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The Implicit Association Test (IAT) is a reaction time based categorization task that

measures the differential associative strength between bipolar targets and evaluative

attribute concepts as an approach to indexing implicit beliefs or biases. An open question

exists as to what exactly the IAT measures, and here EEG (Electroencephalography)

has been used to investigate the time course of ERPs (Event-related Potential) indices

and implicated brain regions in the IAT. IAT-EEG research identifies a number of early

(250–450ms) negative ERPs indexing early-(pre-response) processing stages of the

IAT. ERP activity in this time range is known to index processes related to cognitive

control and semantic processing. A central focus of these efforts has been to use

IAT-ERPs to delineate the implicit and explicit factors contributing tomeasured IAT effects.

Increasing evidence indicates that cognitive control (and related top-down modulation

of attention/perceptual processing) may be components in the effective measurement

of IAT effects, as factors such as physical setting or task instruction can change an

IAT measurement. In this study we further implicate the role of proactive cognitive

control and top-down modulation of attention/perceptual processing in the IAT-EEG.

We find statistically significant relationships between D-score (a reaction-time based

measure of the IAT-effect) and early ERP-time windows, indicating where more rapid

word categorizations driving the IAT effect are present, they are at least partly explainable

by neural activity not significantly correlated with the IAT measurement itself. Using

LORETA, we identify a number of brain regions driving these ERP-IAT relationships

notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in

time regions corresponding to the N2- and P3-related activity. The identified brain regions

involved with reduced reaction times on congruent blocks coincide with those of previous

studies.

Keywords: event-related potentials, EEG, implicit association test, LORETA, brain regions, inhibition, word

association, N200

1. INTRODUCTION

The implicit-association test (IAT) is a measure of implicit bias based on the principle that if
a congruent association between two concepts (e.g., target and stereotypical attribute) is readily
accepted as accurate by a decision maker (e.g., disease → negative), then reaction time (RT) to
categorizing such associations as equivalent is very rapid. In contrast, if an incongruent association
between two concepts (e.g., target and counter-stereotypical attribute) is not readily accepted as
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accurate (e.g., disease → positive), then RT is comparatively
slower due to inhibitory processes required to override an
automatic tendency to associate congruent concepts. Response
bias toward concept-pairings (e.g., fast responding to congruent;
slow responding to incongruent) is not only influenced
by knowledge of concrete characteristics (e.g., perceptual,
functional) of bipolar concepts, but also by how we encode
emotional valence in these concept associations though this is
not always apparent in explicit self-report attitude measures
(Greenwald and Banaji, 1995).

The IAT effect or measure of implicit bias is based on the
standardized difference (D) between the mean RT to congruent
and to incongruent pairings. A positive D-score indicates that
individuals are either slow to respond to incongruent pairings,
fast to respond to congruent pairings or a combination of both
(Forbes et al., 2012). A decision maker’s D-score can be used
to measure a range of implicit beliefs reflecting social norms
(Greenwald et al., 1998; Fazio and Olson, 2007), and these
measures have proven effective in predicting later decision-
making (Glasman and Albarracin, 2006).

Opponents of the IAT argue that issues like the low degree
to which implicit IAT measures fail to corroborate explicit
measures such as questionnaires, warrants strong consideration
of what exactly the IAT is measuring (De Houwer et al.,
2009). This line of evidence has been used to establish
that the IAT reflects automatic beliefs through activation of
stereotyped associations which are often dissociated from self-
reported explicit beliefs (Greenwald et al., 1998), especially for
socially sensitive topics due to factors such as social desirability
(Hofmann et al., 2005). Despite reported dissociation between
implicit and explicit beliefs, IAT measures show moderate
correlation with explicit measures (Hofmann et al., 2005) and
are known to be sensitive to a number of external influences
(Boysen et al., 2006). Such studies ultimately indicate that the IAT
captures meaningful information but its use must be considered
with care.

