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Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to
estimate both the microstructural integrity and the trajectories of white matter pathways
throughout the central nervous system. This fiber tracking (aka, “tractography”) approach
is often carried out using anatomically-defined seed points to identify white matter
tracts that pass through one or more structures, but can also be performed using
functionally-defined regions of interest (ROls) that have been determined using functional
MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTl tractography
between all of the previously defined nodes within each of six common resting-state
brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default
Mode Network (VDMN), left Executive Control Network (IECN), right Executive Control
Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN).
By normalizing the data from 32 healthy control subjects to a standard template —using
high-dimensional, non-linear warping methods—we were able to create probabilistic
white matter atlases for each tract in stereotaxic coordinates. By investigating all 198
ROI-to-ROI combinations within the aforementioned resting-state networks (for a total
of 6336 independent DTI tractography analyses), the resulting probabilistic atlases
represent a comprehensive cohort of functionally-defined white matter regions that can
be used in future brain imaging studies to: (1) ascribe DTl or other white matter changes
to particular functional brain networks, and (2) compliment resting state fMRI or other
functional connectivity analyses.

Keywords: brain atlas, connectivity, connectome, default mode network, executive control network, salience
network, white matter
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INTRODUCTION

Stereotaxic brain atlases play an important role in neuroscience
and neuroimaging research. Warping (or “normalizing”) images
to a standardized brain template provides an effective and
principled way to report anatomical regions of interest (ROIs),
perform quantitative analyses, and directly compare data
acquired from different subjects and/or patient populations.
The first widely-adopted template was based on the brain of a
single subject (Talairach and Tournoux, 1988). However, shortly
thereafter a group of researchers from Canada, The United States,
and Germany formed the International Consortium for Brain
Mapping (ICBM), which set out to create standardized human
brain atlases that were based on high-resolution anatomical MRI
data from large populations of healthy control subjects (Evans
etal., 1992, 1993; Collins et al., 1994; Mazziotta et al., 1995). These
templates have since been adopted by neuroimaging researchers
around the world for normalizing individual data for group
analyses, and to this day are distributed with many popular
image processing and fMRI analysis software packages (c.f., Brett
et al,, 2002; Lancaster et al., 2007). However, although these
anatomical atlases serve as convenient and effective templates
for linear normalization and cross-subject cortical alignment,
they provide somewhat limited information about subcortical
structures in general, and white matter in particular (Toga et al.,
2006). For this reason, focus has also been placed on generating
stereotaxic atlases that include anatomically-segmented cortical
and subcortical structures (Shattuck et al., 2008), as well as those
that are specific to white matter anatomy [e.g., the Johns Hopkins
“Adam” (Wakana et al.,, 2004) and “Eve” atlases (Mori et al,,
2008; Oishi et al., 2008, 2009), in which the cerebral white matter
has been parcellated into more than 175 distinct anatomical
regions]. Moreover, by examining white matter connectivity
between various anatomically-defined seed regions, diffusion
tensor imaging (DTI) and fiber tracking (or “tractography”)
methods have been used to generate both probabilistic (Hua
et al., 2008; Zhang et al., 2010) and non-probabilistic (Catani
and Thiebaut de Schotten, 2008; Catani et al., 2012) white matter
atlases.

In parallel to these advances, the burgeoning fields of resting
state fMRI (rs-fMRI) and functional connectivity analysis have
exploded in popularity—leading to the identification of intrinsic
correlations between distributed cortical regions that appear
to form functionally-connected brain networks [see Fox and
Raichle, 2007 and Smith et al., 2013 for detailed reviews]. The
earliest rs-fMRI reports astutely observed that low frequency
(<0.1Hz) correlations between cortical regions were likely
manifestations of intrinsic connections that could be used to
identify functional brain networks (Biswal et al., 1995). Based
on this premise, a large (and growing) number of resting
state networks have been identified, including: (1) task-negative
networks such as the so-called default mode network (DMN)
(Greicius et al., 2003; Fox et al., 2005; Buckner et al., 2008),
which are consistently suppressed during many cognitive and
perceptual tasks, and (2) networks that show positive activation
during these same tasks, such as the executive control network
(ECN) and the salience network (SN) (Seeley et al., 2007). Owing

to these and other advances, the prevailing views in systems and
cognitive neuroscience have undergone somewhat of a paradigm
shift (Friston, 2002). Where it was previously assumed that
neural processing for different tasks was carried out in isolated
brain regions, the preponderance of evidence now supports the
view that sensory, motor and cognitive processing all rely on
distributed, large-scale brain networks (Bressler and Menon,
2010).

Based on this network model, it stands to reason that
specific brain functions (e.g., cognitive processes) depend on
the structural and functional integrity of both the cortical
regions comprising the “nodes” of each network, and the
white matter pathways connecting these nodes (Sporns et al.,
2005). A number of studies have therefore sought to directly
examine the relationships between structural and functional
connectivity within the brain networks of healthy control subjects
(Greicius et al., 2009; Honey et al., 2009, 2010; Hermundstad
et al., 2013)—which have shown that white matter structural
properties, such as the number of white matter streamlines
between regions, are indicative of resting-state and task-based
functional correlations (see Wang et al., 2015 for a recent and
comprehensive review on structure-function relationships)—
while others have speculated about the associations between
white matter integrity and functional connectivity changes in
patient populations (Damoiseaux and Greicius, 2009; Hawellek
et al.,, 2011; Uddin, 2013). However, while the cortical nodes of
these networks can be readily identified and delineated using
fMRI (as evidenced by their relatively consistent positions across
individuals and studies) and their locations and extents have
been previously reported in stereotaxic coordinates (Shirer et al.,
2012), the corresponding white matter regions “belonging” to
each network have not yet been defined.

This disparity—in our ability to localize cortical regions,
but not the underlying white matter structures associated with
these functional brain networks—imposes several limitations on
the interpretation of DTI and other quantitative white matter
imaging data. In particular, it makes direct comparisons between
structural and functional connectivity extremely difficult, and
completely prevents group-wise (e.g., patients vs. healthy
controls) or regression (e.g., with age, gender, cognitive
performance, or any other independent variable) analyses from
ascribing region-of-interest (ROI) or voxel-wise white matter
changes to a particular brain network or group of networks
(i.e., similar to what is commonly done in contemporary fMRI
studies).

