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While robot-assisted arm and hand training after stroke allows for intensive task-oriented
practice, it has provided only limited additional benefit over dose-matched physiotherapy
up to now. These rehabilitation devices are possibly too supportive during the exercises.
Neurophysiological signals might be one way of avoiding slacking and providing
robotic support only when the brain is particularly responsive to peripheral input. We
tested the feasibility of three-dimensional robotic assistance for reaching movements
with a multi-joint exoskeleton during motor imagery (Ml)-related desynchronization of
sensorimotor oscillations in the B-band. We also registered task-related network changes
of cortical functional connectivity by electroencephalography via the imaginary part of the
coherence function. Healthy subjects and stroke survivors showed similar patterns—but
different aptitudes— of controlling the robotic movement. All participants in this pilot study
with nine healthy subjects and two stroke patients achieved their maximum performance
during the early stages of the task. Robotic control was significantly higher and less
variable when proprioceptive feedback was provided in addition to visual feedback,
i.e., when the orthosis was actually attached to the subject’s arm during the task.
A distributed cortical network of task-related coherent activity in the 6-band showed
significant differences between healthy subjects and stroke patients as well as between
early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link
three-dimensional robotic training to the participants’ efforts and allow for task-oriented
practice of activities of daily living with a physiologically controlled multi-joint exoskeleton.
Changes of cortical physiology during the task might also help to make subject-specific
adjustments of task difficulty and guide adjunct interventions to facilitate motor learning
for functional restoration, a proposal that warrants further investigation in a larger cohort
of stroke patients.

Keywords: robotic exoskeleton, brain-computer interface, brain-machine interface, brain-robot interface, upper
limb rehabilitation, functional connectivity, stroke
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INTRODUCTION

Despite intensive rehabilitation practice, the restoration of arm
and hand function for activities of daily living is still not possible
in the majority of stroke patients (Dobkin, 2005). To further
increase and standardize the amount of therapy required, robot-
assisted training was studied in controlled trials without reaching
relevant additional benefits over dose-matched physiotherapy
yet (Kwakkel et al, 2008; Lo et al., 2010; Mehrholz et al,
2012; Klamroth-Marganska et al., 2014). The most advanced
commercially available training system is presumably an active
robotic exoskeleton with seven actuated axes (i.e., degrees of
freedom), providing antigravity support for the paretic arm
and allowing patients with severe impairment to perform
task-oriented practice within a motivating virtual environment
(Klamroth-Marganska et al., 2014; Kwakkel and Meskers, 2014).
This device provided slightly more functional gain for the
participating stroke survivors compared to conventional therapy
(Klamroth-Marganska et al., 2014). It has been suggested, that
such an improvement might also be due to unspecific influences
such as increased enthusiasm for novel interventions on the part
of both patients and therapists (Kwakkel and Meskers, 2014).
However, this robotic training was less effective at restoring arm
strength than conventional therapy (Klamroth-Marganska et al.,
2014), probably because it was too supportive when providing
“assistance-as-needed” during the exercises (Chase, 2014). This
is an inherent limitation of active robotic devices providing
support on the basis of system dynamics and/or kinematics
(Maciejasz et al., 2014).

The scope for recovery when using advanced assistive
rehabilitation technology can be improved by complementary
approaches that facilitate neuroplastic changes of the
sensorimotor system (Di Pino et al., 2014). Neurophysiological
parameters might be a means of avoiding slacking; patients
are encouraged and robotic movement feedback is provided
only when the brain is most responsive for a peripheral
input e.g., mediated via the multi-joint exoskeleton. Many
studies used surface electromyography to infer the person’s
intention to perform a particular movement and applied it
as an input signal for robotic assistance (for an overview,
see Maciejasz et al., 2014). However, this physiological
parameter might be inadequate as a control signal in the
targeted patient group due to paralysis and/or abnormally
co-activated muscles (Wright et al., 2014), a condition especially
relevant in the severely impaired stroke patients who might
benefit most from robotic therapy (Klamroth-Marganska et al.,
2014).

More recent approaches applied brain signals to control
orthotic training devices within the framework of brain-
computer/brain-machine interfaces (BCI/BMI) for stroke
rehabilitation by providing patient control over the training
devices via motor imagery (MI)-related oscillations of the
ipsilesional cortex (Buch et al., 2008, 2012; Ang et al, 2011;
Gomez-Rodriguez et al., 2011; Shindo et al., 2011; Ramos-
Murguialday et al., 2013). These studies successfully linked
the training to the patients’ cortical physiology. However,
since all these approaches used either single-joint and/or

end-effector-based devices rather than a multi-joint exoskeleton,
they did not take the more task-oriented practice of activities of
daily living into account, which might be provided within
the virtual environment of robot-assisted training set-
ups (Klamroth-Marganska et al., 2014). However, a direct
comparison to dose-matched robot-assisted therapy revealed
only similar clinical benefits for BCI/BMI interventions at best
(Angetal., 2011, 2014).