An implicit measure of personal connectedness to nature
based on latency to bipolar mappings of targets (“Me,” “Other”)
and attributes (“Nature,” “Built”) is known as the n-IAT.
Mean RT to congruent (e.g., “Nature-me”/“Built-Other”) and
incongruent (e.g., “Built-Me”/“Nature-Other”) mappings are
associated with emotional concern (e.g., anxiety) about the
environment (Schultz et al., 2004). Bruni and Schultz (2010)
reported strong associations in the n-IAT with natural relative
to built environments among a sample of environmentalists.
Despite observing similar high scores on self-reported measures
of concern for the environment, significant correlations with
explicit measures were restricted to a participant pool of college
students and not environmental activists or children whom had
higher n-IAT scores. Bruni et al. (2012) show the n-IAT is
robust to framing effects and valence of the stimuli. In the n-
IAT there are 4 categories of words used (“Me,” “Other,” “Nature,”
“Built”). In compatible (congruent) trial blocks a participant
is instructed to indicate by button press to which of the two
category pairings (“Nature-Me” or “Built-Other”) the stimulus
(word) belongs. In the incompatible (incongruent) trial blocks
these category pairing are “Built-Me” or “Nature-Other.” Task

switching is understood to exist in both of these block types as
participants must switch between classifying stimuli as attributes
(“Nature,” “Built”) or self-referential target categories (“Me,”
“Other”).

The extent to which the IAT effect is caused by involuntary
processes independent of the goal to inhibit pre-potent IAT
responding remains unclear (De Houwer et al., 2009). Although
a great deal of research has looked at faking IATs bymanipulating
response times (Verschuere et al., 2009), there has also been
some success in faking IATs merely by being instructed to
respond in a certain way. McDaniel et al. (2009) instructed
participants to respond as extravertly as possible on an IAT
which measured personality types and found that participants
could successfully fake their level of extraversion. van Nunspeet
et al. (2014) highlight a related finding where in an IAT to
measure bias toward muslim women, framing the IAT task as a
measure of competence (the participants ability to process new
information) vs. morality (a test to measuring their “values”)
resulted in reduced negative-bias IAT scores when the task was
framed in terms ofmorality. Here they show how ERPs associated
with early perceptual processing, selective attention and social
categorization (namely N1, P150, and N450) are sensitive to
this framing effect, further indicating the role of motivational
states in modulating aspects of perceptual attention and conflict
monitoring. In the next subsection we outline previous studies
using EEG measures to study the IAT and in the following
subsection we posit our research aims with respect to gaps in the
existing studies.

1.1. Previous IAT-EEG work
Studies that have examined ERPs in IAT tasks (hereafter referred
to as IAT-ERPs), have implicated the late positive potential
(LPP) as a component of interest (e.g., Hurtado et al., 2009)
or other later occurring (>300ms) ERP components (e.g.,
O’Toole and Barnes-Holmes, 2009). Those focusing on both
early and late activity, such as the study by Williams and
Themanson (2011) investigating the IAT effect in a group
bias IAT (gay-straight) reported no differences across IAT
conditions for early components (N1, P2) but found later
component differences (N400, LPP) for concept pairings. This is
suggestive that early perceptual and attentional processes might
not be associated with the IAT measurement in their study,
but later semantic categorization processes are responding to
congruent/incongruent concept pairings.

While many of the previous IAT-EEG studies examine ERP
phenomena in response to the IAT task stimuli, others have
explored ERP measures taken from separate (but related) tasks
on the same participants in order to understand the time-
course of neural processing of stimuli involved with implicit
bias. He et al. (2009) demonstrated a relationship between the
IAT effect on a racial IAT and early P2 and N2 components
for categorization of faces (e.g., White, Black, Asian). Here they
found correlations between ERP amplitudes in a racial face
categorization task with an IAT-based measure of implicit racial
bias in a group of non-muslim university students. Additionally,
a later positive component (LPC) was observed for extended
same-different race faces. Ibanez et al. (2010) has also shown
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that early ERP components of race-face processing (e.g., N170
component) can be modulated by the valence of evaluative
attributes used in the IAT such as positive or negative valence
words, and also by the social face categories such as in-group or
out-group. This is suggestive of early integration of contextual
information related to racial attitude during face processing in
the IAT.