To address these fundamental issues with the analysis and
interpretation of diffusion and other quantitative white matter
imaging data, the goals of the current study were to perform
fMRI-guided DTT tractography on data acquired from a group
of healthy adults to: (1) identify the specific white matter
regions that are most likely to contain tracts between the
nodes of six previously established and functionally-connected
cortical networks—specifically the dorsal and ventral default
mode networks (dDMN and vDMN), the left and right executive
control networks (IECN and rECN), as well as the anterior and
posterior salience networks (aSN and pSN)—and; (2) generate
probabilistic white matter atlases based on these findings.
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MATERIALS AND METHODS
Study Participants

In order to achieve a sample size that was consistent with
previous DTI-based (albeit, anatomically-defined) probabilistic
white matter atlases (Hua et al., 2008; Oishi et al., 2009), 32
healthy volunteers (16 female) were recruited from the Baltimore
community. Verbal screening was conducted to ensure that
subjects had no history of neurological injury/disease, psychiatric
illness, or substance abuse (including alcohol or tobacco). Of
the 32 subjects, 19 were Caucasian, 9 were Asian, 2 were
African American, and 2 were Hispanic. Subject age (29.9 £
10.7 years), height (170.4 £ 8.3 cm), and weight (72.5 & 16.2kg)
spanned a relatively broad range. In accordance with our study
protocol, which was approved by the Institutional Review Boards
of Johns Hopkins University and the Johns Hopkins Medical
Institutions, all subjects provided written informed consent prior
to study enrollment and were financially compensated for their
participation.

Data Acquisition

All MRI data were acquired using a whole-body 3T Philips
Achieva system and a 32-channel SENSE head coil (Philips
Healthcare, Best, The Netherlands). High-resolution T -weighted
images were acquired using a 3D MP-RAGE pulse sequence
with the following parameters: TR = 7.93 ms; TE = 3.66 ms; Flip
Angle = 8.00°; SENSE Factor (AP/RL/FH) = 2.4 (2.0/1.0/1.2);
FOV (AP x FH x RL) = 212 x 150 x 172mm; Spatial
Resolution = 1.00 x 1.00 x 1.00 mm; Scan Duration = 4 min
and 26s. Purely T,-weighted (TR = 4162ms; TE = 80 ms;
Flip Angle = 90° SENSE Factor = 2; FOV = 212 x 154 x
212mm; Spatial Resolution = 1.10 x 1.10 x 2.20mm), as
well as fast T,-weighted Fluid Attenuated Inversion Recovery
(T,-FLAIR) images (TR = 11000ms; TI = 2800ms; TE =
120 ms; Refocusing Angle = 120°; SENSE Factor = 1.75; FOV =
230 x 149 x 184 mm; Spatial Resolution = 1.00 x 1.20 x
5.00mm) were also acquired and assessed by a board-certified
radiologist to rule out structural abnormalities or other incidental
findings.

Diffusion-weighted images were then acquired with a
previously reported spin-echo echo-planar imaging (SE-EPI)
pulse sequence (Farrell et al., 2007; Landman et al., 2007; Wakana
et al., 2007) and the following parameters: 30 diffusion-weighted
images (b = 700 s/mm?) with optimally oriented diffusion-
encoding gradients (Jones et al., 1999; Skare et al., 2000); five
reference images (b = 0s/mm?); TR = 6904 ms; TE = 69 ms;
Flip Angle = 90°; SENSE Factor = 2.5; FOV = 212 x 212 mmy;
Matrix Dimensions = 96 x 96 (zero-padded to 256 x 256);
Number of Transverse Slices = 70 (no inter-slice gap); Slice
Thickness = 2.2 mm; Scan Duration = 4 min and 16 s. Although
pulse sequences with additional diffusion-encoding directions
and higher b-values are able to use more sophisticated data
reconstruction approaches - and therefore more reliably resolve
complex fiber architectures (see Study Limitations for a more
detailed explanation) - the acquisition parameters employed here
are consistent with several previously published DTI-based white

matter atlases (e.g., Wakana et al., 2004; Hua et al., 2008; Oishi
et al., 2008, 2009; Zhang et al., 2010).

Data Analysis

Due to the complexity and number of image processing
steps necessary to generate normalized fiber tracts, our multi-
stage DTI analysis pipeline made use of several different
programs (Figure 1). Initial preprocessing and tensor fitting
were performed with CATNAP (Coregistration, Adjustment,
and Tensor-solving, a Nicely Automated Program; http://iacl.
ece.jhu.edu/~bennett/catnap/, Johns Hopkins University School
of Medicine, Baltimore, Maryland, USA), which applied a 12-
parameter affine registration to: (1) coregister the diffusion-
weighted and mean b = 0 s/mm? images, (2) correct for
motion and eddy current distortions, and (3) reorient the
gradient direction for each diffusion-weighted image before
generating the six tensor images (Landman et al., 2007). Brain
extraction (or “skull stripping”) was then performed using a
two-step procedure, whereby subject-specific brain masks were
generated in SPMB8 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/, Wellcome Trust Centre for Neuroimaging, London, UK)
using the New Segment tool, and these were then manually
refined using the ROIEditor toolbox in MRIStudio (https://www.
mristudio.org/, Johns Hopkins University School of Medicine,
Baltimore, Maryland, USA). The coregistered and skull-stripped
mean b = 0 s/mm’ images for each subject were then
normalized to the THU_MNI_SS_b0_ss” template (Mori et al.,
2008) in Montreal Neurological Institute (MNI) coordinate
space (Mazziotta et al., 1995). This was implemented using the
DiffeoMap toolbox in MRIStudio to carry out a 12-parameter
affine (linear) transformation, followed by high-dimensional,
non-linear warping with the large deformation diffeomorphic
metric mapping (LDDMM) algorithm (Beg et al., 2005). The
LDDMM analysis was performed with cascading elasticity (i.e.,
alpha values of 0.01, 0.005, and 0.002) to allow increasingly
pliable deformations, as previously reported (Ceritoglu et al.,
2009).

Each subjects’ tensor images were warped to normalized
ICBM space (Mazziotta et al., 1995) by applying the overall
Kimap (linear affine + non-linear LDDMM) transformation,
as previously described (Ceritoglu et al., 2009). This approach
has previously been shown to compensate for susceptibility-
induced By distortions (Huang et al., 2008); and, importantly,
as long as the tensors are reoriented appropriately during
the normalization procedure—as described by Alexander et al.
(2001), Jones et al. (2002), and Xu et al. (2003)—fiber tracking
can be performed for each subject in standard space. In this
way, deterministic tractography was performed using a single-
tensor model via the DTIStudio toolbox (Jiang et al., 2006) within
MRIStudio, where white matter streamlines were identified
using the Fiber Association by Continuous Tracking (FACT)
algorithm and an exhaustive search approach (Mori et al,
1999; Xue et al, 1999). Tracking was initiated from a single
seed located at the center of each voxel with a fractional
anisotropy (FA) value greater than 0.15 and continued until
FA fell below 0.15 or the deviation angle between adjacent
vectors exceeded 50°, as previously reported (Yeatman et al,
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DTI Preprocessing
(CATNAP)
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images to first b = 0 image
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Repeat for all 198 ROI-to-ROI combinations...
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Tensor Images
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(FA>0.15 & Angle < 50) (Vector, FA, and Color Maps)