Although the initial results using BMI were promising (Ang
etal., 2011, 2014; Ramos-Murguialday et al., 2013; Pichiorri et al.,
2015), clinical improvements for the group of severely affected
and chronic patients with no hand use are either still non-existent
(Buch et al., 2012) or limited to the arm (Ramos-Murguialday
et al., 2013). Particularly with regard to gains in hand and
finger function—the main aim of these interventions—no
relevant improvements in those patients who were unable to
use their hand were observed (Ramos-Murguialday et al., 2013).
And so the search for an effective therapy for these patients
continues.

Previous BMI interventions served rather as a general
priming mechanism for the following physiotherapy training,
just as brain stimulation techniques are applied before the
subsequent rehabilitation exercises (Ramos-Murguialday et al,,
2013; Pichiorri et al, 2015). The open research question
is whether such an intervention could be translated into a
more task-oriented rehabilitation exercise on the basis of the
natural physiology for closing the sensorimotor loop, i.e., by
blurring the boundaries between BMI and robotic rehabilitation
towards brain-robot interface (BRI) rehabilitation. Bearing
this in mind, we tested the feasibility of providing three-
dimensional robotic assistance for task-oriented training with
the multi-joint exoskeleton during brain-states in which both
the participant’s effort to move and the responsiveness of the
brain for peripheral input were reflected. This entailed the use of
a closed-loop set-up that provided robotic reaching movement
following a predefined trajectory during desynchronization
of sensorimotor oscillations in the B-band, the prominent
natural frequency mediating cortico-muscular communication
(van Wijk et al, 2012; Kilavik et al, 2013). In addition,
we hypothesized that controlling a robot-assisted reaching
movement through regional modulation of B-band oscillations
is a cognitively demanding task that leads to additional network
changes of cortical functional connectivity. Our aim was to
capture these changes via the corrected imaginary part of
the coherence function, i.e., a robust connectivity measure
ignoring relations at zero phase lag and therefore insensitive to
volume conduction properties (Nolte et al., 2004; Ewald et al.,
2012).

MATERIALS AND METHODS

Study Design and Participants

We recruited nine right-handed healthy subjects (S1-9, two
female, mean age = 26 =+ 4 years), and two right-handed stroke
survivors (P1-2, both male): P1 (52y) had suffered an ischemic
stroke of the right hemisphere 156 months earlier, while P2
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(56y) had suffered a hemorrhagic stroke of the right hemisphere
78 months before enrollment. Neither patient had functional
control of their left upper extremity (Medical Research Council
motor scale <2) and a persistent hemiparesis with 18 points
(P1) and 25 points (P2) out of a maximum of 54 points in
the modified Fugl-Meyer Assessment Upper Extremity (FMA-
UE) score (Ramos-Murguialday et al., 2013), respectively. All
subjects gave their written informed consent to participate in
a study, which was approved by the ethical review committee
of the local medical faculty and involved reaching training
with a multi-joint exoskeleton of the right (S1-9) or left arm
(P1-2).

Six healthy subjects and two stroke patients performed the
first BRI task. Each participant’s arm was attached to the
orthotic exoskeleton. Proprioceptive, haptic and visual feedback
was administered with respect to B-ERD in the MI phase
(proprioceptive condition).

Three healthy subjects performed a second BRI task which
was identical to the first one except that their arms were not
attached to the exoskeleton. The subjects controlled the robotic
arm with sensorimotor B-ERD just as if it were an external
prosthesis. They then observed the respective movement (visual
condition).

We compared these two task conditions of controlling the
multi-joint exoskeleton since our previous work suggests that
proprioceptive feedback is superior to visual feedback only
in facilitating brain self-regulation of B-ERD (Vukelic and
Gharabaghi, 2015a).

Each session lasted approximately 30 min and consisted of
five runs, each consisting of 10 trials (Figure 1). In every trial,
subjects were instructed by an auditory cue to prepare for MI cue
(3 s preparation phase), and to imagine the reaching movement
following a “start” cue (12 s MI phase), which was followed by a
“rest” cue (5 s rest phase).

