Responses and Time-varying FC
BOLD responses and point-wise FC estimates, all of which were
averaged across three block cycles, were shown in the left panels

of Figures 2–4, respectively. In Figure 2, the BOLD responses
of all activated ROIs (LMOG, RMOG, LFuG, RFuG) increased
after stimulus onset (0 s) and showed significant larger activations
than the baseline from 5 s after stimulus onset. These significant
large BOLD activations lasted for around 20 s and went back
to the baseline before 30 s. In contrast, BOLD responses of
inactivated ROIs (PCC and mPFC) did not increase or decrease
during the task. In Figure 3, FCs between higher visual ROIs
(FuG) and lower visual ROIs (MOG) significantly decreased
during the stimulation period (5–15 s). However, FC between
two inactivated ROIs, FCs between one activated ROI, and one
inactivated ROI (such as MOG and PCC), and FCs between
bilateral ROIs (such as LMOG and RMOG, or LFuG and RFuG)
did not change and were almost sustained during the task period,
as shown in left panels of Figures 3, 4.

Trend Analysis of BOLD and Time-varying Fc
Point-wise trend analysis showed that the BOLD responses
and FCs had largely different trends in the task period (0–
20 s), and the results were displayed in the right panels of
Figures 2–4, respectively. Firstly, it can be seen from Figure 2

that BOLD of activated ROIs increased significantly while the
BOLD of inactivated ROIs did not show any dynamic trends
during the stimulation period (0–20 s). Secondly, the FCs showed
significantly different dynamic patterns between different ROIs.
FCs between visual ROIs at different activation levels exhibited
significantly negative slopes during the stimulation period. But,
FC between inactivated ROIs, FCs between inactivated ROIs and
activated ROIs, and FCs between bilateral ROIs did not have
any increasing or decreasing trends during the task period. The
same trend analyses were also conducted on TVCC estimates
obtained with other window sizes (14 and 18 s). The results in
Supplementary Materials showed that, although the window size
could influence TVCC estimation, the decreasing trend of FCs
over the whole task period could still be observed by using a
window size of 14 or 18 s.

FC in Different Experimental Sub-periods
One-Way repeated measures ANOVA only identified significant
FC difference among four sub-periods on those FCs between
higher and lower visual ROIs (p = 0.0029 for LMOG × LFuG;
p = 0.0213 for LMOG× RFuG; p = 0.0272 for RMOG× LFuG;
p = 0.0342 for RMOG × RFuG). FCs with significant difference
in different four experimental sub-periods (i.e., LMOG × LFuG,
LMOG × RFuG, RMOG × LFuG, and RMOG × RFuG) were
displayed in Figure 5. It can be seen that FCs between visual
ROIs at different activation levels in the EARLY-STIM sub-period
were significantly larger than that in the LATE-STIM sub-period.
Moreover, it can be seen that there was a slight increase in
FCs between PRE-STIM and EARLY-STIM sub-periods, but the
significant level could not pass the FDR-corrected threshold.
Similarly, there was also a slight increase in FCs in POST-STIM
compared with that in LATE-STIM, although it could only pass
the FDR-corrected significant threshold at LMOG × LFuG and
LMOG × RFuG. The results in Figure 5 were consistent with
the results shown in the left panel of Figure 3, where FC between
activated ROIs was significantly decreased in the time range from

Frontiers in Human Neuroscience | www.frontiersin.org 4 September 2015 | Volume 9 | Article 543

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Di et al. Dynamic connectivity of visual system

FIGURE 2 | Left: Mean and standard error of mean (SEM) of BOLD responses in four activated ROIs and two inactivated ROIs. Two-tailed t-test was used to examine

whether the BOLD after stimulus onset was larger or smaller than baseline at each time point. The time points with significantly larger or smaller (p < 0.05, FDR

corrected) BOLD responses than baseline were highlighted with red or blue background, respectively. Right: Mean and SEM of slopes of BOLD in four activated ROIs

and two inactivated ROIs. Two-tailed t-test was used to examine whether the slope of BOLD was larger than 0 or smaller than 0 at each time point. The time points

with significantly positive or negative (p < 0.05, FDR corrected) slope values were highlighted with red or blue background, respectively. Stimulation period was from 0

to 20 s. Results were averaged across three blocks and all subjects.

10 to 20 s. Therefore, the significant difference of FCs in different
sub-periods further validated the FC dynamics in the task.

