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Introduction: If ever attained, adopting native-like accent is achieved late in the learning
process. Resemblance between L2 and mother tongue can facilitate L2 learning. In
particular, cognates (phonologically and semantically similar words across languages),
offer the opportunity to examine the issue of foreign accent in quite a unique manner.

Methods: Twelve Spanish speaking (L1) adults learnt French (L2) cognates and
practiced their native-like pronunciation by means of a computerized method. After
consolidation, they were tested on L1 and L2 oral picture- naming during fMRI scanning.

Results and Discussion: The results of the present study show that there is a specific
impact of accent on brain activation, even if L2 words are cognates, and belong to
a pair of closely related languages. Results point that the insula is a key component
of accent processing, which is in line with reports from patients with foreign accent
syndrome following damage to the insula (e.g., Katz et al., 2012; Moreno-Torres et al.,
2013; Tomasino et al., 2013), and healthy L2 learners (Chee et al., 2004). Thus, the left
insula has been consistently related to the integration of attentional and working memory
abilities, together with fine-tuning of motor programming to achieve optimal articulation.
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INTRODUCTION

Second language (L2) acquisition encompasses mastering many components, including syntax,
semantics, pragmatics, phonology, and phonetics. Adopting native-like accent is not always
possible, and is mostly a function of age of acquisition (Long, 1990; Bongaerts et al., 1995; Birdsong,
1999; Singleton, 2003). The notion of accent is a complex one, as it concerns a number of features
that go from phonological to motor and emotional dimensions. Hyman (2006) describes accent at
the word and phrase level, as “stress accent” and “pitch accent” respectively. Moreover, accent is
also influences by psychosocial factors, such as cultural background and education. In this regard,
Crystal (1987, 2003) have defined accent as the way in which a specific language is pronounced,
which allows identifying the region and the social status of the speaker. From a neurolinguistic
point of view, accent comprises processing phonology, prosody, intonation, as well as motor
programming and planning. Phonetic and prosodic rules that characterize a specific language are
crucial features of accent. Thus, accent concerns segmental (i.e., prosodic distinction) and supra-
segmental units (i.e., loudness, pitch and duration). Prosodic distinction is considered segmental
based on its position in entire prosodic structure (Keating, 2006). For example, the phonetic
realization of a consonant /p/ depends on the consonants’ position in the prosodic structure (i.e.,
where the terminal node is going to come). As it is the case with other domains of language
development, accent in mother tongue is acquired automatically (i.e., unconsciously). Hence, as
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it is acquired naturally as a lexical or a phrasal language
component, it is hard to dissociate from language processing
as a whole. However, in cases where the native speaker decides
to change accent for pragmatic reasons (i.e., to mark social
status, political or academic purposes, cultural influences, or
in circumstances such as acting or dubbing), conscious control
of accent is required, and changing accents may be even
effortful.

In the context of second language (L2) learning, accent
processing generally necessitates some level of cognitive control,
particularly when the age of acquisition is above the critical
period (Bongaerts et al., 1995; Birdsong, 1999; Singleton, 2003).
Thus, there is evidence that children lose their capacity to
perceive and distinguish phonemes as early as 6 months to
12 months of age (Werker and Desjardins, 1995), and therefore,
after that critical period, the production of phonemes in L2
will be influenced by the mother tongue. Consequently, it has
been argued that foreign accent can be detected both in early
and late L2 learners (Barlow, 2014), in particular if L2 has
been learnt in a formal manner (Peltola et al., 2003, 2007;
Best and Tyler, 2007; Jost et al., 2015). Perhaps this is one of
the reasons native-like accent has been used as an indicator
of high proficiency in second language. This L2 native-likeness
depends on a number of factors, including L2 age of acquisition,
frequency of L2 use and amount of exposure, gender, formal
training, motivation, amount of continued L1 use (Flege et al.,
1995; Piske et al., 2001), as well as type of L2 learning approach
and linguistic distance which eventually leads to inaccessible
perceptual representation to L2 learners (Flege, 2003). Thus,
regarding learning approach, there is evidence that it is more
likely to achieve native-like accent when L2 acquisition occurs
by informal exposure and interaction in a naturalistic L2
context, especially through interaction with friends, rather than
formal training such as taking lessons in a classroom (Polat,
2007). As for the influence of linguistic distance on accent
processing, the more the structural similarities across L1 and L2,
the larger the overlap at the phonological and phonetic levels
(Ringbom, 2007), and thus, the smaller the load on attentional
and motor-processing abilities. However, there is evidence of
better acquisition of L2 phonemes when the later are not part
of the L1 phonology (Best and Tyler, 2007). Interestingly, there
are models (PAM: Perceptual Assimilation Model, Best, 1995;
SLM: Speech Learning Model, Flege, 1995), which interpret L2
sounds from L1 pre-existing Structures. In contrast, Markedness
differential hypothesis (Eckman, 1977) functions on typological
markedness between L1 and L2. Grimaldi et al. (2014) by using
mismatch negativity experiments of speech sound discrimination
confirmed the PAM framework suggesting assimilation of L2
vowels in the pre-existing phonology in absence of L2 phonetic
discrimination. Lack of discrimination for vowel contrast was
reported by Peltola et al. (2007), in early language immersion
programs, in the form of the absence of native like memory
trace of L2 vowels. On the other hand, Zsiga (2003) reported
an asymmetrical transfer of patterns in L1–L2 syllable sequences
thus supporting a default pattern of articulation uncharacteristic
of L1 and L2. Such work is in favor to Markedness differential
hypothesis, i.e., there are universal contrasts, which favor less

marked structures, thus the asymmetry in the transfer between
L1 and L2.

The study of accent has been approached by different
means. Studies on adult healthy populations, including second-
language learners and studies on clinical populations presenting
disordered speech motor control or other clinical conditions.
Also, different methodologies have been used to explore the
neural basis of accent, namely anatomical and functional
neuroimaging, as well as computational modeling, based on
clinical data.