Robotic Exoskeleton

We used the commercially available version (ArmeoPower,
Hocoma, Volketswil, Switzerland) of the rehabilitation robot
recently studied in a controlled stroke trial (Klamroth-
Marganska et al, 2014). This device is an active robotic
exoskeleton for shoulder, elbow and wrist joints with seven
actuated axes (i.e., degrees of freedom). It provides antigravity
support for the paretic arm and enables patients with
severe impairment to perform task-oriented practice within
a motivating virtual environment (Figure 2). The safety of
operations was ensured by the ArmeoControl 1.23 software
which was extended by an in-house developed plugin. Six of
the seven motor-actuate joints could be controlled during the
task, while the seventh was adjusted only once to account
for the participant’s body height and seating position before
the onset of training. The most distal sensor was a pressure
sensitive grip which assessed the grasping force of the user’s
hand (Bishop and Stein, 2013). Using a User Datagram Protocol
(UDP)—Interface, a custom-made software plugin interfaced the
robot’s actions from external network devices while receiving
time-stamped (ID-tagged) messages with information about the
current device state from the robot. This information consisted

of 17 floating-point numbers composed of message-ID, angular
position of each controllable joint, mechanical torque applied
by the individual motors, x-, y-, z-location of the end effector
and the grip pressure. The packages were transmitted to the
network at a rate of 50 times per second. All data was stored
in a text file on the measurement PC and then used to provide
online visual feedback in a virtual reality (VR) environment
based on the Microsoft XNA Gamestudio 3.0 and written in
C#. The VR environment continually received time-stamped
packages containing all joint angles of the exoskeleton’s current
joint configuration. The upper extremity shown in the VR
was concurrently updated according to the robot’s position. A
robotic movement of the subject’s arm in three-dimensional
space (Figure 3, right side) could therefore be traced in VR
(Figure 3, left side). The task in this study was to reach three
targets, all of which required consecutive reaching movements of
the arm, i.e., performing a reaching movement to the side and
forward (target 1), followed by a reaching movement upward
(target 2) and a retrieving movement backward (target 3).
The targets were represented by spheres which changed color
once they were reached. The robot was programmed to move
with the participant’s arm on a pre-defined trajectory—once
per trial—from the starting position (target 3) to target 1,
from there to target 2, and from target 2 to target 3, ie.,
back to the starting position. This robotic movement was
brain-state dependent, i.e., it was performed only during f-
band desynchronization in the MI phase. After the imagery
phase, the robot always returned to the starting position
(target 3) if it had not reached its target by the end of the
allocated 12 s.

Brain-Robot Interface and Data Acquisition
Scalp EEG potentials were taken (BrainAmp, Brainproducts
GmbH, Germany) from 64 positions in accordance with
the international 10-20 system with Ag/AgCl electrodes
(ActiCAP, Brainproducts, GmbH, Germany). All impedances
were kept below 20 k. Following digitization at 1 kHz
rate and high-pass filtering with a time constant of 10 s
the EEG signals were transferred to the BCI2000 software
(Schalk et al.,, 2004) for online analysis, triggering the robot
and offline storage. Participants controlled the brain-robot
interface (BRI) by volitional control of their sensorimotor
oscillations in the p-band during the MI phase (Gharabaghi
et al, 2014a; Vukelic et al., 2014). Following calibration,
the regional oscillatory power of the frequency band from
16-22 Hz over the EEG electrodes contralateral to the
moving arm (ie, FC5, C5, CP5 or FC4, C4, CP4) was
estimated online, and the event-related desynchronization in
the p-band (B-ERD) was classified by a linear classification
algorithm. This entailed estimating every 40 ms frequency
power over the preceding 500 ms using an autoregressive
model based on the Burg Algorithm with a model order of
32 (McFarland and Wolpaw, 2008). We used nine features for
our classification scheme. These consisted of 2-Hz frequency
bins of B-ERD during the MI phase relative to the average
power of the rest phases of the last 15 s and three
EEG electrodes overlying sensorimotor areas contralateral
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FIGURE 1 | Time course of BRI session. Each BRI session lasted for approximately 30 min and consisted of five runs which were interrupted by four short breaks.
Every run consisted of 10 trials, each lasting 20 s. In each trial, subjects were instructed to prepare for Ml upon an auditory cue (3 s preparation phase), and to
imagine the respective reaching movement upon a “start” cue (12 s Ml phase). This was followed by a “rest” cue (5 s rest phase).

" 4

to the movement imagination (Gharabaghi et al, 2014a;
Vukelic et al., 2014). On the basis of the classification
result, the robot moved the arm contingently following a
predefined trajectory at a predetermined speed or ceased its
movement. In the rest phase, the robot returned to the starting
position.

The cortical physiology (B-modulation range and functional
cortical networks) was analyzed for the patients (n = 2) and
for the healthy subjects with proprioceptive feedback (n =
6). One of these healthy subjects exhibited channels with
large artifacts, preventing the inclusion of this data in the
physiological analysis. Thus, the cortical physiology was studied
for two patients and five healthy subjects in the proprioceptive
condition.

Data Preprocessing

Artifacted EEG electrodes, as determined by visual inspection,
were excluded from further analysis. We focused on two
temporal windows for the analysis of the functional connectivity
networks: rest (baseline) epoch (from —6 s to —3 s and
MI epoch. The MI epoch was further subdivided into two
3 s epochs (from 1 s to 4 s referred to as first MI epoch,
and from 9 s to 12 s referred to as last MI epoch). Epochs
containing a maximum deviation above 100 WV in any of the
EEG channels were discarded (Sanei and Chambers, 2008). The
functional cortical networks were calculated by detrending the
EEG signals, zero-padding and band-pass filtering between 1 Hz
to 42 Hz.