Discussion

In the present study, we performed a detailed examination of the
FC dynamics in a simple block-designed visual experiment, and
found that FCs between the visual areas at different activation
levels did not only vary between conditions (rest vs. task), but
also changed within the task block (a significant decreasing
trend during the task period). Our analysis revealed that (1)
the FCs during the task period had different temporal dynamic
behaviors; (2) FCs between spatially distributed visual regions
could not persist at a high level but decreased within the task
period. This was in contrast to BOLD responses in visual regions,
which exhibited sustained activations over almost the whole task
condition.

Possible Physiological Basis of Task-related FC
Dynamics
The transient connectivity changes between the visual areas were
in line with neurophysiological evidence. At the neuronal level,
neurons in visual areas showed increased synchronization within
a second after stimulus onset (Bichot et al., 2005; Gregoriou

et al., 2009). Similar phenomena have been observed in human
using EEG (Cavanagh et al., 2009) and MEG (Gross et al., 2004).
In addition, because the stimulation used in the present study
was a very simple flickering checkerboard, the predictive value
of the stimuli would decrease after brief presentation at the
beginning of the block. Therefore, the communications between
lower visual areas of the MOG and higher visual areas of the
FuG may not be kept during the whole block period. Most
interestingly, however, activated BOLD responses remained at
a high level during the stimulation period, which was largely
different from the transient changes of FCs. This may suggest a
disassociation between FCs and BOLD responses. That is, both
the lower and higher visual areas process information of the
visual stimuli, while the communication between the lower and
higher visual areas might be associated with the predictive values
of the stimuli.

The physiological origin and mechanism of the observed task-
related FC dynamics are difficult to be determined from the data
and results in the present study. However, we speculate that
the transient FC changes in the visual task might be caused by
or related to (1) the predictive coding mechanism of the visual
system, (2) the stimulus saliency, (3) the limited capacity of the
brain for information integration, and (4) fluctuations of alpha
band synchronizations.
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FIGURE 3 | Left: Mean and standard error of mean (SEM) of FCs between four activated ROIs. Two-tailed t-test was used to examine whether the FC after stimulus

onset was larger or smaller than that in baseline at each time point. The time points with significantly larger or smaller (p < 0.05, FDR corrected) FC than that in

baseline were highlighted with red or blue background, respectively. Right: Mean and SEM of slopes of FCs between four activated ROIs. Two-tailed t-test was used

to examine whether the slope of FC was larger than 0 or smaller than 0 at each time point. The time points with significantly positive or negative (p < 0.05, FDR

corrected) slope values were highlighted with red or blue background, respectively. Stimulation period was from 0 to 20 s. Results were averaged across three blocks

and all subjects.

First, the predictive coding mechanism might be one of
the potential causes of the decrease on FCs between different
visual sub-systems (Rao and Ballard, 1999; Brown et al., 2011;
Bastos et al., 2012; Clark, 2013). Recently, there is increasing
evidence to show that visual cortex is a multi-layered prediction
system where the higher level sub-system could automatically
adjusts its probabilistic representations so as to predict the
inputs of the lower level sub-system (Summerfield et al., 2008;
Kok et al., 2011; Bastos et al., 2012; Olsen et al., 2012). The
connections between higher and lower visual sub-systems allow
the prediction and error-correction cycles occur concurrently so
that the higher visual sub-system could adjust itself to gradually
minimize the prediction error. Once the higher visual sub-system
successfully predicts the lower visual sub-system activities, no
further action needs to ensue. The feedforward connection
neurons are suppressed by feedback connection and thus finally
show endstopping property. FCs between higher and lower visual
sub-systems might be influenced by the connection neurons
responsible for encoding and transferring the prediction errors.
That is, these FCs increase when the connection neurons fire
vigorously due to the large prediction error. In contrast, when
the prediction error is small, connection neurons show little
response so that the FCs decreases. That might explain why
we could observe a slight increase in FCs between higher and
lower visual sub-systems during the early stage of the block.

When identical stimuli are presented repeatedly, the higher visual
sub-system gradually adjusts its probabilistic representations to
minimize the prediction error to a low level. As a result, the
feedforward connection neurons would be suppressed, and FCs
between higher and lower visual sub-systems during the late
period of block would be decreased. On the other hand, the
predictive codingmechanismmight also lead to lower FCs during
task blocks compared with those during rest periods. During
the rest periods, the activity in the lower visual sub-systems
is mainly resting state spontaneous activity, which might be
susceptible to the random mental state or uncertain weak visual
stimuli. The higher visual sub-systems can hardly find a certain
probabilistic representation to the lower visual sub-systems and
thus prediction error would maintain at some certain level. But
during the visual task, since the activity in lower visual system
is dominated by simple identical visual stimuli, the higher visual
sub-system could gradually find an appropriate representation
to minimize the prediction error. The feedforward connection
neurons would show more endstopping property than that in the
rest periods since the prediction error could be minimized to a
smaller level. This might explain why lower FCs compared with
those in the rest periods could be observed at the end of the task
block.

