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Background: Dorsal (DLPFC) and ventral (VLPFC) subregions in lateral prefrontal cortex
play distinct roles in episodic memory, and both are implicated in schizophrenia. We test
the hypothesis that schizophrenia differentially impairs DLPFC versus VLPFC control of
episodic encoding.
Methods: Cognitive control was manipulated by requiring participants to encode
targets and avoid encoding non-targets based upon stimulus properties of test stimuli.
The more automatic encoding response (target versus non-target) was predicted
to engage VLPFC in both groups. Conversely, having to overcome the prepotent
encoding response (non-targets versus targets) was predicted to produce greater
DLPFC activation in controls than in patients. Encoding occurred during event-related
fMRI in a sample of 21 individuals with schizophrenia and 30 healthy participants.
Scanning was followed by recognition testing outside the scanner.
Results: Patients were less successful differentially remembering target versus non-
target stimuli, and retrieval difficulties correlated with more severe disorganized
symptoms. As predicted, the target versus non-target contrast activated the VLPFC
and correlated with retrieval success in both groups. Conversely, the non-target versus
target contrast produced greater DLPFC activation in controls than in patients, and
DLPFC activation correlated with performance only in controls.
Conclusion: Individuals with schizophrenia can successfully engage the VLPFC to
provide control over semantic encoding of individual items, but are specifically impaired
at engaging the DLPFC to main context for task-appropriate encoding and thereby
generate improved memory for target versus non-target items. This extends previous
cognitive control models based on response selection tasks to the memory domain.
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INTRODUCTION

Deficits in lateral prefrontal cortex (PFC) control of encoding
and retrieval play a prominent role in episodic learning and
memory impairments in schizophrenia (SZ; Achim and Lepage,
2005; Ranganath et al., 2008). Prefrontal dysfunction was first
suspected on list-learning tasks such as the California Verbal
Learning test when individuals with SZ failed to generate
semantic organizational strategies to facilitate encoding and
retrieval (Iddon et al., 1998; Stone et al., 1998; Roofeh et al., 2006),
but benefitted when strategies were provided (McClain, 1983;
Ragland et al., 2003; Bonner-Jackson et al., 2005). Functional
neuroimaging further implicated the PFC. For example, an
fMRI meta-analysis (Ragland et al., 2009), found that the most
consistent reductions in task-related activation in schizophrenia
during encoding and retrieval were in the lateral PFC. Moreover,
PFC dysfunction and associated memory deficits were reduced
when cognitive control demands were minimized by providing
incidental encoding strategies (Bonner-Jackson et al., 2005;
Ragland et al., 2005, 2009). However, the lateral prefrontal
cortex is composed of functionally and anatomically distinct sub-
regions (D’Esposito et al., 1999; Petrides, 2000; Petrides et al.,
2002), and the regional specificity of these episodic memory
related PFC deficits in SZ is not well established. Establishing this
regional specificity could help to alleviate memory dysfunction
by identifying functional networks that could be bootstrapped
through cognitive training, as well as pinpointing dysfunctional
networks that can be targeted for development of new treatments.

Anatomical studies in humans and non-human primates
support a dorso-ventral division within lateral PFC, with the
dorsolateral subregion (DLPFC) forming indirect reciprocal
connections with hippocampus through retrosplenial and
parahippocampal cortices (Goldman-Rakic et al., 1984; Morris
et al., 1999; Petrides and Pandya, 1999), and the ventrolateral
subregion (VLPFC) establishing connections via perirhinal
cortex (Petrides and Pandya, 2002). fMRI research also
supports functional dissociations within memory paradigms,
with DLPFC activation associated with organizational processing
and manipulation and monitoring of goal-relevant relational
information, and VLPFC activation associated with selection
and maintenance of goal-relevant item information (Blumenfeld
et al., 2013). Therefore, the purpose of this study was to
interrogate this dorsal/ventral subdivision by utilizing an fMRI
episodic memory paradigm that manipulates cognitive control
demands during word list learning.