Event-related spectral perturbation (ERSP) was calculated
by band-pass filtering the signals between 14 and 24 Hz. The
filtering procedures were performed with a first order zero-phase
lag FIR filter. We also carried out an independent component
analysis (ICA) using the logistic infomax ICA algorithm as
implemented in the EEGLAB toolbox (Delorme and Makeig,
2004), identified components with the remaining artifacts by
visual inspection and removed them from the signal.

Estimation of Robotic Movement

The position of the exoskeleton end point in space was
measured in three dimensions (x, y, z) with a 25 Hz
sampling rate. The Euclidian vector norm of the change
in three-dimensional position was then calculated between
subsequent samples for movements larger than 0.01 cm, resulting
in a movement probability for each sample. The average
probability of robotic movement was calculated as the average
of movement occurrence in the MI phase (0-12 s). Thus,
movement probability was computed as the relative ratio of
the number of trials with movement greater than 0.01 cm
at each time point, i.e, a robotic movement value of 40%
at a particular time point indicates that for 40% of the
trials, there was a movement larger than 0.01 cm at that
particular time point. To increase signal-to-noise ratio, the time
course was smoothened with a low-pass filter for frequencies
below 5 Hz.

Estimation of §-Modulation

The individual B-modulation range for each subject and
patient was calculated as reported recently (Vukelic et al,
2014; Vukelic and Gharabaghi, 2015a). The same frequency
band and EEG electrodes that had been used for self-
regulation and neurofeedback were analyzed. To estimate the
p-modulation range, we carried out an off-line calculation
of the ERSP between 16 and 22 Hz with a frequency
resolution of 0.24 Hz for each electrode, as implemented
in the EEGLAB toolbox (Delorme and Makeig, 2004). In a
first step, the ERSP for each channel was calculated trial-
wise and normalized with respect to the rest baseline. In
the second step, we averaged the ERSP for every trial across
channels. In a third step, we averaged the ERSP across all
trials. Finally, we selected the frequency bin with the largest
range between the maximum in the rest epoch (describing
the maximum synchronization potential) and the minimum in
the MI epoch (describing the maximum de-synchronization
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FIGURE 2 | Schematic overview of the setup. EEG signals from an ActiCAP system are analyzed by the BCI software (BCI2000) which controls the visualization
engine. The robot’s end-effectors position and its joint angles are transmitted to the virtual reality (VR) framework via a UDP interface. This information is integrated
with a mesh model of the upper extremity, allowing for 3D virtual movements in real time.

potential). This measure was used as indicator for the individual’s
ability to modulate sensorimotor P-activity during the BRI
task.

Estimation of Functional Cortical Networks
To calculate functional connectivity, we used the corrected
version of the imaginary part of coherence (ciCOH; Ewald
et al., 2012). This measure disregards relations at zero phase
lag and is therefore insensitive to volume conduction properties,
thus indicating the relative coupling of phases, i.e., the time-lag
between two brain processes. This version also has additional
features that compensate for preference for remote interactions
by increasing SNR. This enables us to observe interactions that
are otherwise hidden in the noise when studying connectivity
between sensors. Since the ciCOH is based on an estimation
of the complex coherency function, each valid epoch was
subdivided into segments of 1 s length with 50% overlap.
This corresponds to a frequency resolution of 3f = 1 Hz
(Nolte et al,, 2004). Each segment was then multiplied with
a Hanning window. A Fourier transformation of the data

provided an estimation of the cross-spectra between two time-
series (Nolte et al., 2004). The complex coherency function was
defined as the normalized cross-spectrum for channels i and j,
respectively:

Sii(f)
VSi (08B

where S;(-) represents the cross-spectrum between channels
i and j, and S;(-), S;(-) represents the auto-spectra for
channels i and j, respectively. We systematically evaluated the
functional connectivity networks between the contralateral M1
motor network and the entire brain (all other EEG channels)
by defining a seed electrode in contralateral or ipsilesional
primary motor cortex (C5 for the healthy subjects and C4
electrode for the stroke patients). The ciCOH function was thus
calculated from the complex coherency function (Ewald et al,,
2012)

Ci(f) = (1)

Im (COHseedj (f))

\/ (1 - Re(COHseedj)z)

ciCOHgeeqi (f) = 2
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FIGURE 3 | Movement trajectory in three-dimensional space (in black). Projection (in gray) of the three-dimensional movement on the respective
two-dimensional planes (i.e., axis-surfaces x/y, x/z, y/z). Starting point (i.e., target 3) represented as a green dot, target 1 as a red dot, target 2 as a blue dot.