Second, another possible cause of the task-related FC
dynamics is the stimulus saliency, which refers to the ability
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FIGURE 4 | Left: Mean and standard error of mean (SEM) of FCs between the activated ROIs and inactivated ROIs, and FC between inactivated ROIs. Two-tailed

t-test was used to examine whether the FC after stimulus onset was larger or smaller than that in baseline at each time point. The time points with significantly larger

or smaller (p < 0.05, FDR corrected) FC than that in baseline were highlighted with red or blue background, respectively. Right: Mean and SEM of slopes of FCs

between activated ROIs and inactivated ROIs, and slope of FC between inactivated ROIs. Two-tailed t-test was used to examine whether the slope of FC was larger

than 0 or smaller than 0 at each time point. The time points with significantly positive or negative (p < 0.05, FDR corrected) slope values were highlighted with red or

blue background, respectively. Stimulation period was from 0 to 20 s. Results were averaged across three blocks and all subjects.

of the stimulus to disrupt the current cognitive focus and
elicit an attentional or behavioral switch (Downar et al.,
2000). Activations of different brain regions are highly
synchronized in response to the onset of new stimulation
and give positive contribution to the original synchronization
during the rest. Hence, FCs remain (slightly increase) at a
high level after the onset of the visual stimulation block.
Such task-related synchronization gradually decreases with
the repetition of stimulation (at short and constant inter-
stimulus interval) which would give negative contribution
to the spontaneous synchronization, and, therefore, FCs
fall down in the latter period of the stimulation block

where the stimulation contained no salient information.
Electrophysiological evidence has shown that stimulus
repetition could significantly modulate brain responses and
synchronization. For example, repetition of laser stimulation
could decrease the magnitude of evoked brain potentials
(Iannetti et al., 2008), and repetition of visual stimulation could
lead to increased gamma-band synchronization within and
between early and higher visual areas (Brunet et al., 2014).
However, the current experimental design is insufficient to
validate whether the FC dynamics are modulated by saliency
or not, because the visual stimulation in this experiment
was presented with the same intensity/pattern and at the
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FIGURE 5 | Mean and standard error of mean (SEM) of FCs between higher and lower visual ROIs within four experimental sub-periods (the

pre-stimulation period, PRE-STIM, −10 to 0 s; the early period of stimulation, EARLY-STIM, 0 to 10 s; the late period of stimulation, LATE-STIM, 10 to

20 s; the post-stimulation period, POST-STIM, 20 to 30 s.) Here “0 s” denoted the onset time of one visual presentation block. The p-values of FC difference

between adjacent sub-periods were presented, and significant difference (p < 0.05, FDR corrected) between FCs within adjacent sub-periods was marked using

asterisks.

same inter-stimulus interval and the only salient information
was the stimulation onset. In order to test whether FCs
are modulated by saliency of stimulation, we can deliver
visual stimuli at varying and unpredictable inter-stimulus
intervals and/or with different intensity/pattern in future
experiments.

Third, FC dynamics may also be explained by the limited
capacity of these activated brain regions for information
integration and exchange (Marois and Ivanoff, 2005; Shanahan,
2012). The capacity of the activated brain regions is largely
consumed by the first several stimuli and fewer resources are left
to process subsequent stimuli. As a consequence, FCs could only
maintain at a high level at the beginning of a block of stimulation
and decrease afterwards.

Forth, FCs among visual ROIs generally were reduced
during the checkerboard condition, as compared with the
fixation condition. These are in line with several recent studies
showing that FCs within the visual system were reduced during
various tasks, as compared with those during resting state
(Cole et al., 2014; Spadone et al., 2015). The BOLD signals
of visual regions were highly synchronized in resting-state
(Lowe et al., 1998; Biswal et al., 2010). And the high FCs
were thought to associate with band-limited power fluctuations,
specifically the alpha band power (He et al., 2008). Therefore,
the reduced FCs during the checkerboard condition compared
with the fixation condition may reflect reduction of alpha
band synchronizations (Betti et al., 2013). This speculation (FC
dynamics are correlated with alpha band synchronizations) could
be validated by simultaneously acquired EEG-fMRI data in the
visual checkerboard task.