Cognitive control manipulations were based upon the guided
activation model (Miller and Cohen, 2001), which states that
the DLPFC represents and maintains context for responding –
or goals, which, in turn, biases processing in posterior and pre-
motor areas to support task appropriate responding. To date,
this model has been examined in SZ using response selection
tasks such as the Stroop (Perlstein et al., 1998; Barch et al.,
2004) and AX-CPT (Barch et al., 2001; MacDonald and Carter,
2003), which found specific impairments in SZ that were not due
medication (Braver et al., 2001; MacDonald et al., 2005), were
linked to reduced DLPFC activation (MacDonald and Carter,
2003) and fronto-parietal connectivity (Yoon et al., 2008), and

associated with global functioning and severity of disorganized
symptoms (Barch et al., 2003; Yoon et al., 2008). In the current
study, we translated these response selection paradigms into the
episodic memory domain through development of the Context
Maintenance Encoding Task (CMET).

During the CMET, participants encode words during two
tasks. During the fixed rule task, participants view a list of
words in which the color of the words and a surrounding
rectangular frame is identical (Figure 1), and make a two-
button semantic “living”/“non-living” response for every word
and try to remember it for a subsequent recognition task. The
fixed rule task was designed as a baseline task in which no
group differences are predicted, given evidence that providing
a semantic encoding task reduces group differences in word
recognition and normalizes VLPFC function (Ragland et al.,
2003, 2005; Bonner-Jackson et al., 2005). During the variable rule
task, the color of the word and surrounding frame is identical
on some trials (targets) and different on other trials (non-
targets). Participants are told to remember the word and make
a “living”/“non-living” response only if the word is a target. If the
word is a non-target, they are instructed not to try to remember
the word and use their other hand to make a “skip” response,
as their memory for that item will not be tested. Participants,
however, are tested on all words from both conditions.

In this variable rule design, contrasting non-targets minus
targets is expected to produce increased DLPFC activation in
healthy controls (HC), as increased cognitive control is required
to overcome the prepotent response to encode test stimuli. This
prepotent encoding response is created because the majority of
trials across conditions (67%) include target items. As in the
fixed rule condition, the contrast of target minus non-target
trials is expected to reveal increased VLPFC activation because
of greater semantic encoding demands for target versus non-
target items. Performance on the variable rule task is predicted
to show a group by condition interaction, reflecting less selective
encoding of target versus non-target stimuli in the patient group.

FIGURE 1 | Illustration of two encoding conditions: (A) Fixed Rule –
participants make living/non-living judgment and try to remember all
items, (B) Variable Rule – when color of frame and word match (target
trial) participants make semantic judgment and try to remember the
items, if colors do not match (non-target trial) participants skip word
and do not try to remember.
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During fMRI, patient impairments are predicted for contrasts
emphasizing DLPFC versus VLPFC control.

To date, we are not aware of any previous neuroimaging
studies that have examined processing of target versus non-target
information during an episodic encoding task in patients with SZ.
However, there are a number of behavioral studies that examined
the interaction between executive control and episodic memory
in SZ utilizing a directed forgetting (DF) paradigm (Johnson,
1994; MacLeod, 1998). In the common variant of the DF task,
participants are presented with a list of items to encode, and
after each item, a cue appears to indicate whether that item is to
be remembered (TBR) or to be forgotten (TBF). This produces
a DF effect in healthy volunteers (i.e., better memory for TBR
than TBF) that is reduced in patients with temporal lobe seizure
disorders (Fleck et al., 1999) and right frontal lesions (Conway
and Fthenaki, 2003). Although encoding and retrieval methods
varied, all three previous SZ studies found a group by cue type
interaction, with a reduced DF effect in patients versus controls
(Sonntag et al., 2003; Menon et al., 2004; Müller et al., 2005). This
is the same performance interaction that we expect in the current
study for the variable rule task.

MATERIALS AND METHODS

Participants
Data were acquired on 28 individuals with SZ and 30 HC.
Data were excluded for one HC and one SZ with excessive
movement (i.e., more than 3 mm), and five SZ and two HC
with below chance task performance, leaving a final sample of 21
SZ and 30 HC. Individuals were matched at the group level for
age, gender, handedness, and parental education, but participant
education was lower in the patient sample (Table 1). Illness onset
often disrupts educational attainment and we, therefore, followed
recommended procedures (Resnick, 1992) of matching groups
on parental rather than participant education. There were no
differences in age, gender distribution, or handedness between
individuals with SZ who were and were not included in data
analysis. The study was approved by the institutional review

board of the University of California at Davis and informed
consent forms were signed by all participants.