A recent study by Forbes et al. (2012) investigating EEG
correlates of the IAT effect in an attempt to examine causal
factors, showed more positive ERPs at frontal and occipital
regions at automatic processing speeds, as well as occipital
regions at controlled processing speeds, when responding to
congruent vs. incongruent pairings. Here they investigated ERP
timings as determinants of automaticy in order to gain insight
into the timing at which implicit and explicit processes unfold,
as these may be less susceptible (in short duration processes) to
control. Moreover, they found higher D-scores (or bias) were
identified by greater coherence between frontal and occipital
regions in time periods as early as 92ms with no significant
difference present between congruent/incongruent conditions.
These findings the authors consider could be indicative of
top-down modulation of attention and perceptual processing.
When taken in tandem with lesion study data they indicate the
potential for the facilitated performance seen on stereotypic-
congruent blocks to be associated with more efficient neural
processing.

A number of other ERP components have been observed in
the IAT-EEG such as the P3 which is associated with a range of
cognitive processes, one of which is attentional focus on novel,
salient or unexpected to-be attended items or on distractors
(unattended items) which produce an orienting response (Polich,
2007). The P3 has also been shown to index explicit attention
toward self-referent material (Tacikowski and Nowicka, 2010),
and is also involved in implicit attention in an IAT toward
self-positivity biased words (Chen et al., 2014).

Williams and Themanson (2011) demonstrate effects
surrounding an N400 ERP where larger amplitudes are present
in incompatible trials compared to congruent trials “suggesting
greater semantic congruency in the compatible condition of
the IAT.” They note N400 amplitude for both congruent and
incongruent blocks at FCz is correlated with IAT incongruent-
congruent reaction times with no apparent statistically strong
relationships present with respect to reaction times in either
block. The N400 ERP (as being distinct from the error-related
N450; Folstein and Van Petten, 2008) is sensitive to semantic
anomalies and violations with structures in the “immediate
vicinity of the auditory cortex” (with a left-hemispheric
dominance) associated with the processing of semantically
anomalous sentences (Van Petten and Luka, 2006). While the
N400 was initially thought to reflect linguistic anomalies and
violations, further study has identified its role in semantic
priming (Deacon et al., 2000) and expectancy (Curran et al.,
1993). There is evidence that it too does not reflect a purely
automatic process (Holcomb, 1988) involving attentional related
factors. Lau et al. (2008) identify a dominant (left-hemispheric)
pattern across a range of studies utilizing EEG and non-EEG
imagining modalities investigating the N400, and indicate the

posterior middle temporal cortex as being the only area to show
consistent effects across studies.

A common finding among these studies is that both early
and late time regions of the EEG signal following stimulus
presentation, demonstrate effects related to IAT congruency
condition and D-score. Earlier effects typically reflect neural
mechanisms at work outside of a post-perceptual processing
time region, namely one that occurs later within a time window
following a response (Guex et al., 2011; van Nunspeet et al.,
2014). There is no clear consensus on what ERPs and related
morphologies should be found when examining a new IAT task.
For instance, Fleischhauer et al. (2014) do not find evidence
of significant effects in the N2 (as expected by the authors) or
N400 time-range but do find relationships for P1/P3b amplitudes
relating to early facilitation of relevant visual input and efficiency
of stimulus categorization.

An open question remains from the literature as to what extent
the IAT-effect can be modulated by external and other top-down
related factors.