FIGURE 1 | lllustration of our DTI processing pipeline for each subject, which included multiple steps (black arrows) and made use of several different
software packages (shown in red). After motion correcting and realigning the raw data, the mean b = 0 (s/mm?2) and six tensor images were calculated,
skull-stripped, and normalized to a standard anatomical template (i.e., the “JHU_MNI_SS_b0_ss” template in MRIStudio). Whole-brain fiber tracking was then
performed to compute all of the streamlines in the brain—with fractional anisotropy (FA) >0.15 and deviation angle <50° —before implementing a multi-ROI approach
(i.e., using the “Cut” operation in DTIStudio) to identify subsets of these entering or passing through pairs of nodes in each functionally-connected brain network

Skull Stripping
(SPM8 and ROIEditor)
——

- +*

Use “New Segment” tool in
SPMS8 to create rough brain
mask; then remove remain- .
ing skullin ROI Editor Skull-Stripped Skull-Stripped
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(DiffeoMap) ¥

1. Linear “Automated Image Registration” (AIR)
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Normalized Tensor Images
(FA>0.15 and Angle < 50)

Normalized
Tensor Images
(dxx, dyy, dzz, dxy, dxz, dyz)

Normalized
Mean b=0 Image

2011). These values were chosen to be slightly more liberal
than the default DTIStudio thresholds (FA >0.2 and tract-
turning angle <40°) in order to: (1) ensure that fiber tracking
would penetrate into cortical or sub-cortical gray matter regions,
and (2) include streamlines with slightly higher deviation
angles!.

A multi-ROI approach was then used to identify particular
tracts between nodes of interest from the normalized, whole-
brain tractography data. However, in order to first confirm
the sensitivity and reliability of our image processing and
tractography pipeline, we initially sought to examine a well-
established white matter connection. Two Brodmann areas—i.e.,
left BA22 and left BA44, as defined in the Talairach Daemon
(TD-ICBM Human Atlas) within the SPM8 WFU_PickAtlas
Toolbox (http://fmri.wfubmc.edu/software/pickatlas, Wake Forest
University, Winston-Salem, NC) (Lancaster et al., 2000; Maldjian
et al., 2003)—were used to validate our tractography approach

'Tt is perhaps worth noting that previous tract-based white matter atlases have
implemented FA >0.15 and deviation angle thresholds above 40° for similar
reasons (e.g., Wakana et al., 2004), while other deterministic tractography studies
have used FA thresholds as low as 0.10 and deviation angle thresholds of 45°
(e.g., Van den Heuvel and Sporns, 2011; Marqués-Iturria et al., 2015). Therefore,
while the tractography parameters implemented in the current study are more
liberal than the default values in DTIStudio, they are within previously established
boundaries.

via the ability to measure streamlines along the putative left
arcuate fasciculus. Because the two BA masks were restricted
to the cortical sheet, and were not dilated to penetrate deeper
into adjacent white matter regions, it should be noted that this
constitutes a more rigorous test of our tractography method
than the subsequent functionally-defined ROIs (which were
generally larger and often descended further into the borders of
the white matter). Nevertheless, despite this apparent handicap:
(1) tractography streamlines were still observed between the
left BA22 and left BA44 in the vast majority (27 out of
32) of subjects, and (2) the resulting group probability map
demonstrated that (with rare exception) the topology of these
fibers corresponded to the left arcuate fasciculus, as expected
(Supplementary Figure 1).

After validating our preprocessing pipeline and deterministic
tractography parameters with a known anatomical connection,
we then employed the same methods in a more exploratory
manner. Specifically, ROIs for each of six networks—including
the dorsal and ventral Default Mode Networks (dDMN and
vDMN) (Supplementary Videos 1, 2); the left and right
Executive Control Networks (IECN and rECN) (Supplementary
Videos 3, 4); and the anterior and posterior Salience Networks
(aSN and pSN) (Supplementary Videos 5, 6)—were defined a
priori using pre-existing atlases of functionally-connected brain
networks (http://findlab.stanford.edu/functional_ROIs, Stanford
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University, Palo Alto, CA) (Shirer et al, 2012)2. ROI-to-ROI
contingencies were then generated for every pair of nodes within
each network, and these contingency maps were applied to each
subject’s whole-brain tractography data using the “Cut” operation
in DTIStudio to identify the FACT streamlines running between
both network nodes specified in the ROI-to-ROI contingencies®.
Therefore, while no minimum length threshold was specified in
the tractography analysis, the length of each streamline must
(by definition) have been greater than or equal to the distance
between each pair of nodes in the ROI-to-ROI analysis. In this
way, subsets of tracts were identified for each subject that: (1)
met the deterministic tractography criteria and (2) entered or
passed through both nodes for each possible ROI-to-ROI pair
(i.e., within each of the six networks investigated).

Since the dDMN consists of 9 nodes (36 ROI-to-ROI
combinations), the vDMN consists of 10 nodes (45 ROI-to-ROI
combinations), the IECN consists of 6 nodes (15 ROI-to-ROI
combinations), the rECN consists of 6 nodes (15 ROI-to-ROI
combinations), the aSN consists of 7 nodes (21 ROI-to-ROI
combinations), and the pSN consists of 12 nodes (66 ROI-to-ROI
combinations), 198 ROI-to-ROI contingencies were assessed for
each of the 32 subjects—for a total of 6336 tractography analyses.
For each of these analyses, the data were visually inspected to
identify subjects for whom continuous streamlines were present
for each ROI-to-ROI contingency and any/all streamlines were
saved as binary maps (in normalized space). Group probability
maps for each of the 198 functionally-defined tracts were then
computed by combining (i.e., adding together) the binary maps
for each of the subjects for a given ROI-to-ROI contingency and
then dividing by 32 (i.e., the number of subjects). Thus, image
intensities for each of the group probability maps have limits of
0 and 1 (i.e., for voxels in which no subjects or all 32 subjects
exhibited a streamline, respectively).

For visualization purposes, 3D projections of the network
nodes and white matter probability maps were constructed
using the Volume and Volume Rendering tools in 3D Slicer
(http://www.slicer.org, Brigham and Women’s Hospital, Boston,
MA) (Fedorov et al., 2012). To achieve this, the network nodes
and their corresponding functionally-defined, probabilistic white
matter tract(s) were first rendered using the NCI GPU Ray
Casting method, and the resulting 3D reconstruction was then
overlaid on an anatomical template image (which was either
the “JTHU_MNI_SS_T1” image from MRIStudio for all of the

2These ROIs were originally identified by performing group independent
component analysis (ICA) on rs-fMRI data from 15 healthy, right-handed control
subjects between the ages of 18 and 30 years old (Shirer et al., 2012). They are
shown in 2D in Figures 3-5 and Figures 7-9, in 3D in Supplementary Videos 1-6,
and are included as Nifti images with the current white matter atlases (www.nitrc.
org/projects/uofm_jhu_atlas).

3While performing conventional multi-ROI tractography in DTIStudio (i.e., using
the more common “And” operation), the resulting streamlines may consist of
three distinct regions. These include: (1) any regions where the streamlines project
anterior to the anterior-most ROI; (2) the regions between the two ROIs; and (3)
any regions where the streamlines project posterior to the posterior-most ROL
Alternatively, using the “Cut” operation only reconstructs the portion of these
streamlines that lies between the two ROIs, cutting off the portions which extend
in either direction beyond each ROI (for figures and a more detailed explanation
of the “Cut” operation, please see Wakana et al., 2007).

white matter tracts or the “avg152T1” image from SPMS8 for the
network nodes).