The Structured Clinical Interview for DSM-IV-TR (SCID-
I) confirmed the diagnosis of SZ, and verified that HC
were free of lifetime history of Axis I disorder. The SCID-
I was conducted by Masters or Doctoral level clinicians
and confirmed by consensus conference. Symptoms were
measured using the Scale for the Assessment of Negative
Symptoms (SANS; Andreasen, 1983), Scale for the Assessment
of Positive Symptoms (SAPS; Andreasen, 1984), and Brief
Psychiatric Rating Scale (BPRS; Ventura et al., 1993). Following
previous work (Barch et al., 2003), positive (POS), negative
(NEG), and disorganization (DISORG) symptom dimensions
were computed from the SANS, SAPS, and BPRS. The
Global Assessment of Functioning (GAF; American Psychiatric
Association, 1994) estimated overall psychological, social, and
occupational functioning. Patients were early in their illness
(mean ± SD = 5.2 ± 2.8 years since illness onset) and
clinically stable. All but one patient was receiving medication
(1 typical, 17 atypical, 2 anxiolytic). Exclusion criteria were:
WASI IQ < 70, drug or alcohol abuse or dependence in the
previous 3 months (confirmed by urinalysis), major medical
or neurological illness, significant head trauma, or any known
MRI contraindication. Data collection began after participants
provided written informed consent following Institutional
Review Board approval.

Stimuli and Design
Stimuli consisted of 600 words from the MRC Psycholinguistic
Database1 (Coltheart and Evans, 1981). All stimuli were nouns,
averaging six letters long (range 3–13), with above average
imageability (mean = 557; range 339–659) and concreteness
(mean = 563; range 381–654). Three hundred and sixty words
were randomly assigned to encoding and the remaining 240
served as foils for recognition testing. Encoding was performed
during MRI and recognition testing was administered after
scanning was complete.

1http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm

TABLE 1 | Participant demographics.

Healthy control group Patients with schizophrenia

(n = 30) (n = 21)

Mean SD Mean SD p-value

Age (years) 23.9 5.2 25.3 8.1 ns

Gender (% male) 80.0 76.2 ns

Handedness (% right) 90.0 85.7 ns

Education (years) 15.1 2.6 13.1 10.0 <0.05

Parental Education (years) 14.8 2.4 15.6 2.6 ns

SANS (total) 39.1 16.8

SAPS (total) 14.9 17.1

BPRS (total) 40.6 8.7

SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms; BPRS, Brief Psychiatric Rating Scale; SD, standard
deviation; ns, no significant group difference at p < 0.05, two-tailed.
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During encoding, stimuli were visually presented in the
middle of a black background for 2 s, with a variable inter-
stimulus-interval (ISI) averaging 4 s (range 2–14 s.) during
which a fixation cross was present. Stimuli were presented in a
colored font (white, orange or green) surrounded by a rectangular
frame of one of the same three colors (Figure 1). Encoding was
administered over six 4-min fMRI runs of three blocks each.
Each run alternated one fixed rule block (20 trials) with two
variable rule blocks (10 target, 10 non-target trials), and the
order of targets and non-targets were pseudo-randomized within
the variable rule blocks. The order of runs across subjects was
counter-balanced. Encoding conditions were as follows:

Fixed Rule
During this task (120 trials), the color of the word and
surrounding frame was always white, and participants were
instructed to use their right hand to make a two-button
“living/non-living” judgment for each word and try to remember
it because their memory would be tested. Participants were
instructed to work as quickly and accurately as possible and guess
if unsure.

Variable Rule
This task consisted of two trial-types; target and non-target.
During target trials (120 trials), the color of the word and
surrounding frame was identical (both green or both orange)
and participants were instructed to make a “living/non-living”
judgment and to remember the word because their memory
would be tested. On non-target trials (120 trials), the color of
the word and surrounding frame did not match and participants
were instructed to use their opposite hand to make a one-button
“skip” response and avoid making a living/non-living judgment
or trying to remember the word because their memory would not
be tested.