Different brain regions play crucial role in speech motor
production (Guenther, 2006; Guenther et al., 2006). The
Directions Into Velocities of Articulators (DiVA) is a
computational model, which argues for the role of the insula
in articulation, and highlights the similarity between this role
and that of the premotor and motor cortices (Guenther et al.,
2004). Thus, the DiVA, model includes the insula as part of the
motor speech control circuit, and thus, participating to in accent
processing.

The neural basis of speech motor control has been extensively
approached by means of behavioral and functional neuroimaging
tools, but very few of them have specifically focused on the neural
basis of accent processing. Specifically with healthy populations,
one ERP study (Romero-Rivas et al., 2015), and one fMRI study
on the comprehension of foreign accent speech (Adank et al.,
2012) have been published. However, there are no neuroimaging
studies on the production of accent in healthy population. Most
data on accent processing comes from clinical reports, some
of which include a comparison of functional neuroimaging in
healthy control participants and patients with foreign accent
syndrome (FAS), (Fridriksson et al., 2005; Poulin et al., 2007; Katz
et al., 2012; Moreno-Torres et al., 2013; Tomasino et al., 2013)
or AOS (Moser et al., 2009). Other case reports include imaging
reports on a variety of brain- damaged populations presenting
speech disorders (e.g., Kent and Rosenbek, 1983; Wertz et al.,
1984; Gurd and Coleman, 2006; Mariën and Verhoeven, 2007;
Moreno-Torres et al., 2013; Tomasino et al., 2013). The next
paragraphs develop on these accounts. Motor speech disorders
include apraxia of speech (AOS), Dysarthria and FAS, all of
which are characterized by the disruption of phonetic-prosodic
components of speech production, affecting the naturalness and
native-likeness of speech. Specifically, AOS is characterized by an
impaired ability of initiation, sequencing, timing, coordination
and vocal tract shaping for speech sound production (Kent
and Rosenbek, 1983; Wertz et al., 1984), and disrupted fine-
tuning of the balance between production of phonetics and
prosodic units of speech (Boutsen and Christman, 2002; Aichert
and Ziegler, 2004) resulting in unnatural production of speech
sound. This accent pattern has been related to damage in the
left inferior frontal gyrus, and the anterior insula, both areas
having been reported to play a role in novel speech production,
particularly in regard to the facilitation of new motor plans
for speech (Chee et al., 2004). On the same line, Moser et al.
(2009) conducted an fMRI study with 30 healthy adults on a
non-word-repetition task with English (native) or Non-English
(novel) syllables; the authors (Moser et al., 2009) found greater
activation in anterior insula with a novel syllable processing as
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compared to native syllable sequences. A single-case studyHiraga
et al. (2010), provides further evidence on the role of the insula
in accent processing, this time in the context of pure dysarthria.
Dysarthria is characterized by deficient articulation resulting
from reduced motor strength and motor coordination, and/or to
defects of the articulatory apparatus (Goodglass, 1993). In their
single-case study, the authors (Hiraga et al., 2010) reported on
a 72-year-old male who suffered posterior insular damage with
dysarthria and no aphasia. Although limited to a single-case,
this study points to the role of the insula in the processing of
accent.

Studies on FAS have been very important in pointing to the
role of specific networks in the processing of accent. FAS is
characterized by pronunciation alternations that make the native
speaker of a given language sound as a foreign speaker. These
alternations, at least in English, include syllable-timed speech
rhythm instead of stress-timed speech rhythm, the insertion of
epenthetic vowels, that change syllable structure, tense vowel
systems in place of tense/lax systems, and sentential intonation,
patterns with rising contours (Blumstein and Kurowski, 2006).
This condition does not include phonological errors, and it is
distinct in both its characteristics and underlying mechanisms
from an AOS, a dysarthria and an aphasic speech output
(Blumstein and Kurowski, 2006). Berthier et al. (1991), discuss
four cases of FAS, by reference to all 10 case reports since 1919
and concluded that for the disorder to be diagnosed as FAS,
co-occurrence of segmental and prosodic deficits is essential.
They associate FAS to damage in the precentral gyrus, with
better recovery being observed following premotor damage. The
collective evidences across a variety of clinical populations shows
the role of a set of areas in accent processing; these include
Broca’s area (frontal operculum and posterior third of the inferior
frontal gyrus), the premotor cortex, the striatum, the insula,
the pallidum, the thalamus, as well as white-matter pathways
of the internal capsule—all typically on the left side in right-
handed patients (Kurowski et al., 1996; Gurd and Coleman, 2006;
Mariën et al., 2006, 2009; Scott et al., 2006; Kuschmann et al.,
2012).

Functional neuroimaging evidence from FAS comes from
comparisons between FAS patients and controls, performing a
variety of language tasks (Fridriksson et al., 2005; Poulin et al.,
2007; Katz et al., 2012; Moreno-Torres et al., 2013; Tomasino
et al., 2013). Moreno-Torres et al. (2013) reported on a middle-
aged bilingual woman with chronic FAS, characterized by deficits
including changes in linguistic and emotional prosody, as well as
lack of motivation to communicate. Magnetic resonance imaging
(MRI) showed bilateral lesions, particularly in the left deep
frontal operculum, and dorsal anterior insula. Also, Diffusion
tensor Imaging (DTI) and Tractography suggested disrupted left
deep frontal operculum-anterior insula connectivity. Positron
emission tomography (PET) showed decreased activation in
Brodmann’s areas 4, 6, 9, 10, 13, 25, 47, in the basal ganglia,
and anterior cerebellar vermis. The authors (Moreno-Torres
et al., 2013) argue that the ensemble of the neurofunctional
and neuroanatomical evidence from this single-case report
suggests that FAS entails altered planning and execution of
speech production, with both cognitive control and emotional