Finally, in order to demonstrate how our atlases might be
used in future studies to infer relationships between white matter
structure within each of these networks and other variables
of interest (e.g., age, cognitive test scores, disease progression,
etc.), we created a toy example by taking age as an independent
variable and then performing two different types of analyses with
subjects’ normalized FA images. In the first type of analysis, the
FA images were smoothed with a 4mm FWHM 3D smoothing
kernel and a second-level (i.e., between subjects), voxel-wise
general linear model analysis was performed to identify regions
where FA was positively or negatively associated with age (FDR-
adjusted p < 0.05). White matter regions identified as having
significant correlations with age were then compared to each of
the functionally-defined white matter networks to determine the
amount of spatial overlap between the voxel-wise statistical maps
and each white matter network®. The second type of analysis was
more of a conventional ROI-based approach, where the mean FA
values were extracted from each white matter network across all
32 subjects and used to perform linear correlations between FA
and age for each network.

RESULTS

In order to evaluate the efficacy of the two-stage linear (12-
parameter affine) and non-linear (LDDMM) normalization
approach, we compared each subject’s warped mean b = 0 s/mm?
image (i.e., the average of all five b = 0 s/mm? images acquired
in the DTI pulse sequence) and calculated coeflicient of variation
maps across all 32 subjects after each step (Figure 2). As expected,
the linear normalization step was effective for overall scaling and
cortical alignment, but large inter-subject differences remained
throughout subcortical regions (Figure2; Top Row), most
notably in the deep, periventricular white matter. However, the
subsequent non-linear (LDDMM) normalization step corrected
these inter-subject variations, producing highly consistent
subcortical alignment across subjects (Figure 2; Bottom Row).
Although it required substantially more time and effort, the
efficacy of the high-dimensional, non-linear normalization
approach was significant for at least three reasons. By warping
each subject’s tensor images to normalized space, it: (1) enabled
us to make use of the previously published ROIs from each
network (to create all of the ROI-to-ROI contingencies); (2)
allowed us to combine tract information across subjects (to
create the probabilistic atlases for each tract); and (3) will
allow future studies to either extract quantitative measures of
white matter microstructure from these regions to make cross-
subject comparisons or assess the amount of overlap compared
to voxel-wise studies. However, as shown in Figure 2, future
studies aiming to use our normalized atlases for quantitative
analyses must implement similar high-dimensional, non-linear

41t is perhaps worth noting that the second type of voxel-wise “overlap analysis”
can be used with conventional, non-quantitative imaging methods as well (e.g.,
FLAIR images) to estimate the specific white matter lesion load within each
network, potentially providing clinical relevance for studying individual patients
or patient populations (e.g., Multiple Sclerosis, Traumatic Brain Injury, etc.).
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Subject 1 Subject 2

Linear
(12-Parameter Affine)

Coeffecient of Variation
(across all 32 Subjects)

Subject 3

Non-Linear
(LDDMM)

FIGURE 2 | Intermediate and final results of the two-stage, non-linear normalization procedure. Top Row: Mid-axial slices from three representative
subjects (i.e., the first three sorted by first initial) after the 12 parameter linear normalization (i.e., Automated Image Registration in DiffeoMap), as well as the coefficient
of variation (COV) image across all 32 subjects showing good alignment and overall scaling, but large subcortical differences between subjects. Bottom Row: Both
the individual images, as well as the COV image show marked improvement after the subsequent non-linear (LDDMM) normalization step with three phases of
cascading elasticity. This highlights the need for future investigators to use the same (or similar) non-linear normalization approaches when interpreting their
quantitative white matter imaging findings in the context of our group probability maps.

normalizations in their image processing pipelines, and not
simply rely on “standard” linear normalizations.

In our study, fiber tracking was used to search for all
white matter connections between the nodes within each of
six functionally-defined brain networks. Of the 198 separate
ROI-to-ROI contingencies, some had streamlines that were
commonly identified across subjects, while others did not. The
“connection counts” (Zhang et al., 2010)—i.e., the number of
subjects exhibiting at least one streamline—for each ROI-to-
ROI pair are depicted in Figure 3 (IDMN and vDMN), Figure 4
(IECN and rECN), and Figure 5 (aSN and pSN). Interestingly,
many of the ROIs with high connection counts to multiple other
regions have previously been noted to have the highest degrees
of white matter interconnectivity (Van den Heuvel and Sporns,
2011). These regions include: D1, D4, D8, and D7 in the dDMN
(corresponding to the anterior cingulate/medial prefrontal
cortex, posterior cingulate/precuneus, left parahippocampal
gyrus and thalamus, respectively); V1, V5, and V6 in the
vDMN (corresponding to the left posterior cingulate, right
posterior cingulate, and precuneus, respectively); R3 in the
rECN (corresponding to the inferior/superior parietal lobule);
A3 in the aSN (corresponding to the anterior cingulate);
and P7, P9, P10, and P12 in the pSN (corresponding to
the left thalamus, left insula/claustrum, right thalamus, and
right insula/claustrum, respectively). However, to rule out the
possibility that these connection counts were simply related to the
distance between ROIs (e.g., that proximal ROI pairs produced
systematically higher connection counts than distal ROI pairs),
the connection counts between network nodes were also depicted

after applying multidimensional scaling® to separate nodes
according to the Euclidean distance between each node’s center of
mass (Supplementary Figure 2). The large number of tracts with
high connection counts, including many long-range connections,
suggests: (1) that each of these functionally-connected networks
has a highly organized set of underlying white matter structural
connections, and (2) that the tractography results are fairly robust
across subjects. Moreover, in order to minimize the number
of spurious fiber tracts included in the atlases, all subsequent
analyses (including group probability map calculations) were
limited to tracts with connection counts of at least 8/32 (i.e., tracts
in which one or more streamlines were identified in at least % of
the subjects).

Our functionally-defined white matter tracts, along with
the corresponding nodes from each network, are shown as
binary masks in Figure 6 ({(DMN and vDMN), Figure 7 (IECN
and rECN), and Figure 8 (aSN and pSN); however, the group
probability maps for each tract are depicted in Supplementary
Videos 7-59, and the combined group probability maps for
each overall network (i.e., a superposition of all individual tracts
within each network) are displayed in Supplementary Videos

>Classical multidimensional scaling (also called principal coordinates analysis,
Torgerson scaling or Torgerson-Gower scaling) is a well-established technique
that can be used to: (1) reduce the dimensionality of a dataset, and (2) place
each new data point into an N-dimensional matrix, while preserving the original
distances between data points in the original dataset by minimizing a loss function
(Borg and Groenen, 2005). Using this method, we were able to reduce the 3D
coordinates of each cortical node’s center of mass and represent them on a
2D figure (Supplementary Figure 2), while preserving the Euclidean distances
between each node.
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A Dorsal Default Mode Network (dDMN)

B Ventral Default Mode Network (vDMN)

Left

the lines connecting the respective nodes.