Following scanning, participants were de-briefed to explain
that memory for all words (i.e., target and non-target) would
be tested. The recognition task consisted of all 360 words
seen during encoding (“old”) and 240 “new” unstudied foils.
Participants were instructed to indicate whether each word was
“old” (left hand response) or “new” (right hand response)” and
indicate level of confidence with a three-button response (i.e.,
3 = high, 2=medium, 1= low). Participants were given practice
tasks, and were instructed on the importance of using the full
range of confidence ratings. Recognition testing was self-paced.

MRI Acquisition
Data were obtained at the UC Davis Imaging Research Center
on a 3-T Siemens Tim Trio scanner (Erlangen, Germany) with
a Siemens 8 channel phased array coil. After acquiring a rapid
3-plane localizer, trans-axial T2 weighted images were acquired
with spatial resolution of 0.7 mm × 0.4 mm × 3.4 mm.
A reference echo-planar point spread function sequence with
spatial resolution of 3.4 mm × 3.4 mm × 3.4 mm was used for
motion and distortion correction of the subsequent functional
images. Functional images were acquired with blood oxygenation
level dependent imaging (BOLD) using a 34-slice whole-brain,
single-shot gradient-echo echo-planar sequence (TR 2000 ms, TE

25 ms, flip angle 90◦, FOV 220 mm × 220 mm, slice thickness
3.4 mm, no gap). The sequence of slice acquisition was inter-
leaved (odd then even, bottom to top).

Data Processing and Analysis
Behavioral Data
To assess engagement during encoding, living/non-living
responses and reaction times were recorded and the number
of non-responses and median reaction times (in ms.) were
calculated. Because living/non-living judgments were often
equivocal (e.g., “apple”) and because participants were engaged
in semantic decision making regardless of response, response
accuracy was not calculated. Number of non-responses and
median reaction times were examined separately for the fixed
rule and variable rule tasks using repeated-measures Analysis of
Variance (ANOVA) to determine effects of group (SZ, HC) and,
if applicable, trial type (target, non-target), as well as any group
by trial type interactions.

For each task, recognition was examined for overall
recognition accuracy (d′ = normalized hit rate – normalized false
alarm rate), and for recollection (R) and familiarity (F) estimates
by entering the 6-point confidence ratings into a receiver
operator characteristic (ROC) analysis (Yonelinas, 1994). The
three performance variables (d′, R, F) were entered into separate
repeated-measures ANOVAs to determine effects of group and,
if applicable, trial type and group by trial type interactions. Post
hoc univarate ANOVAs were used to examine any higher-level
interactions. Because not all variables were normally distributed,
Spearman’s rank order correlation coefficients were used to
measure associations between recognition performance and GAF
and POS, NEG and DISORG symptoms. A two-tailed alpha level
of 0.05 was used for significance testing, and all analyses were
performed with SAS Version 9.2 (SAS Institute Inc., Cary, NC,
USA).

MRI Data
Data were preprocessed using Statistical Parametric mapping
(SPM8) including slice time correction, realignment to the
median image, normalization to template space, and spatial
smoothing (8 mm FWHM). Subject-level fMRI analysis was
performed using the general linear model (GLM) in VoxBo2

1.8. BOLD responses during fixed and variable rule encoding
conditions were modeled by convolving vectors of predicted
neural activity corresponding to each trial type with a canonical
hemodynamic response function. Separate covariates were
included to model response and non-response trials, but only
response trials were examined in second-level analyses. Target
and non-target trials were alsomodeled separately for the variable
rule condition. Nuisance covariates were orthogonalized to the
design matrix, and included global signal changes, trial-specific
shifts in baseline signal between scans, motion spikes, and
an intercept. The design matrix also included a time-domain
representation of low frequency (1/f) power and filters to remove
frequencies >0.25 Hz and <0.02 Hz.