communication dimensions. Moreover, this report shows the
key role played by the insula-frontal operculum circuit in the
processing of accent. In another study using functional MRI,
Katz et al. (2012) reported the activation maps related to a
picture-naming task in an English-speaking woman with FAS
of unknown etiology. The activations included the left superior
temporal and medial frontal structures, bilateral subcortical
structures and thalamus, the left insula and the left cerebellum.
Similarly, in their PET study, Tomasino et al. (2013) compared
the accent of a patient suffering from FSA secondary to damage
to the putamen, to that of a group of healthy controls, in
the context of counting, sentence and pseudoword production
and picture naming. As compared to healthy subjects, the
patient showed an increased activation in the pre/postcentral
gyrus and ventral angular gyrus. Authors conclude that FAS
is a result of an impairment of the feed-forward control
commands, in particular of the articulator velocity and position
maps (Tomasino et al., 2013). Another PET study by Poulin
et al. (2007) examined FAS in a case of bipolar syndrome
and reported hypometabolism in the frontal, parietal and
temporal lobes bilaterally, as well as a focal damage in the
left insular and anterior temporal cortex (Poulin et al., 2007),
thus pointing to the role of the anterior temporal gyrus and
the left insula in accent processing. Finally, Fridriksson et al.
(2005), report the case of a stroke patient with damage in
the putamen and extending fiber tracts, showing symptoms of
FSA. Concurrently with impaired motor speech regulation, fMRI
results with an overt picture-naming task show a significant
activation of the superior temporal and inferior frontal lobes,
as well as in the inferior motor strip (face region) and the
lateral occipital gyri. The authors (Fridriksson et al., 2005)
argued that the lesion resulted in apraxia and FAS symptoms
as a consequence of increased reliance on motor execution, as
reflected by the activation motor cortex (Fridriksson et al., 2005).
Another possible interpretation is that damage to the fiber tracts
disconnected this circuit from the insula and leading to the
reported FAS symptoms.

Despite the interest of the previous studies, it is difficult to
draw any strong conclusions regarding the activation patterns
reported in regard to the neural basis of accent. Thus, the
activation maps observed in these patients are not exclusive
to accent processing, but reflect a variety of task processing
components. Also, given that brain damage disrupts complex
brain circuits, and leads to symptoms that reflect both damage
and compensation to damage, it is not possible to draw
conclusions regarding the areas or set of areas specifically related
to accent processing. In this regard studies with healthy and
in particular, studies with second language learners, could open
a window onto the normal neural mechanisms underlying the
production of a foreign accent. In particular, fMRI studies
on cognate learning in healthy adults can shed light on
the neural basis of accent processing. Thus, cognates share
phonological and semantic features across languages, and thus
they are easier and faster to learn than non-cognates, which
share semantics only, and clangs which share phonology but
not semantics (De Groot, 1992, 1993; Sánchez-Casas et al.,
1992; Ellis and Beaton, 1993; Kroll and Stewart, 1994; De
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Groot and Keijzer, 2000; Hall, 2002; Sánchez-Casas et al., 2005;
Christoffels et al., 2007). Moreover, when learning of cognate
is consolidated, they are almost processed as mother tongue
(Perani et al., 1996; De Bleser et al., 2003). Still, there are
subtle differences in the pronunciation of cognates at the level
of intonation, prosody, and articulation placement lead to what
we perceive as accent, which make cognates good candidates
to isolate the neural markers of foreign accent in the healthy
brain.

In the present study, we examined 12 healthy Spanish-
speaking adults, who learnt French cognates by means of a
computerized training program. They were trained for 4 weeks,
until they attained a perfect score in picture naming of L2
cognates, after which they were tested on picture naming of
cognates during fMRI scanning, both in L2 and their mother
tongue.

MATERIALS AND METHODS

Experimental Design
This was an event related fMRI group study on cognate naming.
Behavioral and event-related fMRI measures were collected after
4 weeks of cognate naming training, when participants attained
a 100% success rate in naming. The study included a pre-
experimental assessment on bilingualism and cognitive status,
and the completion of a computerized vocabulary-learning
program. Participants received a short training on the use
of the program, followed by self-training, for 15 min a day
during 30 days. When participants attained 100% success rate
on naming, they were tested on naming the object pictures in
L2 (French), and in their mother tongue (Spanish). Accuracy
rates (ARs), accent judgment rating and RT were collected,
and activation maps relative to event-related BOLD responses
were extracted. More details about participants, stimuli, training
program and the task will follow.

Participants
Twelve Spanish-speaking (L1) adults (40.7 ± 13.0 years, range
26–66; six males, six females), with no history of neurological
or neuropsychological disorders, participated in our study (refer
to Table 1 for details). All participants were right-handed, as
measured by the Edinburgh Handedness Inventory (Oldfield,
1971), and were homogeneous in terms of their educational
background (15.8 ± 1.5 years, range 12–18), and were matched
for an elementary level of French from the elementary level
immersion courses offered by the Quebec government for
immigrants, who were tested to have no knowledge of French by a
placement test. Given that students pass standardized placement
tests and a thorough interview to be admitted to these courses,
this ensured an equal amount of exposure to L2 at recruitment
and an equivalent level of L2 knowledge. In addition, baseline
in L2 proficiency was determined by means of a questionnaire
based on the work of Paradis and Libben (1987), Flege (1999),
Silverberg and Samuel (2004) used in previous studies in our
laboratory (Raboyeau et al., 2010; Scherer et al., 2012; Marcotte
and Ansaldo, 2014). This modified version of the questionnaire

TABLE 1 | Participants’ demographic data and Neuropsychological test
results including: Montreal Cognitive Assessment (MOCA) Memory test
(Nasreddine et al., 2005); Memory and Learning Test (Grober and Buschke,
1987; Grober et al., 1988), and the Attention and inhibition Stroop test
(Beauchemin et al., 1996).