where Seed denotes the seed electrode, f indicates frequency
bins and Im(-) and Re(-) denote the imaginary and real parts,
respectively. The ciCOH was further Fisher z-transformed
to fit a Gaussian distribution (Rosenberg et al., 1989; Nolte
et al., 2004). We evaluated the functional connectivity within
predefined frequency bands of interest (FOI). The frequency
bands were thus defined as follows: 6-band (3-7 Hz), a-
band (8-14 Hz), lower B-band (15-25 Hz) and upper B-
band (26-40 Hz). In a next step, the functional connectivity
measure was obtained by averaging the absolute value of ciCOH
across frequencies within each predefined FOI. We statistically
evaluated the functional connectivity as the difference between
the two MI epochs (3 s) and baseline (rest) epoch. All data
analysis was performed offline with custom written scripts in
MATLAB®.

The cortical physiology (B-modulation range and functional
cortical networks) was analyzed for the two BRI tasks with
proprioceptive feedback.

Statistics
For statistical analysis of the time course of robotic movement
during the imagery phase, non-parametric tests were employed
to account for the low sample size and possibility of non-normal
distributions. Differences between the visual and proprioceptive
feedback groups were tested with a Kruskal-Wallis test. Each
individual patient was contrasted with the proprioceptive
feedback group based on a sign-test. The false discovery rate for
all statistical comparisons was limited to 5%.

The statistical analysis of the functional connectivity networks
(MI vs. baseline epochs) involved a non-parametric cluster-based
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permutation analysis to account for the low number of
samples (i.e., subjects) and the subsequent possibility of
non-normality (Benjamini and Hochberg, 1995; Nichols and
Holmes, 2002; Maris, 2012). This approach also enabled us to
incorporate neurophysiologically motivated constraints to the
test statistic (i.e., spatially clustering neighboring electrodes)
while controlling for the family-wise error rate and correcting for
the multiple comparison problem (Nichols and Holmes, 2002;
Maris and Oostenveld, 2007; Maris et al., 2007; Maris, 2012).
This involved a cluster-based non-parametric randomization
procedure as implemented in FieldTrip (Maris et al., 2007;
Qostenveld et al., 2010).

Multiple dependent sample t-statistics were carried out on
the healthy subjects to establish the topography of functional
connectivity differences. We applied critical sensor t-values
for spatial clustering of neighboring electrodes with a priori
threshold of p < 0.05. The cluster level statistics were defined
as the sum of t-values within each cluster. Multiple comparisons
were corrected by calculating the 95th percentile (two-tailed)
of the maximum values of summed ¢-values estimated from an
empirical reference distribution. Any T-values exceeding this
threshold were considered as significant at p < 0.05 (corrected).
A permutation test (randomly permuting the data across MI and
baseline epochs 1000 times) was used to calculate the reference
distribution of maximum values. This enabled us to evaluate the
statistics of the actual data for each FOI individually.

A multiple independent sample t-test was used for the
patients. The cluster level statistics were defined as the sum of
t-values within every cluster by spatially clustering neighboring
electrodes on the basis of an a priori threshold of p < 0.05. The
correction for multiple comparison was calculated for the 95th
percentile (two-tailed) of the maximum values of the summed
t-values while considering t-values at p < 0.05 (corrected) as
significant. The null distribution was achieved by randomly
permuting the data between the MI and baseline epochs 1000
times.

RESULTS

The present pilot study revealed the feasibility of controlling
three-dimensional robotic assistance for task-oriented training
with a multi-joint exoskeleton by the modulation of movement-
related natural brain-states. Both healthy subjects and stroke
survivors were able to modulate sufficient sensorimotor
ERSP in the B-band for this purpose, as indicated by the
B-modulation range (Figure 4). Surprisingly, all participants
had very similar patterns of robot control regardless of
the clinical condition (healthy/patient) or the feedback
modality (proprioceptive/visual): the first peak of robot
movement occurred within the first second, another, longer
peak was observed between the first and third second
and a third peak occurred about three seconds after the
onset of the MI phase (Figure 5). During these first three
seconds of the feedback period (see Figure 5A), healthy
subjects showed a significantly higher average performance
of robotic control in the proprioceptive as compared
to the visual condition (x%(7,1) = 5.4, p = 0.02). The

0.95
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H ® Pat #1
0:2 * Pat #2
—0.85 i
=] i
p i
> 0.8} H
=)
c
& 0.75
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i 0.7 Y
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FIGURE 4 | B-modulation range during the proprioceptive feedback
condition. Modulation range for five healthy subjects (single blue dots and
group results as boxplot) and for two stroke patients (black and red dots). This
measure reflects the individual ability to modulate sensorimotor B-oscillations
captured with the feedback electrodes. The f-modulation range is defined in
the individual frequency bin of the event-related spectral perturbation (ERSP)
with the largest difference between the motor imagery (M) epoch (the
minimum) and in the rest epoch (the maximum).

patients showed significantly lower average performances

than their healthy counterparts with proprioceptive
feedback for the full feedback duration (sg = —6, p =
0.0313).