2http://www.voxbo.org
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Parameter estimates from first-level GLM analyses for variable
rule trials were entered into second-level one-sample and two-
sample t-tests in SPM8. For the Fixed Rule condition there was
one contrast (correct minus incorrect trials), and for the Variable
Rule condition, there were two contrasts of interest (target minus
non-target, and non-target minus target). Because hypotheses
concerned the PFC, search space was restricted with a frontal
lobe mask from the WFU_PickAtlas (Maldjian et al., 2003), and
a p < 0.05 cluster-level correction for multiple comparisons
was established with AlphaSim using a voxel-wise threshold of
p < 0.005 and extent threshold of 17 voxels. This PFC mask
combined Brodmann areas (BA) comprising DLPFC (BA 9,
46) and VLPFC (BA 44, 45, 47) cortex. Mean beta values for
functional regions of interest (ROIs) showing above-threshold
activity across all participants in the PFC were calculated and
used to test for effects of group, encoding condition, and group by
condition interactions using repeated-measures ANOVA. Robust
linear regression (Yohai, 1987) was used to test the ability of
task-related changes in these PFC beta values to predict task-
related changes in recognition performance. Fisher’s z test was
used to test for any group differences in regression results. In SZ,
Spearman’s rank order correlations were also used to examine
relationships between task-related changes in PFC beta values
and GAF and POS, NEG, and DISORG symptoms.

RESULTS

Behavioral Performance
Encoding
Participants responded on over 98% of trials, with no group
difference in response rates for the fixed rule task [F(1,48) = 1.67,
p = 0.20], or the variable rule task [F(1,48) = 0.001, p = 0.95].
On the variable rule task, there was no effect of trial type
[F(1,48) = 0.80, p = 0.37] or any trial type interaction for
response rates [F(1,48) = 0.43, p = 0.51]. Evaluation of median
reaction times revealed that people with SC were, on average,
203 ms slower on both the fixed rule task [F(1,48) = 11.96,
p < 0.01] and the variable rule task [F(1,48) = 9.24,
p < 0.01]. Reaction times were also longer for target than
non-target stimuli on the variable rule task for both groups
[F(1,48) = 218.91, p < 0.0001], with no group by trial type
interaction [F(1,48) = 3.11, p = 0.08]. Thus, although people
with SZ had slower response times, they did not differ in response
rates, and non-responses were low in both groups, reflecting full
task engagement.

Recognition
Performance on the recognition task was evaluated for overall
accuracy (d′), and for familiarity (F) and recollection (R)
estimates (Table 2), using separate one-way (fixed rule) or two-
way (variable rule) ANOVAs. For the fixed rule task, there
were no differences between groups in overall recognition
accuracy [F(1,49) = 1.89, p = 0.17; Cohen’s d = 0.006]. This is
consistent with previous studies demonstrating relatively intact
item recognition in individuals with SZ when they are provided
with a semantic encoding strategy (Bonner-Jackson et al., 2005;

TABLE 2 | Recognition task performance for participants in the control
group and for schizophrenia patients.

Healthy
control group

(n = 30)

Patients with
schizophrenia

(n = 21)

Mean SD Mean SD p-value

Fixed rule

Accuracy (d′ ) 1.44 0.51 1.24 0.48 ns

Familiarity (F) 0.93 0.54 0.83 0.38 ns

Recollection (R) 0.38 0.21 0.32 0.22 ns

Variable rule target

Accuracy (d′ ) 1.22 0.42 1.05 0.43 ns

Familiarity (F) 0.87 0.38 0.60 0.36 <0.05

Recollection (R) 0.29 0.19 0.31 0.18 ns

Variable rule non-target

Accuracy (d′ ) 0.60 0.30 0.58 0.28 ns

Familiarity (F) 0.39 0.24 0.27 0.21 ns

Recollection (R) 0.14 0.11 0.16 0.10 ns

Standard deviations are presented in the parentheses. SD, standard deviation; ns,
no significant group difference at p < 0.05, two-tailed.