Participants Gender Age
(months)

Years of
education (Years)

1 f 38 16

2 m 32 16

3 f 26 14

4 f 54 16

5 f 52 16

6 m 36 16

7 m 26 18

8 m 38 18

9 f 28 16

10 f 37 16

11 m 58 16

12 m 64 12

M 6 m 40.75 15.8

SD 6 f 13 1.5

TABLE 2 | Information on the participants’ knowledge of L2 (French) at
baseline.

Participants’ L2 Knowledge (out of ten participants participating in
the study)

Considers his ability to communicate in French limited 7

Considers L1 accent when speaking in French evident 11

Considers himself moderately understandable in French 10

Rated below average level of production in French on Québec Ministry of
Education tests

9

Rated below average level of comprehension in French on Québec Ministry
of Education tests

9

Rated below average level of reading in French on Québec Ministry of
Education tests

10

Rated below average level of writing in French on Québec Ministry of
Education tests

10

gives information on the participants’ level of proficiency, L2
language use as well as the duration of the L2 courses (refer
to Table 2 for details). All the participants reported of minimal
exposure of French at home as well as outside home. The
participants were highly motivated toward the French language
course as means of successful participation in the different
social settings/community through the use of language. Further,
participants were tested on their knowledge of the experimental
stimuli before they experienced any lexical learning in L2; being
able to name more than 15% of the stimuli, thus five stimuli, was
considered an exclusion criteria.

Cognitive factors that may have an influence on L2 vocabulary
learning were controlled by means of a series of tests. Mild
cognitive impairment was ruled out by means of the Montreal
Cognitive Assessment (MOCA, Nasreddine et al., 2005). Only
participants with score of 26 or more (29.8 ± 0.77) were
included. The Memory and Learning Test (Grober and Buschke,
1987; Grober et al., 1988) controlled for memory and learning
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TABLE 3 | List of Spanish–French cognates.

French French
phonetics

Spanish Spanish
phonetics

Meaning

Ananas /ana’na/ Ananá /ã.nã"na/ Pineapple

Kiwi /ki’wi/ Kivi /"ki.wi/ Kiwi

Orange /O’KÃZ/ Naranja /na"Ran.xa/ Grapefruit

Brocoli /bKOkO’li/ Brécol /"bRe.kol/ Broccoli

Salade /sa’lad/ Ensalada /ẽn.sa"la.ða/ Salad

Pistache /pis’taS/ Pistacho /pis"ta.Ùo/ Pistachio

Epinard /epi’naK/ Espinaca /es.pi"na.ka/ Spinach

Kangourou /kãgu’Ku/ Canguro /kan"gu.Ro/ Kangaroo

Dauphin /do’fẼ/ Delfin /del"fin/ Dolphin

Phoque /’fOk/ Foca /"fo.ka/ Seal

Koala /kOa’la/ Koala /ko"a.la/ Koala

Panda /pã’da/ Panda /"pan.da/ Panda

Flamant /fla’mã/ Flamenco /fla"mẽn.ko/ Flamingo

Pingouin /pẼ’gwẼ/ Pinguino /pin"gwi.no/ Penguin

Rose /’Koz/ Rosa /"ro.sa/ Rose

Cactus /kak’tys/ Cactus /"kak.tus/ Cactus

Pied /’pje/ Pie /"pje/ Foot

Squelette /sk@’lEt/ Esqueleto /es.ke"le.to/ Skeleton

Autobus /oto’bys/ Autobus /au.to"βus/ Bus

Helicoptere /elikOp’tE:K/ Helicoptero /e.li"kop.te.Ro/ Helicopter

Train /’trẼ/ Tren /"tRen/ Train

Commode /ko’mOd/ Cómoda /"ko.mo.ða/ Chest Of
Drawers

Lustre /’lystr/ Lustre /"lus.tRe/ Chandeliers

Carton /kar’tÕ/ Cartón /kaR"ton/ Carton

Chocolat /Soko’la/ Chocolate /Ùo.ko"la.te/ Chocolate

Sandwich /sãd’witS/ Sandwich /"san.dwiÙ/ Sandwich

Douche /’duS/ Ducha /"du.Ùa/ Shower

Sac /’sak/ Saco /"sa.ko/ Bag

Pince /’pẼ:s/ Pinza /"pin.θa/ Tweezers

Pyjama /piZa’ma/ Pijama /i"xa.ma/ o
/pi"Ja.ma/

Pyjama

Pipe /’pip/ Pipa /"pi.pa/ Pipe

Jaquette /Za’kEt/ Chaqueta /Ùa"ke.ta/ Cardigan

Telephone /tele’fOn/ Telefono /te"le.fo.no/ Telephone

Mosaique /moza’ik/ Mosaico /mo"sai.ko/ Mosaic

Balcon /balkÕ/ Balcón /bal"kon/ Balcony

Coussin /ku’sẼ/ Cojin /ko"xin/ Cousin

Crème /’kKEm/ Crema /"kRe.ma/ Cream

Piano /pja’no/ Piano /"pja.no/ Piano

Violon /vjo’lÕ/ Violin /bjo"lin/ Violin

Ski /s’ki/ Esqui /es"ki/ Ski

Tennis /te’nis/ Tenis /"te.nis/ Tennis

Seringue /s@’KẼg/ Jeringa /xe"Rin.ga/ Syringe

Pommade /po’mad/ Pomada /po"ma.ða/ Ointment

Canari /kana’Ki/ Canario /ka"na.Rjo/ Canary

Gorille /gO’Kij/ Gorila /go"Ri.la/ Gorilla

Conserves /kÕ’sEKv/ Conservas /kon"seR.βas/ Conserves

Guitar /gI’ta: K)/ Guitara /gi"ta.ra/ Guitar

Fleche /’flES/ Flecha /"fle.Ùa/ Arrow

Bouteille /bu’tEj/ Botella /bo"te.Ja/ Bottle

Lampe /’lãp/ Lampara /"lam.pa.Ra/ Lamp

skills, participants free recall skills (27.25 ± 4.24 raw score)
and category recall skills (9.9 ± 2.0 raw score), and the non-
verbal Stroop test (Beauchemin et al., 1996) for attentional and
executive function abilities color-time (17.6 ± 6.01 s), word-time
(16.2 ± 5.6 s) and word-color (22.3 ± 6.7 s). Participants who
performed above cut-off levels for this battery were recruited to
participate. After completing the pre-experimental assessment,
participants were enrolled in a computerized lexical-training
program in French.