1.2. IAT and Cognitive Control
Hilgard et al. (2015) investigated the relationship between the
medial frontal negativity (MFN) during an IAT task as it has
been identified as linked to proactive cognitive control. This
is distinct from a neurocognitive process of reactive control
due to switching in incongruent and congruent block trials in
the IAT task indicated by “a positive voltage deflection over
frontocentral scalp locations” (D-pos). They posit their analysis
and hypothesis in terms of a DualMechanisms of Control (DMC)
model (Braver, 2012) where proactive control relates to “the
sustained maintenance of goal information in working memory
that serves to bias information in a goal-congruent manner” and
reactive control “a late correction mechanism for dealing with
cognitive and behavioral conflict as it arises.”

A common pattern of negatives have been commonly
identified in IAT tasks in time regions related to the N2,
N450, and related ERPs. Broadly, these ERP components are
understood to be typically implicated in conflict monitoring
processes including proactive and reactive cognitive control.
Such negativities are often referred to as medial frontal
negativities (MFNs). Identifying the onset/offset latencies of
IAT-EEG sensitive ERP components like these is made
difficult by their overlapping nature (variable latency), IAT-task
parameters/stimulus affecting ERP waveform characteristics, the
multifaceted nature of ACC-generated signals related to cognitive
control and external (e.g., environmental) effects driving top-
down attentional modulation.

An Error-relatedNegativity (ERN) typically follows post-error
conflict detection between incompatible responses and the N2
has been found to reflect this monitoring and conflict detection
function (Yeung et al., 2004). N2 amplitude is modulated by
the amount of conflict present between possible choices prior
to response selection and performance. Chee et al. (2000) used
functional magnetic resonance imagery (fMRI) on participants
completing an IAT and found that the left dorsolateral prefrontal
cortex (dPFC) and the anterior cingulate cortex (ACC) mediate
response inhibition in the incongruent condition. The ACC
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is particularly sensitive to response conflict in the IAT, and
therefore N2 involvement in IAT performance at least ostensibly
reflects conflict detection/cognitive control processes. Numerous
other studies have implicated the ACC as being involved in the
generation of a broad range of conflict-monitoring related ERP
components (Bekker et al., 2005). Clayson and Larson (2013)
demonstrated the N2 shows reliable conflict adaptation and
these conflict adaptation indices were stable in a 2-week test-
retest. Larson et al. (2014) highlight with regard to cognitive
control theory and goal-directed behavior the N2 “represents
an empirical marker of both a control mechanisms to handle
conflict” and relevant to our study “a reflection of the level of
cognitive control implemented during the ... task.” They highlight
other issues which can confound interpretations of N2 amplitude
such as in flanker trials where N2 amplitude being “sensitive not
only to the degree of conflict for a given stimulus but also to
the extent to which task-irrelevant information is processed.” An
important distinction between these studies (e.g., Eriksen flanker
task) is that in IAT-EEG reactive control and conflict related
changes arise as a result of task switching within condition blocks.
Here, a participant is required to change between categorization
of stimuli as evaluative (Nature, Built) or target categories (Me,
other) with no knowledge of the upcoming trial type (Hilgard
et al., 2015).

Given the overlapping time regions of these early negative
components in existing IAT studies, one of the aims of our
study introduced later was to disentangle ERP activity in these
time windows using LORETA source analysis to explain patterns
of correlated ERP activity with respect to implicated cortical
generators of the N2/MFN and N400-related ERPs (cingulate
cortex and temporal lobe structures).

This evidence would suggest ERP activity manifesting
negatively in the 250–450ms time range indexes a range of
distinct neural processes related to cognitive control. Moreover,
as activity in this time range is understood to be involved in
proactive control processes, we posit the relationships observed
to D-score (without an apparent explanation based purely
on reaction time) may be indicating participant variability
with regard to enhanced motivational/attentional aspects to
perform the task “as quickly as possible,” thus engendering the
measurement of an IAT-effect. Jodo and Kayama (1992) show
that the N2 amplitude is enhanced by reaction time constraints
in a go/no-go task varying in amplitude depending on the
neuronal activity required for response inhibition, indicating
increased amplitudes are related to a “greater effort” needing to
be employed in tasks where response inhibition is constrained
by reaction-time constraints. Such reaction-time constraints
are integral to the measurement of the IAT effect where
faster responding is presumed to be less susceptible to being
faked.