Ragland et al., 2005). For the variable rule task, there was a group
by trial type interaction [F(1,49) = 4.07, p < 0.05] as well as a
main effect of trial type [F(1,49) = 203.85, p < 0.0001]. As can be
seen in Figure 2A, this interaction was due to a greater difference
in recognition memory for target than for non-target items in
HC than in people with SZ (Cohen’s d = 0.58), despite a lack of
group differences for either target [F(1,49) = 1.98, p = 0.16] or
non-target items [F(1,49) = 0.04, p = 0.85].

Receiver operator characteristic analysis yielded and good
model fit in both groups when R and F were estimated (sum of
square of errors = 0.001). For the fixed rule task, there were no
differences between groups [F(1,49) = 0.58, p = 0.45; Cohen’s
d = 0.22] in familiarity performance. The variable rule task
showed a group by trial type interaction [F(1,49)= 4.04, p< 0.05]
and main effects of group [F(1,49) = 6.21, p < 0.05] and trial
type [F(1,49) = 107.64, p < 0.0001] on familiarity performance.

FIGURE 2 | Mean (±SEM) performance for target and non-target items
during Variable Rule condition; (A) overall accuracy performance,
(B) familiarity based retrieval. No group performance differences were
observed for Fixed Rule condition or for recollection based retrieval.
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This is shown in Figure 2B, illustrating that participants with SZ
were again less successful than HC in using the rule to constrain
memory for target versus non-target items (Cohen’s d = 0.74).
This interaction reflected a significant group difference for target
items [F(1,49) = 6.76, p < 0.05], but only a trend-level group
difference for non-target items [F(1,49) = 3.28, p = 0.08].

There were no recollection differences between groups for
either the fixed rule task [F(1,49) = 1.13, p = 0.29; Cohen’s
d = 0.29], or for the variable rule task for either target
[F(1,49) = 0.14, p = 0.70; Cohen’s d = 0.11] or non-target
items [F(1,49) = 0.37, p = 0.55; Cohen’s d = 0.19]. Recollection
was, therefore, not included in subsequent analyses. In sum,
examination of retrieval revealed that individuals with SZ
had difficulty using the variable rule to promote goal-relevant
memory for target versus non-target stimuli that was apparent
in their overall accuracy and familiarity-based rather than
recollection-based retrieval.

Clinical Correlations
As seen inTable 3, recognition accuracy was negatively correlated
with the severity of disorganized symptoms in people with SZ.
Individuals with better performance were less disorganized. No
correlations were obtained with positive or negative symptoms
or with estimates of global functioning (GAF).

fMRI Results
Images showed little motion across x, y and z dimensions
(mean = 1.36 ± 0.94 mm translational and 0.02 ± 0.02 degrees
of rotational motion), and no differences between groups in
translational [F(1,49) = 2.5, p = 0.12] or rotational movement
[F(1,49) = 1.4, p = 0.24].

As predicted, when the fixed rule task was examined (correct
minus incorrect trials), there were no significant differences in
either frontal lobe region between individuals with and without
SZ (Supplementary Figure S1). Therefore, remaining analyses
focus on variable rule task.

Results for the variable rule task are illustrated in Figures 3
and 4. As can be seen in Figure 3A, both groups showed left
VLPFC activation in response to increased semantic encoding
demands during target versus non-target trials. However, when
increased cognitive control was needed to overcome the tendency
to encode items during non-target versus target trials, there were

predicted left hemispheric increases in DLPFC activation in the
HC but not in individuals with SZ (Figure 4A).

Group Differences
Examination of left hemisphere VLPFC and DLPFC beta values
generated by the contrasts of target and non-target conditions
revealed a three-way interaction between trial type, region of
interest (ROI), and group [F(1,49) = 12.88, p < 0.001]. There
were also main effects of trial type [F(1,49) = 14.21, p < 0.001]
and ROI [F(1,49) = 74.01, p < 0.0001], and an interaction
between trial type and ROI [F(1,49) = 187.81, p < 0.0001].
To better understand these interactions VLPFC and DLPFC
regions were examined separately. For the VLPFC, there were
main effects of trial type [F(1,49) = 84.36, p < 0.0001], but
no differences between groups [F(1,49) = 0.04, p = 0.84] or
any group by trial type interaction [F(1,49) = 0.13, p = 0.72].
As seen in Figure 3B, VLPFC activity increased for target
versus non-target trials equally in both groups. However, when
DLPFC was examined, there was a group by trial type interaction
[F(1,49) = 14.75, p < 0.001] and a main effect of trial type
[F(1,49) = 20.04, p < 0.0001]. As can be seen in Figure 4B, this
interaction was due to a greater increase in DLPFC activity for
non-target versus target trials in HC than in individuals with SZ.