During later periods of the MI task, i.e., between four and
twelve seconds after the start, the performance dropped again
and remained relatively unchanged for all participants. While the
stroke patients also performed significantly less well than healthy
subjects in these later task periods, i.e., similar to the early task
periods (see Figure 5B), the healthy subjects no longer showed
any systematic differences between the proprioceptive and the
visual condition (see Figure 5A).

The regional modulation of B-band oscillations led to
significant task-related network changes of cortical functional
connectivity, with relevant differences between healthy subjects
and stroke patients and between early and late periods of
the task: In healthy subjects, functional connectivity in the 6-
band during the MI epoch was higher than in the rest epoch.
These different functional connectivities during the rest and
task epochs revealed a specific topographic pattern visualized
on a t-value scale (non-parametric randomization test) across
all subjects for the motor cortical network. More specifically,
we observed that the seed electrode over the left motor cortex,
which was volitionally modulated in the B-band during the
feedback task, showed stronger functional connectivity with
electrodes over right sensori-motor and parieto-occipital regions
in the 6-band in healthy subjects (Figure 6A, left plot). At later
stages of the task, this functional connectivity in the 6-band
even increased bi-laterally to include extended parieto-occipital
regions (Figure 6A, right plot). None of the patients showed
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patients #1 and #2 with healthy subjects.
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FIGURE 5 | Time course of robotic movement. It shows the occurrence of robotic movement with time on the x-axis (logarithmic scale) and probability of
movement on the y-axis. The Ml phase begins at O s. Smoothing was performed by low-pass filtering below 0-5 Hz. (A) Comparison of different feedback modalities
in healthy subjects, i.e., proprioceptive feedback (n = 6) vs. visual feedback (n = 3). (B) Comparison of individual stroke patients with proprioceptive feedback with
healthy subjects with proprioceptive feedback (n = 6). The results of the statistical comparison are indicated by triangles, i.e., filled triangles pointing upwards and
empty triangles pointing downwards indicate significantly higher and lower movement probability, respectively. Black and red triangles are applied to compare

a comparable pattern of distributed coupling. Throughout the
whole task period (Figure 6B) P1 presented a circumscribed
increase of 8-band connectivity between the seed electrode over
the ipsilesional motor cortex, which was volitionally modulated
in the B-band, and electrodes at contralesional fronto-premotor
regions. P2 showed significant 6-band connectivity between the
seed electrode of the ipsilesional motor cortex and electrodes over
occipital regions only (Figure 6C).

DISCUSSION

This study has illustrated that brain-robot interfaces (BRIs)
may successfully link three-dimensional robotic training to
the participant’s effort and allow for task-oriented practice of
activities of daily living with a physiologically controlled multi-
joint exoskeleton. Both healthy subjects and stroke survivors

showed similar patterns of robot control, with the maximum
performance in the early period of the task and a significant
drop during later periods. As the movement trajectory was
defined by three targets, it would be plausible to relate the
findings to discrete movement planning connected to reaching
the intermediate targets. The significant performance change,
however, occurred after ~3 s, while the average time period to
reach target 1 was ~5 s. This indicates that the performance
drop was not related to task adjustments during the transition
from target 1 to target 2, i.e., not linked to discrete movements.
The occurrence of three movement peaks within the early task
period conflicts with the interpretation of this finding as a pure
sensorimotor transitory phase from rest to movement as well.
Moreover, this pattern was independent of the clinical status and
the feedback modality. These findings indicate that the observed
pattern might be typical for this kind of tasks, i.e., complex arm
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FIGURE 6 | Functional connectivity networks for healthy subjects (A)
and patient 1 (B) and 2 (C). The plots show the t-value topographies of
functional connectivity (absolute value of ciCOH) as a contrast between the
two Ml epochs and the rest epoch for the 6-band. The black cross indicates
the seed electrode position. Electrode clusters, showing significant differences
in the non-parametric randomization test, are indicated by filled black circles.
Colors indicate functional connectivity increases (red) and decreases (blue)
within the MI epoch relative to the rest epoch.

movement, and suggest that the task length of future training
protocols needs to be adjusted to the time period in which
participants are able to sustain brain states of f-ERD.