FIGURE 3 | The connection counts for each functionally-defined white matter tract in (A) the dorsal Default Mode Network (dDMN) and (B) the ventral
Default Mode Network (vDMN). The nodes within each network (Shirer et al., 2012) are shown on axial brain slices (at their center-of-mass) in red, and the
connection counts for each tract (i.e., the number of subjects with tractography streamlines identified between each ROI-to-ROI pair) are represented by the weight of
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60-65. Each of these probabilistic maps reflects the common
and reproducible tract trajectories across subjects, and can be
thresholded according to the amount of desired between-subject
overlap (e.g., thresholding an image at 0.25 will show only those
regions where at least % of the subjects’ streamlines spatially
overlap, etc.). Although it has been previously discussed (Aron
etal,,2007; Zhang et al., 2010), it is perhaps worth reiterating here

that the group probability maps are more conservative than the
raw connection counts. This stems from the fact that connection
counts only represent the number of subjects who had at least
one continuous streamline between two regions (regardless of
the spatial locations of the voxels comprising each streamline),
whereas the group probability maps represent the proportion of
subjects who have overlapping streamlines that are in exactly the
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FIGURE 4 | The connection counts for each functionally-defined white matter tract in (A) the left Executive Control Network (IECN) and (B) the right
Executive Control Network (rECN). The nodes within each network (Shirer et al., 2012) are shown on axial brain slices (at their center-of-mass) in green, and the
connection counts for each tract (i.e., the number of subjects with tractography streamlines identified between each ROI-to-ROI pair) are represented by the weight of

R3

Right

same spatial location. Therefore, owing to different streamline
trajectories across subjects, values below 0.25 are possible in
the group probability maps, despite the requirement for each of
them to have had a connection count greater than or equal to
8/32 (i.e., in order to eliminate biologically spurious or unlikely
tracts).

It is also important to note that while the JHU_MNI templates
distributed with the MRIStudio packages (i.e., DTIStudio,

ROIEditor, and DiffeoMap) are correctly normalized to the
MNI template, they are spatially offset compared to the SPM8
template. Therefore, we have coregistered and compiled all of
our group probability maps (i.e., for each individual tract, as
well as all of the tracts in each network) in both coordinate
systems so that they can be conveniently used with either SPM
or MRIStudio in future studies. A folder containing all group
probability maps (i.e., for each individual tract and each network
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FIGURE 5 | The connection counts for each functionally-defined white matter tract in (A) anterior Salience Network (aSN) and (B) the posterior
Salience Network (pSN). The nodes within each network (Shirer et al., 2012) are shown on axial brain slices (at their center-of-mass) in blue, and the connection
counts for each tract (i.e., the number of subjects with tractography streamlines identified between each ROI-to-ROI pair) are represented by the weight of the lines
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as a whole), as well as the Supplementary Videos showing their
3D trajectories, can be freely downloaded from the NITRC
website (www.nitrc.org/projects/uofm_jhu_atlas).

The total white matter volume of each network (in normalized
MNI space) is shown in Supplementary Figure 3. Of the six
networks, the largest white matter volume was occupied by
the dDMN, followed by the pSN, aSN, vDMN, and then the

IECN and rECN (which had almost identical volumes). Since
each dataset was resampled and interpolated during the two-
stage non-linear normalization procedure—which preceded all
of the subsequent analyses (including tractography)—the group
probability maps and volumetric analyses both have had the
benefit of being calculated with 1mm isotropic resolution.
Thus, the volume of each functionally-defined white matter
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A Dorsal Default Mode Network (dDMN)

Left Right

Left Right

FIGURE 6 | Binary masks of all of the nodes (red) and all of the functionally-defined group probability maps (yellow) in (A) the dorsal Default Mode
Network (dDMN) and (B) the ventral Default Mode Network (vDMN) to show their spatial extents and locations. See Supplementary Videos for 3D
renderings of the group probability maps of each individual tract (Supplementary Videos 7-25), as well as the overall networks (Supplementary Videos 60-61) in
greater detail.
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A Left Executive Control Network (IECN)

Left Right

Left

FIGURE 7 | Binary masks of all of the nodes (green) and all of the functionally-defined group probability maps (yellow) in (A) the left Executive Control
Network (IECN) and (B) the right Executive Control Network (rECN) to show their spatial extents and locations. See Supplementary Videos for 3D
renderings of the group probability maps of each individual tract (Supplementary Videos 26-39), as well as the overall networks in greater detail (Supplementary
Videos 62-63).
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A Anterior Salience Network (aSN)

Left Right

Left

FIGURE 8 | Binary masks of all of the nodes (blue) and all of the functionally-defined group probability maps (yellow) in (A) the anterior Salience
Network (aSN) and (B) the posterior Salience Network (pSN) to show their spatial extents and locations. See Supplementary Videos for 3D renderings of
the group probability maps of each individual tract (Supplementary Videos 40-59), as well as the overall networks in greater detail (Supplementary Videos 64-65).
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network was calculated by creating an overall mask of the tract-
level group probability maps within each network (shown in
Figures 6-8) and simply counting the number of voxels in the
mask without placing any additional constraints (other than
the deterministic thresholds, ROI-to-ROI contingencies and the
>8/32 connection counts used to originally create the group
probability maps). Using these same overall network masks,
we were then able to calculate the amount of spatial overlap
between the white matter regions assigned to each network
and report these as actual volumes (Supplementary Figure 4A)
or normalized ratios, compared to the to the size of each
network (Supplementary Figure 4B). Perhaps not surprisingly,
the largest overlap in terms of absolute volume was observed
between the two largest network masks (i.e., the dDMN vs.
pSN), followed by the dDMN vs. aSN, dDMN vs. vDMN,
etc. However, in terms of relative overlap (proportional to the
size of each network), the largest overlaps were between the
vDMN vs. dDMN, followed by the pSN vs. dDMN, aSN vs.
dDMN, etc.

Examining the FA values for each white matter network
(Table 1) revealed that the dDMN and IECN were significantly
lower (p < 0.001) compared to the average across all networks;
the rECN displayed a trend toward lower FA values (p =
0.047, which is not significant after correcting for multiple
comparisons); and the aSN and pSN had significantly higher FA
values (p < 0.001). Moreover, the FA images were also used
to demonstrate both types of analyses that our white matter
atlases might help to address in future studies. After calculating
statistical parametric maps to examine regional FA changes
related to age (or any other hypothesis-driven independent
variable) and creating thresholded masks with an FDR-adjusted
p < 0.05 (Figure 9A; left panel), the amount of overlap can be
assessed with each white matter network. In our sample, age-
related FA differences were predominantly located in the white
matter regions nominally ascribed to the dDMN, IECN, and aSN,
as opposed to the other three networks, which exhibited very
little overlap (Figure 9A; right panel). The ROI-based analyses
(Figure 9B), where FA values were extracted from each white
matter network mask and then regressed with age for each
subject, showed similar (albeit arguably less powerful) results.
In this case, the two networks that exhibited trending negative
associations between overall network FA and age were the IECN
(p < 0.05) and the aSN (p < 0.02). Perhaps not surprisingly,
the voxel-wise and ROI-based analyses identified the same two
or three networks exhibiting the strongest negative associations

between age and FA; and neither approach found significant
positive associations (between FA and age) in any network.