Stimuli
The experimental list included 35 Spanish-French Cognates
(N = 35; e.g., Téléphone /telefOn/, French, and Teléfono
/telefOnO/, Spanish; both words meaning ‘telephone’), and a set
of color photographs depicting each of them (refer to Table 3 for
complete list of stimuli). Stimuli were matched across languages
for: visual complexity, object and word familiarity, lexical
frequency, word length, and number of phonemes and syllables.
An equal number of items were selected for animals, fruits and
vegetables, clothes and accessories, stationery, and household
objects to control for a possible category effect (Caramazza and
Shelton, 1998). Twenty distorted images were used as the control
condition for fMRI scanning.

Lexical Training Program
Similar to our previous studies (Raboyeau et al., 2010; Ghazi-
Saidi et al., 2013), participants completed a computerized self-
training to learn 35 cognates and their native-like pronunciation
in Canadian French (Québécois). Participants spent 15 min a day
during 4 weeks. With the computer software, the target picture
is displayed on the screen, followed by a series of phonological
cues, displayed under the target picture when an icon is pressed.
The first cue is the first sound of the target word, followed by
the first and second sounds, and finally the whole target word.
Participants were instructed to look at the picture, and listen to
the first cue, then to the second cue, and then to the whole word.
They were allowed to repeat this procedure as many times as
necessary to learn the word. In their subsequent practice sessions,
participants would first try to name the object when they saw the
target picture; if unsuccessful, they would press on the icon and
listen to the first cue; if they failed to recall the name of the object,
they would listen to the second cue, and if necessary to the whole
word. Participants were asked to make an effort to pronounce
the word as similarly as possible to the native pronunciation as
possible. Thorough instructions were given to the participants at
the beginning of the experiment; the respect of all instructions
was checked with each participant, on the phone and by e-mail
every 2–3 days. Participants were fully committed to respecting
the 15-min training routine.

Experimental Task and Procedure
After the consolidation, participants were tested on an overt
picture-naming task during fMRI scanning. Task instruction was
to look at colorful photos of objects and name the object and
pronounce the target word as closely as possible to the French
native model they have been practicing, and to say dido (a
pseudo-word in Spanish, French, and English, in response to
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seeing distorted images). The task was performed both in L2
(French) and in L1 (Spanish). The event-related experimental
design included two runs. Thus, in Run 1, participants were
asked to name the cognate pictures in L2, and to do so as
closely as possible to the native accent, whereas in Run 2, they
were asked to name the same pictures, in their mother tongue.
The procedure and task were practiced in the fMRI simulator
for optimal data acquisition conditions in the fMRI scanner.
Stimuli were displayed by means of a computer equipped with
Presentation software v.11.21. Participants lay on their back with
their head fixed by cushions and belts, and an fMRI-compatible
microphone (MRConfon Optical microphone) was placed close
to the participant’s mouth to record responses. No bite-bars were
used to allow accurate articulation and also considering that the
evidence does not support the use of this device, as it may add
extra inconveniences for the participants and thus affect their
attention and performance (Heim et al., 2006). Rigid-body head
movements were corrected with online movement correction.
Before the naming task, and as practiced in the simulator,
participants were instructed to look at the computer screen and
name aloud each of the pictures presented to the as accurately and
as quickly as possible. These pictures were the same as those used
in the training phase (N = 35 stimuli) presented randomly by
means of Presentation v11.2. Each picture was presented for 4 s,
after which there would be a blank page for a randomized interval
of 4600–8600 ms, then the next picture would be presented. Oral
responses were acquired with the fMRI-compatible microphone,
and Sound Forge software (Sonic Foundry, Madison, WI, USA).
Following our previous studies (Raboyeau et al., 2010; Ghazi-
Saidi et al., 2013), we used a variable inter-stimulus interval (ISI)
to assure a better sampling of the hemodynamic response and
prevent attentional bias (Huettel et al., 2004).

fMRI Parameters
Acquisition parameters were the same as in previous studies in
our laboratory (Raboyeau et al., 2010; Ghazi-Saidi et al., 2013).
The acquisition included 28 slides in the axial plane, so as to scan
the whole brain, including the cerebellum. Sequential slices were
collected, to avoid the stripping that might happen because of
certain types of headmotion (Siemens 3T Scanner User Training:
Supporting Information and FAQ).

Stimulus presentation time was 4500 ms, with a variable
ISI (between 4325 and 8375 ms), TR = 3 s, TE = 40 ms,
matrix = 64 × 64 voxels, FOV = 24 cm, and slice thick-
ness = 5 mm. A high-resolution structural scan was obtained
during the two functional runs (naming in L1 and naming in L2),
using a 3D T1-weighted pulse sequence MPRAGE (TR = 2.3 ms,
TE = 4.92 ms, angle = 25◦, 76 slices, matrix = 256 × 256 mm,
size = 1 mm × 1 mm × 1 mm, FOV = 28 cm).

Ethical Issues
This study was approved by the ethics committee of Réseau
de Neuroimagerie du Québec (RNQ). All participants signed
a consent form. The procedure was explained clearly to the
participants. All data were recorded in the Unité neuroimagerie

1http://www.neurobs.com

fonctionnelle (UNF) at the Institut de Gériatrie de Montréal
(IUGM). Appendix 1 includes the UNF screening form and can
be found in the online version, at http://dx.doi.org/10.1016/j.
bandl.2012.11.008.