In this context it should be considered that previous
studies showed that proprioceptive robotic feedback activated
a distributed cortical network (Vukelic et al, 2014) lasting

beyond the intervention period (Vukelic and Gharabaghi,
2015b), bridged the gap between the abilities and cortical
networks of MI and motor execution (Bauer et al., 2014),
and facilitated—in comparison to visual feedback—sensorimotor
B-ERD (Vukelic and Gharabaghi, 2015a) thereby improving
brain state classification between rest and movement imagery
(Gomez-Rodriguez et al., 2011). When interpreting the present
findings along these lines, proprioceptive feedback seems to
facilitate MI-related B-ERD only during the first few seconds
of a feedback task. Sustaining B-ERD is thus challenging and
may even be characterized by a significant association with
the experience of frustration for the participants (Fels et al.,
2015). Therefore, the subject’s cognitive resources for coping
with the mental load that occurs during such a neurofeedback
task needs to be considered (Bauer and Gharabaghi, 2015a;
Naros and Gharabaghi, 2015). Mathematical modelling on the
basis of Bayesian simulations indicates that this might be
achieved when the task difficulty is adapted in the course of
the training (Bauer and Gharabaghi, 2015b). Such an adaptation
strategy would facilitate the patient’s reinforcement learning by
balancing challenge and motivation (Naros and Gharabaghi,
2015).

The limited time period, in which participants were able to
sustain brain states of B-ERD in this study, might also be related
to the fact that all participants performed only one training
session. Future studies will have to clarify whether performing
this task for more that one session might increase the length of
MI related B-ERD. Moreover, it needs to be researched in future
patient studies how movement intention—instead of MI—would
influence physiologically controlled robotic training.

However, in the early stages of the task, robotic control
was significantly higher and less variable in the proprioceptive
than in the visual condition. This observation might help to
resolve the ambiguity of previous BMI studies in healthy subjects.
Gomez-Rodriguez et al. (2011) showed that proprioceptive
feedback facilitated decoding of MI more efficiently than visual
feedback alone. By contrast, Ramos-Murguialday et al. (2012)
reported no group level improvements in performance when MI
was coupled with contingent positive proprioceptive feedback
compared to MI without feedback. This ambiguity might be
related to the way in which MI was decoded in these studies.
While Ramos-Murguialday et al. (2012) used sensorimotor o-
band (8-12 Hz) activity to differentiate between MI and rest,
Gomez-Rodriguez et al. (2011) examined both a-band and f-
band activity and ascertained that the best discriminative power
for the proprioceptive condition in healthy subjects was in
the B-band. However, Gomez-Rodriguez et al. (2011) applied a
support vector machine to analyze 20 frequency bins (2-42 Hz)
for each of 35 bilaterally distributed recording channels, i.e., a
700-dimensional feature space, for the online task, which thus
lacked spatial and spectral specificity. By focusing on the f-band
(16-22 Hz) from three channels of the sensorimotor cortex, we
restricted the feature space to nine features, thereby proving their
specificity for the performance gain by proprioceptive feedback.
These results complement observations that providing visual
feedback of MI related B-oscillations increased the laterality at
the targeted contralateral sensorimotor cortex (Boe et al., 2014)
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and the movement-related desynchronization in this frequency
band (Bai et al, 2014). Moreover, the present findings are
line with the recent observation that proprioceptive feedback is
superior to visual input for increasing self-control of regional
B-band modulation (Vukeli¢ and Gharabaghi, 2015a) and that
such a BRI might bridge the gap between the abilities and
cortical networks of MI and motor execution (Bauer et al,
2014).

As anticipated, stroke patients performed considerably less
well than healthy subjects in controlling the robotic movement
with B-ERD. This finding might be related to age differences
between these groups. However, the very similar pattern of
robot control between healthy subjects and patients, i.e., with
the maximum performance in the early period of the task
and a significant drop during later periods, suggests that age
did at least not influence the general time course of the
human-robot interaction. A closer look at the p-modulation
range (see Figure 4) also indicates that each of the patients
was matched by one healthy participant with the very same
(limited) capability of brain self-regulation. Furthermore, an
earlier study of our group (unpublished data) demonstrated
that the skill of self-regulating regional sensorimotor M-
oscillations in a BRI environment might be independent
of whether MI of the dominant or non-dominant hand is
performed, thus suggesting that the observations of this study
are probably not related to which hand the healthy subjects
and patients used to carry out the task. However, future studies
will have to consider these aspects before drawing definite
conclusions.