Given evidence that groups typically have positive IAT scores
on the n-IAT, we suspected those participants with lower D-
scores (less standardized difference in reactions times) might
be engaging in the task with different (less) motivational effort
and consequently not engendering conditions needed to capture
reaction time effects underlying implicit associations. Other
authors highlight issues suggesting IAT effect measurement

is potentially related to the “degree of involvement of the
participants” (Vargo and Petroczi, 2013). Agosta et al. (2013)
suggest a neutral D-score window for scores between −0.2 and
0.2 where results are “inconclusive” i.e., have low accuracy.

1.3. Aims and Research Questions
In summarizing previous related work on IAT-EEG issues we
see that an open question exists as to what exactly the IAT
measures given its susceptibility to be sometimes difficult to
relate to explicit measures of attitude. In the study reported
in this paper, we highlight a potential issue here, namely that
successful measurement of an IAT effect likely involves factors
of participant motivation to engage in the task such that some
participants might be more likely than others to produce an IAT
effect.

Accordingly, in this study we examine how ERP measures
in the IAT might offer insight into the neural mechanisms
underlying the more rapid associations that drive IAT effects. Of
primary interest to our work was examining how ERP measures
underlying both congruent and incongruent block types could
offer evidence on the neural mechanisms underlying more rapid
associations driving the IAT effect. Our hypothesis is that such
a shared relationship would exist, further implicating proactive
cognitive control and top-down modulation of attention/sensory
processing (involved with potential motivational factors) in
biasing the IAT measurement.

In summary, the aim of our study was (1) to examine how
ERP measures in the IAT might offer insight on the neural
mechanisms underlying the more rapid associations that drive
the IAT effect and (2) given such relationships, to investigate
potential sources of correlated brain-activity using LORETA as
previous IAT research has implicated a range of early negativities
overlapping in time and scalp topography serving arguably
different processes in the IAT.

2. MATERIALS AND METHODS

2.1. Participants
Thirty participants aged between 18 and 45 years were recruited
through advertisement using Dublin City University staff and
undergraduate/postgraduate email lists. In total, 8 participants
were excluded due to noisy EEG, high error response rates,
or to ensure a counter-balanced block design for the order
of congruent/incongruent IAT blocks (i.e., same number of
congruent first and incongruent first block orderings). The 22
remaining participants were predominantly right handed.

2.2. Approval by University Ethics
Committee
This study was carried out in accordance with the Declaration
of Helsinki—Ethical Principles for Medical Research Involving
Human Subjects, and also Dublin City University’s guidelines on
Best Practice in Research Ethics with informed written consent
from participants. The study was approved by Dublin City
University’s Research Ethics Committee (DCU REC/2013/205).
All participants gave written informed consent.
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2.3. Implicit Association Task
Participants in this study completed a modified version of the
IAT outlined by Bruni and Schultz (2010). The purpose of this
was to measure the strength of the association between the “Me”
target category and two evaluative attribute categories (“Nature,”
“Built”) relative to the associative strength of the “Other” target
and attribute categories. The experiment consisted of 7 blocks
with 2 blocks (of 32/48 trials, respectively) measuring congruent
association RTs (e.g., “Nature-Me,” “Built-Other”), and another
2 blocks (of 32/48 trials, respectively) measuring incongruent
association RTs (e.g., “Nature-Other,” “Built-Me”). The remaining
blocks were practice blocks. Congruent/Incongruent ordering
was counter-balanced across participants. In total, 80 trials were
collected for each of the congruent and incongruent mappings,
respectively.