DISCUSSION

General Discussion

Anatomically-defined white matter atlases and white matter
probability maps have been created in the past by other groups,
but to the best of our knowledge, this is perhaps the most
comprehensive set of functionally-defined probabilistic white
matter atlases reported to date. Given what we now know
about the architecture of the brain and its organization into
intrinsic, distributed networks, we anticipate that our atlases will
be a useful tool in future studies aiming to assess white matter
microstructure within the Default Mode, Executive Control and
Salience Networks and the ability to relate structural changes
within these networks to clinical deficits, cognitive performance,
functional connectivity, etc. As demonstrated, they can be used in
combination with: (1) voxel-wise analyses (e.g., linear regressions
between DTT or any other white matter imaging data and any set
of independent variables) to assess the amount of overlap with
each probabilistic atlas—i.e., allowing the voxel-wise changes to
be ascribed to the white matter regions underlying a particular
functional network or group of networks (e.g., Figure 9A); or (2)
ROI-based analyses to examine relationships between structural
measures throughout an entire functionally-defined tract or
network (e.g., Figure 9B). Moreover, the current atlases (or more
likely the individual group probability maps of the component
tracts) could theoretically be used in conjunction with other
novel analysis methods that extract diffusion metrics along white
matter pathways (c.f., Walsh et al., 2011; Colby et al., 2012;
Yeatman et al., 2012).

It should be noted that other groups have performed
somewhat similar fMRI-guided DTI analyses within portions of
the Executive Control and Default Mode Networks; however,
to the best of our knowledge, none have been as thorough in
their analysis nor as comprehensive in terms of the number
of nodes or subjects studied. For example, one earlier study
(Aron et al, 2007) created functionally-defined white matter
maps between three pre-determined executive regions—namely
the right inferior frontal cortex (IFC), subthalamic nucleus
(STN), and pre-supplementary motor area (preSMA)—and
showed that the tractography data were consistent with fMRI
responses elicited by a cognitive stop-signal task. However, due
to the specific hypotheses of this study, only the white matter

TABLE 1 | Mean and standard deviation of the FA values within each functionally-defined white matter network (i.e., across all 32 subjects), as well as the
statistical significance (p-value) of the difference (i.e., compared to the FA values obtained across all six networks in a two-tailed t-test).

dDMN vDMN IECN rECN aSN pSN All Networks
Mean FA 0.325 0.372 0.327 0.358 0.434 0.445 0.377
Std 0.018 0.019 0.016 0.018 0.016 0.014 0.050
p-value <0.001 0.59 <0.001 0.047 <0.001 <0.001 -

The dDMN, IECN and rECN appear to have significantly lower FA values compared to the average across all networks, while the aSN and pSN appear to have significantly higher FA

values.
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FIGURE 9 | Examples of potential voxel-wise and ROI-based analyses using the functionally-defined white matter atlases described above. (A) After
performing a standard voxel-wise analysis to identify any white matter regions where FA is positively (magenta) or negatively (cyan) correlated with age (FDR-adjusted
p < 0.05; left panel), the regions can be compared to each of the white matter network masks to determine the amount of spatial overlap (e.g., overlap volume in
mm3; right panel). In this way, the negative voxel-wise correlations between age and FA can be ascribed primarily to three functionally-defined white matter networks
(i.e., the dDMN, IECN, and aSN). (B) Alternatively, the relationships between FA and age can be investigated using a standard ROI-based approach (i.e., to calculate
the mean FA within each white matter network for each subject). When analyzed in this way, it appears that higher age in our sample population is associated with
decreased FA throughout the IECN (p = 0.05) and aSN (p = 0.02).
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connections between these select few ROIs were investigated
across 10 subjects. Similarly, another study (Greicius et al.,
2009) has examined a select number of structural connections
between three sets of nodes in the DMN-—specifically the
bilateral connections between the medial prefrontal cortices
(mPFC), posterior cingulate/retrosplenial cortices (PCC/RSC),
and middle temporal lobes (MTL)—showing that two out of
their three contingencies yielded robust tractrography results
across 20 healthy subjects. However, due to the specific
hypotheses of the study and certain methodological limitations
at the time, tracts between more/other nodes were not
examined. Alternatively, another recent study has implemented
a sophisticated fiber-tracking technique to measure structural
connectivity throughout the entire cortex in an observer-
independent manner and compared these findings to whole-
brain, voxel-wise functional connectivity matrices (Horn et al.,
2014). Their analyses revealed that certain areas within the DMN
showed the highest agreement between structural and functional
connectivity, suggesting that this network may have the most
direct structural connections—an observation that appears to
be partially supported by the relatively high connection counts
and overall size of the dDMN and vDMN borne out in our
tractography data.

Since the inputs and outputs of any given brain region
determine both the information available to it and its ability
to influence other regions, a comprehensive description of
the structural connections within the human brain—generally
referred to as the “human connectome”—is central to systems
and cognitive neuroscience (Sporns et al, 2005; Van Essen
and Ugurbil, 2012). In this regard, the stereotaxic white matter
probability maps generated in the current study form a kind
of “functionally-defined connectome” and are expected to have
widespread utility. The recent trend within systems and cognitive
neuroscience regarding intrinsic brain networks has (at least to
date) been primarily dominated by studies focusing on functional
connectivity changes, with far fewer studies investigating white
matter connectivity. This disparity is almost certainly related
to the fact that functional connectivity capabilities (i.e., for
ROI- and/or ICA-based resting state fMRI analysis) are now
available in every major fMRI analysis package, and there are
a growing number of network-based atlases, like the ones
reported by Shirer et al. (http://findlab.stanford.edu/functional
ROIs, Stanford University, Palo Alto, CA), to facilitate these
analyses. Therefore, it is our hope that the white matter atlases
reported here will act as a compliment to the Stanford group’s
functional connectivity atlases, and that they will be used
to facilitate future studies examining white matter structural
connectivity within these networks.