Data Analysis
Demographic and L2 Knowledge Related Patterns
A jury of three Canadian French native speakers rated the degree
of native-likeness of word pronunciations following cognate
learning. Raters included two women and four men, aged
between 22 and 48. All raters were born and raised in Quebec,
and were native speakers of Canadian French. Raters were asked
to answer a questionnaire on their demographic information
and their French knowledge. However, only three raters (two
men and one woman) provided a complete rating of the accent
characteristics of the participants, the three others were excluded,
as they had not rated all of the stimuli, or had found it difficult to
listen to some of the recordings.

The rating procedure was based on the procedure used by
Piske et al. (2001). Thus, all naming responses in L2 were
recorded for each participant. Each rater was given a scale (see
Appendix 2) and asked to listen to responses and rate how native-
like each participant’s accent. The instruction read as follows:
please circle the value that you give to each participant, on
the scale. On this scale 1 is very foreign and 9 is native-like.
Raters rated each participant individually on a scale of 1–9,
for one having heavy foreign accent and nine being perceived
as a Canadian French native speaker. Please see Appendix 2.
Questionnaire and the scale filled up by Canadian French Native
raters.

Behavioral Data Analysis
The event-related design allowed discriminating between correct
and incorrect responses. Response times (RTs) and ARs were
calculated. Non-responses, Spanish words, and phonological
errors (e.g., /pi/ instead of /pie/) were considered wrong answers,
and thus not included in further analysis. Statistical analysis
included ARs and RTs for Cognates as well as the pseudo-word
with SPSS, version 17.0.

Neuroimaging Data Analysis
BOLD responses were analyzed for the correctly named items
following the data analysis plan of our previous work (Raboyeau
et al., 2010; Ghazi-Saidi et al., 2013; Marcotte and Ansaldo, 2014).
Neuroimaging data was analyzed with Statistical Parametric
Mapping-8 (SPM-8, Welcome Trust Centre for Neuroimaging,
Department of Cognitive Neurology, London, UK), established
in Matlab (MathworksInc, Sherborn, MA, USA)2. Data analysis
was performed individually first, and them within the group
of participants. Slice timing, realignment, normalization, and
segmentation were performed first. Images were spatially
smoothed with an 8-mm Gaussian filter. Only BOLD responses
for correctly retrieved words were included in the analysis. For
each participant and for the whole group, task-related BOLD
changes were examined by a convolving vector of the onset

2www.fil.ion.ucl.ac.uk/spm/
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of the stimuli with a hemodynamic response function (HRF),
and its temporal derivative. Statistical parametric maps were
obtained for each individual subject, by applying linear contrasts
to the parameter estimates for the events of interest (the correct
responses); this resulted in a t-statistic map for every voxel.

One-sample t-test, group averages were calculated for
Cognates minus the control condition (i.e., Cognates –dido).
Cluster size (k) was superior to 20 voxels and p < 0.001. Further,
direct contrasts were performed to examine the neural substrate
that characterized the processing of accent, with the contrasts:
(CognateL2 vs. CognateL1), Significant activated clusters were
considered were larger than 15 voxels (k > 15) and p-value was
settled at 0.001.

RESULTS

Behavioral Results with Cognate
Learning
Mean ARs for naming cognates in L2 (M = 85.9,
SD = 1.4). Correct responses for naming L2 Cognates, in
the scanner, included an average of 30 items (maximum = 33,
minimum = 28). Further, there was no significant difference
in the RTs (in seconds) for naming Cognates in L2 (M = 1.81,
SD = 0.64) and Cognates in L1 (M = 1.61, SD = 0.4);
t (0.93) = 0.21, p = 0.36.

Accent Analysis Results
The jury of native speakers (raters) considered that participants
showed a heavy foreign accent when producing learnt cognates
(M = 3.1; SD = 1.4, on a scale of one to nine, where a score
of 1 corresponds to perception of a strong foreign accent, and
a score of 9 corresponds to the perception of Native). Amount
of agreement between the three raters was 52% (κ = 0.346),
indicating fair agreement (Landis and Koch, 1977).

Neuroimaging Results
The fMRI contrast between L2 Cognates and Dido (i.e., Cognate
L2 – Dido) for naming images in L2 (French), shoed a significant
activation in the left Middle occipital gyrus, the left Lingual gyrus,
the left Inferior frontal gyrus, the left Precentral gyrus, the left
Inferior frontal gyrus and the left, and the right Middle occipital
gyri, the right Parahippocampal gyrus and the right Cerebellar
tonsil.

T-contrast fMRI analysis (i.e., Cognates L2-Cognates L1)
showed a single significant activation, located in the left Insula.

Table 4 summarizes the details of these activations and
Figures 1 and 2 show these activations.

DISCUSSION

Studies on accent processing have mostly focused on clinical
populations, with a variety of clinical conditions. The evidence
from these studies provides some important clues regarding
the neurobiology of accent. However, the complexity of the
clinical conditions, the variety of lesion types, sizes and methods
used to examine those cases precludes any generalization
regarding the neural basis of accent. Moreover, given that
clinical signs may reflect not only the effect of damage, but
also compensatory mechanisms put into play after damage,
and considering that most of this literature concerns single
case reports, the results of this research require parsimonious
interpretation.

The neural basis of accent processing can be further
examined by looking at healthy populations learning a second
language, in particular, learning cognates, words that share
phonological and semantic features across languages, but still
offer the opportunity to examine the impact of accent related
differences, at the segmental or suprasegmental levels. In the
present study, we examined a group of Spanish speaking (L1)

TABLE 4 | T-contrast fMRI analysis of Cognates L2 vs. Control condition (i.e., Cognates L2 - dido), and the direct contrasts of Cognates (i.e., Cognates
L2-Cognates L1), (k > 15, p < 0.001).