In the physiological domain, earlier studies had already
shown a higher discriminative power of a-band activity in
this patient group (Gomez-Rodriguez et al., 2011). Therefore,
previous studies—based on a long tradition of BCI/BMI
research—chose those frequency bands and algorithms for
controlling these devices that differentiated best between
“MI” and “rest”, e.g., the mu/alpha-band, modified common
spatial filter algorithms and/or machine learning techniques,
to optimize the selection of temporo-spatial discriminative
oscillatory characteristics (Buch et al., 2008, 2012; Ang et al.,
2011, 2014; Gomez-Rodriguez et al., 2011; Ramos-Murguialday
et al, 2013; Pichiorri et al, 2015). Although even larger
groups of stroke patients have participated in training with
this “classical” BCI/BMI approach, a more restricted feature
space based on neurophysiological considerations—namely
perturbations in the B-band over selected sensorimotor electrode
contacts—might be preferable as a reinforced therapeutic target
for restorative purposes (Gharabaghi et al., 2014a,b,c; Naros and
Gharabaghi, 2015). Such an approach, albeit less optimal for
classification purposes to differentiate movement-related brain
states in stroke patients (Gomez-Rodriguez et al., 2011; Rossiter
et al., 2014), might approximate the physiological situation
of closing the sensorimotor loop further (van Wijk et al,
2012; Kilavik et al., 2013). However, only future intervention
studies with more stroke patients can clarify whether any
functional benefits are to be gained by training this specific
physiological marker. Further studies with a larger group of
patients are also needed to determine the extent to which the

electroencephalography-based approach presented here will be
of benefit to complex real-life activities if control is limited to
the movement of the robotic arm, but not to its trajectory.
Applying an alternative approach for stroke rehabilitation closer
to the neural signal source with epidural electrocorticography
(ECoG) might overcome this limitation (Gharabaghi et al.,
2014a,b). We recently showed that up to seven hand movement
intentions could be decoded with sufficient accuracy when
this ECoG approach is applied in severely affected chronic
stroke patients with no residual hand function (Spiiler et al,
2014).

To gain a better understanding of the neurophysiological
correlates of the BRI technique applied here, we also studied the
distributed functional network architecture of the cortical motor
system. We discovered significant networks in the 8-band during
the task as well as differences in these 6-networks between healthy
subjects and stroke patients and between early and late periods of
the BRI task.

We successfully demonstrated that interhemispheric
communication in healthy subjects was mediated in the 6-
frequency band, revealing increased functional connectivity
of the seed electrode over the primary motor cortex of the
left hemisphere with the homologous cortex of the right
hemisphere, i.e., with electrodes over right sensori-motor and
parieto-occipital areas during the early period of the task. In
later task periods, when the performance of robot control
dropped significantly, left hemispheric parieto-occipital areas
also revealed a coupling. These findings are in line with our
recent observation that participants with a lower ability to
maintain prolonged states of B-ERD during MI and feedback
with a hand robot recruited a learning related “scaffolding”
B-band network between the motor cortex and the parieto-
occipital cortex to a higher degree (Vukeli¢c and Gharabaghi,
2015a). Moreover, these results are in accordance with the
known physiology of movement preparation and execution:
the recruitment of homologs sensorimotor regions is essential
for motor control and motor skill learning (Beaulé et al., 2012;
Takeuchi et al., 2012). The link to occipital regions very probably
mediates the visuomotor integration during the task (Suminski
et al,, 2010; Wu et al, 2014). Finally, the recruitment of left
parietal regions is essential for multisensory integration of
visual somatosensory and proprioceptive information in the
context of planning and controlling voluntary movements
(Lloyd et al, 2006; Desmurget and Sirigu, 2009). Thus,
controlling the BRI with sensorimotor oscillations resulted
in the recruitment of distributed and functionally coupled
motor related areas that are typically activated during natural
movements.

This pattern was not detected in either of the stroke patients,
indicating the known cortical reorganization of intra- and
interhemispheric communication related to impaired motor
and cognitive behavior (Rehme et al, 2010, 2011; Dubovik
et al., 2012). However, one of the patients (P1) showed a
circumscribed increase of 0-band connectivity between the seed
electrode of the ipsilesional motor cortex, which controlled
the BRI, and the electrode at contralesional fronto-premotor
regions throughout the task. P1 had a significantly higher ratio
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of robotic movement (f(33 = 543, p < 0.001, § 0.17,
CI95% = 0.11-0.23) than P2, particularly during the first four
seconds of the task (see Figure 5B), indicating a significantly
better control of the BRI. This observation matches previous
findings relating the interaction between primary motor and
fronto-premotor regions, such as premotor and supplementary
motor regions (SMA), to skill acquisition (Hikosaka et al., 2002;
Vahdat et al., 2011) and in particular SMA to BCI control
(Halder et al., 2011). Moreover, studies with stroke patients have
revealed a relationship between the recruitment of contralesional
premotor/supplementary motor proportional to the clinical
impairment (Bestmann et al., 2010; Ward, 2011).

The results presented here very probably reflect a cross-
frequency interaction between regional B-band and distributed
6-band activity which has also been observed during cognitively
demanding tasks (Palva et al., 2005). For such interactions,
there would appear to be a hierarchy in which the lower
frequencies modulate the higher ones (Jensen and Colgin,
2007; Canolty and Knight, 2010). This may provide us
with the opportunity to improve the BRI performance by
modulating the 6-band network. Feurra et al. (2013) showed
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