Finally, in addition to basic research applications, these
atlases could potentially have certain translational or clinical
applications. For example, the “clinico-radiological paradox”
(Barkhof, 2002) is a well-known phenomenon among patients
with white-matter disorders (including Multiple Sclerosis, etc.),
where the associations between clinical symptoms and common
radiological markers (e.g., lesion volume, number of lesions, etc.)
are typically quite poor. However, preliminary evidence suggests
that this phenomenon has to do with intersubject differences in

lesion locations (Hackmack et al., 2012)—where the degree of
damage to a particular functionally-defined network (including
its underlying white matter) would be expected to cause specific
clinical symptoms related to the role of that network. Therefore,
in future studies, lesion locations could be compared to our
functionally-defined white matter atlases to test this hypothesis;
and if confirmed, they could perhaps be used in a diagnostic
and prognostic capacity. Furthermore, given the central nature
of the networks investigated in the current study and their
role in high-level cognition and executive function, our atlases
could conceivably be inversely normalized into subject space
and used in concert with task-related and/or resting-state fMRI
(Lee et al., 2013) for the purpose of presurgical planning (e.g.,
prior to epileptic lobectomy or tumor resection) to minimize
postoperative functional deficits.

Structure-Function Relationships

The organization of neuronal connections throughout the CNS
is thought to be specific at multiple levels, such that: (1) each
brain region is connected to only a small subset of other regions,
and (2) within any given cortical region, the afferent and efferent
fibers are organized in precise, layer-specific patterns (Callaway,
2002). In the current work, we sought to study the long-range
white matter pathways between functionally-connected cortical
regions using DTT tractography, and to construct probabilistic
atlases of these connections within previously defined functional
networks. Although certain pairs of functional nodes were
consistently connected by white matter streamlines in our
analysis (Figures 3-5 and Supplementary Figure 2), there were
several node pairs for which direct white matter connections
were not commonly observed. This suggests that either there
were underlying white matter connections that our tractography
methods were unable to detect (see discussion of Type II errors
in the Study Limitations below), or that not all of the nodes
within each network are interconnected by direct white matter
pathways.

Regarding the latter, it is interesting to note that our
findings are consistent with a handful of previous reports.
For example, early studies of structure-function relationships
within single brain slices showed that regions with direct
white matter connections tended have high levels of functional
connectivity, but that the inverse was not necessarily true (Koch
et al., 2002); and later studies measuring whole-brain structure-
function correlations also concluded that robust structural
connectivity was predictive of functional connectivity, but
that strong functional connectivity did not reliably predict
structural connectivity (Honey et al, 2009). The present
findings therefore strengthen previous hypotheses that structural
connections are predictive of functional connectivity measures,
but that functional connectivity or network membership is not
strictly predicated on direct structural connections, since strong
functional connectivity may also exist between regions without
direct anatomical connections (c.f., Honey et al.,, 2010).

One explanation for robust functional connectivity despite
the absence of direct anatomical connections between every
pair of nodes likely has to do with the ways in which
constituent parts of these networks are interrelated or arranged
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(i.e., their “topology”). For example, a number of studies
have demonstrated that structural and functional networks
share many important topologic features, including: small-world
properties, modularity, hierarchy, and the existence of highly
connected hubs (for reviews, please see Bullmore and Sporns,
2009, 2012; Wang et al, 2015). In particular, small world
networks—i.e., a type of mathematical graph in which most
nodes in a network can be reached from every other through
only a small number of steps—have been adopted as an attractive
and parsimonious model for brain organization because they can
support both segregated and distributed information processing,
accommodate high dynamical complexity, and minimize wiring
and communication costs (Bassett and Bullmore, 2006). By
observing the connection counts between various ROIs in our
analysis (Figures 3-5), it is evident that certain nodes (e.g.,
D1 and D4 in the dDMN, V6 in the VDMN, etc.) are highly
structurally connected and are therefore well-positioned to serve
as network hubs; while, on the other hand, certain nodes appear
to be structurally disconnected or isolated from the rest of the
network (e.g., D6 in the dDMN, V2 in the vDMN, etc.). These
findings appear to correspond with previous studies of the DMN
which have shown that precuneus/posterior cingulate regions
(i.e., corresponding to nodes D4 in the dDMN and V6 in the
vDMN) exhibit consistently high levels of functional connectivity
with the rest of the nodes in the DMN, while nodes in the
medial temporal lobes (i.e., corresponding to nodes V3 and V8
in the vDMN) have consistently weaker interactions with the
rest of the nodes in the DMN (Fransson and Marrelec, 2008).
Taken together, this tends to suggest that functional hubs within
these networks are also structural hubs. However, it should be
kept in mind that we did not examine any of the structural
connections between nodes in different networks (e.g., between
dDMN and vDMN nodes), and it is possible that nodes with
little or no structural connectivity within each sub-network
could have direct white matter connections to other regions
within higher levels of the network (e.g., the larger DMN as a
whole).

Study Limitations

In general, diffusion imaging has several advantages compared
to alternative white matter staining, tracer and microscopy
methods. It is non-invasive, can provide whole-brain coverage
to allow 3D examination of intact networks, and is therefore
the only in vivo technique to estimate fiber trajectories
between distributed cortical regions in humans. Nonetheless,
this technique does have limitations and therefore warrants a
few caveats. Both our DTI data acquisition parameters and
analysis pipeline were optimized in an attempt to avoid well-
known pitfalls (c.f,, Jones and Cercignani, 2010) that might
otherwise reduce data quality or lead to spurious interpretations.
However, even when DTI data are properly acquired and
analyzed, it is worth bearing in mind that these signals and
their subsequent interpretation are ultimately derived from the
diffusion characteristics of water molecules as they interact with
their local environment (Beaulieu, 2002; Mori and Zhang, 2006).
While previous studies have shown that DTI data can be highly
correlated with microscopic staining and tracer techniques,

correlations with these gold-standard methods depend on
both the analysis parameters and the regions investigated
(c.f., Johansen-Berg and Rushworth, 2009). Moreover, even
under ideal conditions, DTI streamlines: (1) cannot necessarily
differentiate myelinated vs. unmyelinated vs. demyelinated fibers
(Beaulieu, 2002), (2) do not distinguish the anterograde vs.
retrograde directionality of these fibers (Mori and Zhang,
2006), (3) may not discriminate between monosynaptic and
polysynaptic connections (Johansen-Berg and Rushworth, 2009),
and (4) should not be used in isolation (i.e., without supporting
data or hypotheses) to draw conclusions about the degree of
myelination, fiber/axon counts or “white matter integrity” (Jones
et al., 2013).