fMRI Relationships with Performance and Clinical
Symptoms
We first examined the ability of target minus non-target activity
in the left VLPFC to predict consequent changes in recognition
performance. As seen in Figure 5A, increased VLPFC activity
predicted increased familiarity for target versus non-target trials
in HC (slope = 70.6± 23.7, p< 0.005) and in individuals with SZ
(slope = 72.2 ± 27.1, p < 0.01), with no group difference in the
strength of this fMRI/performance relationship (Fisher’s z = 0.22,
p = 0.99). Thus, regardless of group membership, participants
with greater VLPFC increases between target and non-target
trials also showed greater recognition increases between these
two trial types. We next tested whether increases in left DLPFC
activity from non-target to target trials predicted increases in
familiarity between non-targets and targets. As seen in Figure 5B,
modulation of DLPFC activity predicted differences in task
familiarity performance in HC (slope = 76.6 ± 34.1, p < 0.05),
but not in people with SZ (slope = –22.6 ± 38.6, p = 0.66).

TABLE 3 | Spearman correlations between clinical dimensions and recognition accuracy.

Global assessment of functioning Positive Disorganization Negative

Variable rule target d′

r-value 0.24 –0.01 –0.43 –0.15

p-value ns ns <0.05 ns

Variable rule non-target d′

r-value 0.29 –0.23 –0.61 –0.05

p-value ns ns <0.005 ns

Fixed rule d′

r-value 0.22 –0.13 –0.47 0.06

p-value ns ns <0.05 ns

ns, not significant.
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FIGURE 3 | (A) Surface rendering of left hemisphere activation in the
ventrolateral prefrontal cortex (VLPFC) during response to target versus
non-target items during the variable rule condition. Above-threshold activity
(p < 0.05, cluster corrected) is indicated in red for healthy controls (HC) and
green for patients with schizophrenia. Areas of overlap between groups are
indicated in yellow. (B) Corresponding regression coefficients (beta values)
showing increased VLPFC activity for target versus non-target stimuli in
patients and controls, with no group difference in VLPFC activation.

FIGURE 4 | (A) Surface rendering of left hemisphere activation in the
dorsolateral prefrontal cortex (DLPFC) during response to non-target versus
target items during the variable rule condition. Above-threshold activity
(p < 0.05, cluster corrected) is indicated in red for HC. No above-threshold
activity was observed for the patient sample. (B) Corresponding regression
coefficients (beta values) showing greater DLPFC activation in HC than in
patients with schizophrenia for processing of non-target versus target items.

When the strength of these correlations were tested, there was a
significant difference between groups (Fisher’s z= 1.64, p< 0.05).
A similar, but less robust, pattern of regression results were
observed when changes in VLPFC and DLPFC activity were used
to predict changes in overall recognition accuracy (d′).

Finally, Spearman correlations were used to test if changes in
left VLPFC or DLPFC activity were associated with severity of
positive, negative, or disorganized symptom dimensions. This did
not reveal any significant correlations in individuals with SZ.

DISCUSSION

This study assessed regional specificity of lateral PFC dysfunction
along the dorso-ventral axis in individuals with SZ during
encoding of episodic memories. As in previous word recognition
studies (Bonner-Jackson et al., 2005; Ragland et al., 2005), when
SZ participants were provided with semantic encoding strategies
(make a “living/non-living” judgment), and cognitive control
demands were low (i.e., fixed rule task), item recognition was
unimpaired, with no group differences in overall accuracy (d′),
familiarity (F), or recollection (R). In contrast, when cognitive