Left Right

Regions BA x y z T-score Cluster
size

Regions BA x y z T-score Cluster
size

Cognates – Dido

Sub-gyral/Middle
occipital/
Lingual gyrus

37/19 −44 −42 −14 7.94 356 Middle occipital gyrus/
Parahippocampal gyrus

19 38 −82 −2 8.05 458

Inferior frontal
gyrus/Precentralgyrus

9/6 −44 8 24 4.77 95 Cerebellar tonsil 36 −58 −40 6.60 36

Inferior frontal gyrus 45/46 −44 32 −12 4.77 77

Precentralgyrus 9 −38 4 42 4.68 26

Cognates L2 – Cognates L1

Insula 13 −44 3 13 3.73 15

Significant activated areas resulting from comparing naming Cognates L2 (French) and the control condition (dido), (k > 15, p < 0.001). BOLD responses yielded in
activation of the left Middle occipital gyrus, the left Lingual gyrus, the left Inferior frontal gyrus, the left Precentralgyrus, the left Inferior frontal gyrus and the left, the right
Middle occipital gyrus, the right Parahippocampalgyrus and the right Cerebellar tonsil. T-contrast fMRI analysis (i.e., Cognates L2-Cognates L1) showed a single significant
activation, located in the left Insula.
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FIGURE 1 | Significant BOLD signal increase (cluster size (k) superior
to 20 voxels and p < 0.001), related to Simple contrasts with naming
Cognates activated the left Middle occipital and Lingual gyrus (BA37
and BA19), the Inferior frontal gyrus (BA 46 and BA 47) and the left
Precentral gyrus (BA6 and BA9), the right Middle occipital gyrus and
the righ Parahippocampal gyrus (BA19) and the right cerebellum).
Statistical parametric maps overlaid onto the average T1-weighted anatomy
of all subjects (n = 12). Activation related to only one layer is presented, thus
many activations may not be seen on this image.

FIGURE 2 | Significant BOLD signal increase [cluster size (k) superior
to 15 voxels and p < 0.001] related to direct comparisons between
each (Cognates – Non-cognates) and (Cognates L2 – Cognates L1)
yielded to significant activation in the left insula (BA 44).

adults learnt French (L2) cognates by means of an audio-
visual computerized method; after consolidating cognate picture
naming, thus when participants attained maximum score on
picture naming of cognates, a test on L1 and L2 oral cognate
naming during fMRI scanning was performed. Participants were
instructed to respect native accent in each language as much as
possible.

Behavioral results showed that mean ARs and RTs did not
differ across L1 and L2, which suggests consolidated learning
of L2 cognates. However, a jury of native speakers perceived
participants’ L2 accent as foreign, as rated on a scale of 1–9,
where nine being perceived as a Canadian French Native
speaker (M = 3.1, SD = 1.4). This shows that regardless of
the consolidation of L2 lexical learning, at the phonological
and semantic levels, participants’ accent is perceived as foreign.
Before cognate learning, participants perceived their accent in
French as ‘discrete’ as opposed to ‘heavy’ or non-existent. The
fact that participants did not find their accent heavy even
before training, while raters perceived a heavy foreign accent
following training indicates that L2 speakers and native-speaker
listeners may have different perceptions regarding accent, (Yi
et al., 2014). The reasons why this is so are difficult to tease
apart, andmay include motivation, awareness, expectancy related
factors. However, given that the average age of participants to
this study was 43 y/o, the results can be interpreted within
the context of the critical period hypothesis (e.g., Long, 1990;
Bongaerts et al., 1995; Birdsong, 1999; Singleton, 2003). Thus,
the capacity to discriminate novel sounds is limited to a critical
period, which ends between 6 and 12 months of age (Kuhl
et al., 2003; Houston et al., 2007), and after which learners
become less sensitive to differences between their productions
and native accent (Long, 1990; Bongaerts et al., 1995; Birdsong,
1999; Singleton, 2003). Lack of awareness leads to persistence
of foreign accent, regardless of high proficiency in naming, as
reflected in this study by equivalent RT and ER in naming L1 and
L2 Cognates.

The fMRI data showed significant activations in a number
of motor processing and control areas. Specifically, the contrast
(Cognate vs. Dido), showed a significant activation in the left
Middle occipital gyrus, the left Lingual gyrus, the left Inferior
frontal gyrus, the left Precentral gyrus, the left Inferior frontal
gyrus, and the left, the right Middle occipital gyrus, the right
Parahippocampal gyrus, and the right Cerebellar tonsil. These
brain areas have been reported to sustain cognate processing,
in previous work by our team, and others (De Bleser et al.,
2003; Abutalebi, 2008; Raboyeau et al., 2010; Ghazi-Saidi et al.,
2013; Marcotte and Ansaldo, 2014) and their role in motor
(i.e., premotor cortex and supplementary motor areas; Raboyeau
et al., 2010), attentional processing (i.e., anterior cingulate cortex,
caudate nucleus, prefrontal cortex; Abutalebi, 2008), and word
comprehension (i.e., anterior inferior temporal regions; De Bleser
et al., 2003), has been consistently documented in healthy adult
second language learners. Further, evidence from clinical data
emphasizes the role of these areas in various lexical, motor
and attentional processing. Interestingly, significant activations
in a similar set of areas have been reported in studies on
patients with FAS (Fridriksson et al., 2005; Poulin et al., 2007;
Katz et al., 2012; Moreno-Torres et al., 2013; Tomasino et al.,
2013), and damage to these areas in FAS patients (Kurowski
et al., 1996; Mariën et al., 2006, 2009; Gurd and Coleman,
2006; Scott et al., 2006; Kuschmann et al., 2012). Finally, in
a recent review, Carbary et al. (2000) conclude that FAS is
typically associated to damage in the left pre-central gyrus
and inferior frontal gyri, the basal ganglia the insula cortex,
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which are similar to the areas reported in the fMRI studies on
healthy participants, specifically focusing on the bilingual lexicon
through cognate processing (Carbary et al., 2000; Scott et al.,
2006; Ghazi-Saidi et al., 2013; Marcotte and Ansaldo, 2014). Our
results provide a supplementary source of evidence to the role of
these areas with healthy participants learning a second language
vocabulary.