Methodological Considerations
Correlation coefficient is a commonly used metric to assess
FC between brain regions. When being used to infer time-
varying FC, correlation can be estimated from short-windowed
data segments, but the selection of window size for optimal
estimation of time-varying FC is challenging. In this study
we carefully selected appropriate window size in the sliding
window approach to infer time-varying FC sample by sample.We
also tested the estimation of TVCC using other fixed windows
and the results were summarized in Section Explanation and
Example for Regressing Out Task-related BOLD Responses of
the Supplementary Materials. Overall, although the window size
has a considerable influence on point-wise TVCC estimation, the
decreasing trend of FCs over the whole task period could still be
observed by using other fixed window sizes (if it was not too long
or too short) in time-varying FC estimation.

It should also be noted that, regressing out task-related BOLD
activities is a crucial pre-processing step in identifying task-
related FC dynamics using sliding-window TVCC estimation.
Correlation is a statistical metric that is only applicable for
stochastic processes (spontaneous BOLD activity), but not
for deterministic processes (task-activated BOLD activity).
So, mathematically we need to remove task-related BOLD
activities for correct estimation of TVCC. Importantly, if
deterministic task-related BOLD activities were not removed
before calculating TVCC, they would definitely cause dynamic
changes of TVCC (please refer to Section Explanation and
Example for Regressing Out Task-related BOLD Responses of
the Supplementary Materials for a detailed explanation and an
example). But, these dynamic TVCC patterns estimated from
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task-related BOLD activities are not physiologically relevant
because they can be explained by well-studied task-related
BOLD activities. Therefore, it is important to regress out task-
related BOLD activities to make sure the correctness of the FC
estimationmethod and to ascertain the physiological significance
of observed FC dynamics. In the present study, the considerable
task-related FC dynamics we observed were not estimated
from task-related BOLD activities, so they can provide new
information about the organization of the brain that cannot be
provided by task-related BOLD activities.

Lastly, one possible limitation of our analysis is that, the FC
dynamics of three block cycles are very large, because of the very
low SNR of BOLD signal. So, we averaged the BOLD responses
and FCs across three cycles before statistical comparisons across
subjects and between time periods. The large variability in FC
dynamics across cycles may be caused by noise, but it may also be
physiologically relevant. In future, it will be interesting to study
whether FC dynamics of separate cycles are stable or not from
new experimental data, for example, with more cycles and more
participants.

Implications and Future Studies
The current task-related FC analyses suggested that simply
dividing the samples in different task conditions and then
calculating connectivity measures may not be sufficient to infer
FC dynamics during a task period. We checked the sample-
by-sample time-varying FC of the visual stimulation block and
found significantly different changing patterns of FCs during
the stimulation period. In addition, effective connectivity models
that examine task related changes, such as PPI (Friston et al.,
1997) and stochastic DCM (Friston et al., 2003), usually assume
a constant FC over a condition. However, as implied by the
current analyses, explicitly modeling the transient patterns of
connectivitymay be needed to advance our knowledge about how
brain regions dynamically exchange information in a task period.

This study was based on a simple block-designed visual task
in normal healthy people. We would like to pursue the following
directions in future to further examine the generalizability and
implications of the findings. A more complicated experiment
should be designed to investigate how FC dynamics within
the task period could be modulated by stimulation parameters
(such as stimulus intensity and inter-stimulus interval) and
psychological factors (such as sensory modality, saliency, and
attention) for a more comprehensive study of the task-related
FC dynamics and the underlying brain mechanisms. Second, we
are interested to check whether such task-related FC dynamics

are different in different cohorts of individuals (such as people
with a specific neurological and psychiatric disease). Alterations
in FCs have been associated with a wide range of neurological and
psychiatric diseases (Greicius et al., 2003; Greicius, 2008; Fox and
Greicius, 2010), but the clinical implications of task-related FC
dynamics have been rarely explored. If task-related FC dynamics
are found to be altered by neurological and psychiatric diseases,
they may lead to a better understanding of the neuropathology
and eventually, diagnostic, and prognostic indicators. Third, it
will also be interesting to study the inter-subject difference of the
task-related FC dynamics. Since the individual differences of FC

have been attributed to age (Barber et al., 2013), sex (Kilpatrick
et al., 2006), BOLD activation in task (Mennes et al., 2010), and
even personality factors (Zhou et al., 2014), it is also possible
that task-related FC dynamics could be linked to above individual
factors. Therefore, more individual factors should be collected in
future experiments to explore this possibility. If task-related FC
dynamics are correlated with certain individual factors, they may
be potentially used as biometric measures. For example, it was
suggested in (Zilverstand et al., 2014) that dynamic FC correlated
with task difficulty could be used as neurofeedback measures for
individuals.
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