FIGURE 5 | Regression analysis predicting changes in Familiarity
performance from changes in BOLD fMRI in left hemisphere prefrontal
ROIs: (A) Greater VLPFC activity predicted better task performance for
target minus non-target items in both HC and patients with
schizophrenia, (B) Greater DLPFC activity predicted better task
performance for non-target minus target item in HC. Patients with
schizophrenia showed a negative relationship between DLPFC activation and
task performance that was not statistically significant.

control demands were increased by requiring participants to
encode only goal-relevant stimuli (i.e., targets), and overcome
pre-potent tendencies to encode test stimuli when presented with
non-targets, individuals with SZ were less successful than HC at
selective encoding, and this was true both for d′ and F estimates.
Moreover, performance success on this variable rule task was
associated with less severe disorganization, a similar finding to
previous cognitive control studies utilizing response selection
tasks such as the AX-CPT (Blanchard and Neale, 1994; Barch
et al., 2003; Yoon et al., 2008). These results demonstrate that
SZ does not involve generalized, non-specific impairments in
episodic memory but, instead, specific deficits when cognitive
control demands are high – analogous to findings in other
cognitive domains (Lesh et al., 2011).

fMRI results paralleled behavioral findings. During the
variable rule task, whether or not individuals with SZ showed
PFC impairments depended upon the specific cognitive control
demand and brain region being tested. When lower-level
semantic processing andmaintenance demands were emphasized
(i.e., target versus non-target contrast), both groups successfully
activated the left VLPFC, and VLPFC activation was positively
correlated with retrieval success in SZ and HC. Conversely, when
higher-level DLPFC control was required to overcome pre-potent
encoding responses (i.e., non-target versus target contrast) and
guide encoding toward task-appropriate responses (i.e., encode
targets), resulting left DLPFC activation was reduced in SZ, and
DLPFC activation correlated with better retrieval success only
in HC. This lack of correlation between DLPFC activation and
performance in SZ may be counter-intuitive as one might expect
the DLPFC to contribute to performance even if the magnitude

Frontiers in Human Neuroscience | www.frontiersin.org 7 November 2015 | Volume 9 | Article 604

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Ragland et al. Prefrontal control of episodic memory in schizophrenia

of activation was attenuated. However, a recent electrophysiology
study of working memory (Leonard et al., 2013) found a similar
mismatch in performance correlations between HC and SZ,
suggesting that the two groups were employing different neural
mechanisms to accomplish task performance.

To our knowledge, this is the first fMRI study to dissociate
performance-related patient deficits in DLPFC versus VLPFC
function during episodic memory encoding. However, relatively
preserved VLPFC and disrupted DLPFC function in people with
SZ was observed in previous working memory and response
selection tasks at both the individual study level (e.g., Barch et al.,
2001; Perlstein et al., 2001; MacDonald et al., 2005), and at the
meta-analytic level (Glahn et al., 2005; Minzenberg et al., 2009),
supporting the hypothesis that anatomically specific dysfunction
of the DLPFC may be a central deficit underlying dysfunction
across a range of cognitive domains in schizophrenia (Lesh et al.,
2011).

In summary, these results suggest that individuals with SZ
have difficulties with episodic encoding of word lists when
DLPFC mediated cognitive control processes are required
to flexibly adjust encoding strategies to match current
environmental demands. In contrast, when contextual demands
are less variable, and semantic encoding instructions are
provided, people with SZ are as successful as HC at engaging
VLPFC control processes to promote episodic memory for item
information. This VLPFC activity may play a compensatory role
in episodic memory in schizophrenia, as has been suggested
in several functional connectivity studies finding increased
VLPFC and decreased DLPFC connectivity with the medial
temporal lobe in patient samples (Meyer-Lindenberg et al.,
2005; Wolf et al., 2007). However, given the variable nature
of our learning environments, new treatments designed to
facilitate DLPFC control processes will be needed to fully restore
episodic memory in schizophrenia. It is also important to
note that the current item-specific memory paradigm does not
address the more severe relational memory deficits experienced

by individuals with schizophrenia (Heckers, 2001; Preston
et al., 2005; Lepage et al., 2006; Hannula et al., 2010; Williams
et al., 2010), These relational memory deficits remain relatively
unresponsive to current treatments and deserving of further
study.
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