As for the contrast (L2 vs. L1 Cognate Naming), it allowed
highlighting the specific feature distinguishing between L2 andL1
cognate naming, and this corresponded to a single significant
activation in the left insula. Thus, cognates share phonological
and semantic features with mother tongue, but they differ in
terms of prosody, intonation and articulation placement, all
of which are essential components of accent. Accordingly, the
significant activation in the insula reported here, specifically
reflects the accent component of L2 picture naming. In the
next section we discuss the specific role of the insula on accent
processing.

The Role of Insula in Accent Processing
Given its location in the brain, the role of insula in language
processing was mostly examined in lesion studies. With the
advancement of functional neuroimaging techniques, we have
now access to literature that is not more than a decade old
(Bamiou et al., 2003; Ackermann and Riecker, 2004; Menon and
Uddin, 2010; Sterzer and Kleinschmidt, 2010; Damasio et al.,
2013; Oh et al., 2014).

In line with Menon and Uddin (2010), the evidence reported
in the present study stresses on the role of insula detecting salient
events, specifically L2 accent patterns, which requires coupling
attention, working memory, and motor planning for L2 word
production. Moreover, in line with previous accounts on the
role of the insula in vocal track manipulation for articulation
and phonation (Ackermann and Riecker, 2004) and auditory
processing (Bamiou et al., 2003), the significant activation of
the insula observed in the present study can also be related to
adjustments of the vocal track with the purpose of optimizing
accent in L2.

From a broader cognitive perspective, Damasio et al. (2013),
attribute to the insula a role in higher order cognitive and
emotional processing, including subjective feelings from the
body, and processing uncertainty. In line with this view, we
believe that the activation of the insula in the context of persistent
foreign accent can be related to higher order processes (Moyer,
2013) involved the ability to recognize, comprehend and integrate
the segmental and suprasegmental levels of phonology with the
purpose of achieving optimal word production. The insula’s role
on higher order speech language processing can be related to its
highly connected network, with speech, language, and executive
function centers in the brain. (Oh et al., 2014), which facilitates
the integration of a large variety of cognitive processes, ranging
from motor to executive function that are put into play to
achieve native-like pronunciation, even when target words are L2
cognates.

The significant activation of the left insula in the context
of novel syllable processing has also been reported both with
healthy populations (Chee et al., 2004) and in cases of AOS

(Moser et al., 2009). Also with brain damaged populations,
the insula’s role on accent processing has been documented in
cases of FAS (Gurd and Coleman, 2006; Mariën and Verhoeven,
2007; Moreno-Torres et al., 2013; Tomasino et al., 2013), a
finding that has lead a number of authors to hypothesize on
the role of the insula in accent processing (Moonis et al.,
1996; Carbary et al., 2000; Ackermann et al., 2004; Gurd and
Coleman, 2006; Scott et al., 2006). The present study provides
direct evidence to this hypothesis with healthy second language
learners.

Moreover, the activation of the insula in the context of
L2lexical learning has been reported in previous work by our
team and others (De Bleser et al., 2003; Chee et al., 2004;
Abutalebi, 2008; Ghazi-Saidi et al., 2013; Marcotte and Ansaldo,
2014), and its activation has been found to be positively correlated
with decreased anterior cingulate and anterior frontal activation
(Chee et al., 2004) Thus, Chee et al. (2004) argue that the insula
plays a role in sensory-perceptual processing. Also, particularly
relevant to the present study, is the evidence of the insula’s
role on sub-vocal rehearsal of speech contrasts (Fiez et al.,
1996; Smith et al., 1998; Callan et al., 2003, 2004), a finding
that is in line with the DiVA Model (Guenther, 2006) which
highlights the role of the insula in the selection of speech sound
maps, thanks to its connection with the premotor and motor
cortices.

Finally, from a more general cognitive perspective, the
significant activation of the insula has also related to self-
consciousness in the sense of agency, namely, experiencing
oneself as being the cause of an action (Farrer and Frith,
2002). In the context of this study, the insula may as well
be supporting awareness and regulation of accent features
in L2 cognate production. Moreover, particularly involved in
cognitive control (e.g., Menon and Uddin, 2010; Nelson et al.,
2010; Tops and Boksem, 2011), the insula has been shown
to be sensitive to salient events (Menon and Uddin, 2010);
this finding together with its strong connectivity to the motor
cortex (Ackermann and Riecker, 2004), argue in favor of a
particularly important role of the insula when trying to attain
native-like accent. The sensitivity to distinct accent features
coupled with access to motor programming structures allows for
feedback and feed-forward mechanisms at the core of L2 accent
production.

CONCLUSION

The results of the present study show that the production of a
native-like accent remains challenging and cognitively effortful,
even when L2 words share phonology and semantics with
L1 equivalents, and despite the fact that vocabulary learning
is consolidated. In line with clinical reports on FAS, and
functional neuroimaging studies on accent production in healthy
populations, the important role of the insula in accent processing
may be related to a number of high order and highly accent
specific processing features ranging from self awareness and
monitoring, to vocal track control, and sub-vocal rehearsal of
phonemic sequences.
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The evidence provided by the present study is specific, as for
the first the first time the role of the insula in accent processing is
confirmed among healthy adults tested on a type of words whose
only difference across mother tongue and second language is at
the level of accent, namely cognates.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2015.00587
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