Although high angular resolution diffusion imaging (HARDI)
(Tuch et al, 2002), Q-ball imaging (Tuch, 2004), diffusion
spectrum imaging (DSI) (Wedeen et al., 2005) and other more
advanced diffusion MRI acquisition and analysis methods offer
certain advantages over the more conventional DTI approach
used here (e.g., their ability to deal, at least to some extent, with
crossing fibers, etc.), it is important to bear in mind that all
diffusion-based methods share many of the same fundamental
limitations, and are still only surrogate markers of white matter
microstructure and fiber orientation. The main difference is
that while acquisition schemes with relatively few diffusion-
encoding directions and low b-values have certain advantages
(i.e., short acquisition times, less subject motion, and high signal-
to-noise images), the analysis of such data are limited to relatively
simple tensor-based models that are unable to resolve fiber
crossings as well as more complex Q-space sampling approaches
and reconstruction techniques (Daducci et al., 2014). However,
one recent study comparing tractography outcomes resulting
from different techniques (i.e., DTI, HARDI, and DSI from
the same subjects) suggested: (1) that there is likely only a
15-20% difference between connectomes generated using the
different acquisition and image reconstruction schemes, and
(2) that while DTT acquisition and analysis techniques failed
to reconstruct complex crossing fibers and therefore had lower
sensitivity (i.e., higher Type II error), there were certain cases
(e.g., short U-fibers) where DTI may even outperform the higher
order HARDI and DSI models, which were more likely to
have Type I errors owing to the inclusion of aberrant fibers
(Rodrigues et al.,, 2013). However, although future tractography
studies could reconstruct fibers with complex crossings and
yield better sensitivity (i.e., lower Type II error)—e.g., by using
higher b-values, more diffusion-encoding directions and more
sophisticated reconstruction approaches than the single tensor
model employed in our analyses—all current diffusion-based
fiber tracking methods are inherently prone to both Type I
(false positive) and Type II (false negative) errors. Given these
limitations, emerging anatomical methods for mapping 3D
networks—e.g., CLARITY (Chung et al., 2013)—may eventually
be used to replace MRI-based atlases (including ours) altogether,
but for now it remains to be seen whether advances in these
techniques will overcome current barriers to studying intact
white matter networks in whole human brains. Therefore, until
arguably better diffusion imaging (e.g., HARDI, DSI, etc.) or
3D anatomical (e.g., CLARITY) white matter atlases supersede
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and replace them, the current atlases represent the first and best
principled attempt to identify white matter regions associated
with the functionally-defined Default Mode, Executive Control
and Salience Networks.

However, one point that we feel cannot be overemphasized is
that the limitations of the current atlases must be considered in
any of their future applications (and the resulting interpretations
and conclusions). Due to the fact that many real white matter
connections were probably not identified in our tractography
analyses (i.e., owing to Type II errors), the current atlases
cannot be used to make claims about which regions are not
part of a given tract or network. For example, based solely
on our connectivity analysis between left BA22 and left BA44
(Supplementary Figure 1 and Supplementary Video 66), we
cannot exclude the possibility that many voxels outside of
our group probability map are also part of the left arcuate
fasciculus (in fact, many other regions—particularly those in
close proximity to the group probability map—likely are).
However, using the same example, we suggest that the current
atlases can be used to predict (with at least some measure of
confidence) which white matter regions are part of the left arcuate
fasciculus: and, by extension, the same goes for the DMN, ECN,
and SN white matter group probability maps. Although there
may be other appropriate applications within the confines of
these limitations, we propose that the primary utility of these
atlases will be for: (1) identifying whether white matter lesions
are likely to be located within one or more of these networks,
or (2) extracting quantitative white matter imaging metrics from
various tracts/networks to allow the types of analyses shown in
Figure 9.

It could be argued that one of the other limitations of the
current study in particular, is that we only performed within-
network tractography analyses for six functionally-connected
brain networks (out of dozens of possible networks). These
networks were chosen because the DMN, ECN, and SN are
three of the most well-established and most studied intrinsically
connected brain networks. Briefly, the DMN is comprised of
a set of brain regions—including the medial prefrontal, medial
temporal, and posterior cingulate cortices—that are both active
and intrinsically connected with one another at rest (Gusnard
and Raichle, 2001; Raichle et al., 2001; Raichle and Snyder,
2007) and anti-correlated with activity in several cortical regions
involved in attentional control or cognitive processing (Fox
et al., 2005; Fox and Raichle, 2007). The ECN, on the other
hand, is comprised of nodes—throughout the prefrontal and
parietal cortices, as well as the cerebellum—that are activated
and synchronized during planning, inhibition, working memory,
and other executive functions (Seeley et al., 2007; Bressler and
Menon, 2010; Niendam et al., 2012). Finally, the SN—which is
comprised of the dorsal anterior cingulate, orbitofrontal cortex,
insula, and several other subcortical and limbic structures—is
thought to play a significant role in emotional control (Seeley
et al., 2007), cognitive control (Menon and Uddin, 2010), and
error processing (Ham et al., 2013). Moreover, the SN is thought
to be critically involved in switching between exogenous and
endogenous attentional states and regulating the balance between
DMN and ECN activity (Bressler and Menon, 2010). Therefore,

in addition to being among the three most well-established
intrinsically connected brain networks, the DMN, ECN, and SN
appear to be inherently related to (and interconnected with) one
another.

One additional limitation in the current study is that we did
not examine any between-network connections (including the
dDMN-to-vDMN, IECN-to-rECN, or aSN-to-pSN connections),
and were therefore not able to generate probabilistic maps
for these or other between-network ROI-to-ROI contingencies.
While this would of course have been optimal (and may still
happen in the future), the fact is that the number of ROI-to-ROI
contingencies increases exponentially with the number of nodes,
rendering it impractical to include the additional tractography
analyses in the current study. For example, combining the dorsal
and ventral DMN would result in 19 nodes (171 ROI-to-ROI
contingencies), combining the left and right ECN would result
in 12 nodes (66 ROI-to-ROI contingencies), and combining the
anterior and posterior SN would result in 19 nodes (171 ROI-to-
ROI contingencies), for a total of 408 ROI-to-ROI combinations.
Across 32 subjects, this would require a staggering 13,056
tractography analyses (i.e., more than twice as many as the
6336 analyses performed in the current study). Perhaps this
can be done in a future study using more automated analysis
methods, but for now, this goes beyond the scope of the current
manuscript.

CONCLUSIONS

The landscape in systems and cognitive neuroscience has
increasingly shifted from mapping the function of individual
brain regions to investigating the functional connectivity
within and between distributed, large-scale networks. Until
now, however, there has been no principled method for
measuring white matter changes and ascribing them to a specific
network. By creating an extensive set of functionally-defined
probabilistic white matter atlases (in stereotaxic coordinates),
this study provides the first coherent framework for evaluating
the microstructural integrity and white matter connectivity
within the Default Mode, Executive Control and Salience
Networks. Based on these atlases, future studies will be able
to nominally attribute localized microstructural changes (either
between groups or among individual patients) to a particular
functional brain network, define specific tracts as a priori
regions of interest within one or more of these networks, or
investigate structure-function relationships that could provide
deeper insights into the underpinnings of complex neural
processes and/or disease.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2015.00585

Supplementary Figure 1 | Binary masks of left BA22 (yellow), left BA44
(orange) and the resulting group probability map of the tractography
streamlines identified across all subjects (purple). As expected, the topology
of the identified streamlines was highly consistent with the left arcuate fasciculus,
suggesting that our preprocessing pipeline and tractography parameters yielded
streamlines with reasonable specificity (i.e., owing to the paucity of “spurious”
streamlines). Moreover, the fact that streamlines were identified in 27 out of 32
(i.e., approximately 85% of) subjects—despite the fact that both of these BA
masks were smaller and more restricted to cortical grey matter than our
subsequent functionally-defined ROIs—suggests that the current approach also
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