Participants were required to sort stimuli into category
pairings of “Me-Nature” “Other-Built” in the congruent case
and “Me-Built” “Other-Nature” in the incongruent case. Each
participants’ name was used in conjunction with the “Me”
category and a random list of other names for the “Other”
category. “Tree,” “Mountain,” “Butterfly,” and “Flower” were
used as stimuli for the “Nature” category. “Boat,” “Car,” “Chair,”
“Truck” were used as stimuli for the “Built” category. Category
pairings (e.g., “Me-Nature, Other-Built”) appeared in the upper
left and right corners of the screen, respectively. Participants
indicated the category to which stimuli belong by pressing keys
“1” (pairing appearing on left side of screen) or “2” (pairing
appearing on right side of screen) on the keyboard with their
dominant hand.

Stimuli were preceded with a 1 s central fixation located
centrally on-screen. A word stimulus was presented on
screen (centrally) until a response was given. A feedback
screen appeared post-response based on correct/incorrect
categorization. Participants were not required to correct response
errors. In Figure 1 we show an example of this trial structure
within a compatible (congruent)-mapping block.

D-score was calculated for each participant as the difference
in mean reaction time between trials from pooled incongruent
and pooled congruent blocks (incongruent-congruent) divided
by the pooled standard deviation of trials from both block types
(Greenwald et al., 2003).

2.4. EEG Recording and Analysis
Preliminaries
EEG was recorded using a 32-channel ActiCHamp recording
system with a 10–20 ActiCap. A virtual ground was used as
an online reference and later re-referenced offline to a digitally
linked-mastoids reference (TP9 + TP10). Prior to this, signals
were filtered with an FIR sinc hamming window filter to
between 0.1 and 30Hz. ICA (Independent Component Analysis)
was used to remove artifacts such as eye-blinks and eye-blink
related components in particular those described by Plöchl
et al. (2012) as CRD (corneo-retinal dipoles), eyelid and eyelid-
CRD artifacts. These were identified from scalp topography and
amplitude characteristics and similarily confirmed using EOG
(Electrooculogram) channels VEOG and HEOG. ICA weights
were trained on 1–30Hz filtered data and then applied to the
0.1–30Hz band-passed signals. Analysis revealed strong pre-
stimulus activity related to block conditions. Subsequently, ERP
averages were generated on epochs extracted from signals band-
passed to between 4Hz and 30Hz (we explain this in the
next section). Epochs were extracted from −200 to +1000ms
with respect to the onset of word stimuli to be categorized for
compatible and incompatible blocks. Trials (post ICA clean-up)
which exceeded 70 mV or contained other noise-like artifacts
were discarded. This resulted in a maximum of 7.5% trial loss
across participants with one subject exceeding this at near 20%.

EEG recording was carried out in an electrically shielded
environment. Participants were seated approximately 70 cm from
the screen and reported no issues reading word associations.

EEGLAB 13.32 was used for EEG pre-processing and clean-
up. Scalp and statistical scalp plots including grand average ERP
plots were generated in IPython. SPSS 21 was used for conducting
repeated-measures ANOVA. sLORETA 20081104 was used for
source localization measures (Pascual-Marqui, 2002).

2.4.1. Baselining
A baseline of −200 s to 0 pre-stimulus was initially planned for
stimulus-locked epoch extraction. However, upon analysis of the
EEG it was found that a CNV (Continent Negative Variation)-like
component was present surrounding stimulus onset for many
participants, and upon further inspection differentiated between
congruent and incongruent conditions.

FIGURE 1 | Depiction of trial structure within a congruent block. From left to right: a fixation cross is presented on screen for 1 s, then a word is presented for

categorization and following a key press a feedback screen is presented for 1 s indicating whether the response was correct. Eighty were recorded for each

congruency condition.
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Baselining serves to remove noise sources like inter-subject
differences and slow-drifts, thus allowing inter-subject measures
to be comparable as ERP amplitudes align relative to a
zero measure (baseline) across electrodes and participants. An
expectation here is that pre-stimulus baseline activity is not
systematically affected with respect to factors or conditions being
measured. Herein the issue exists with the IAT experimental
structure, that is, a participant is aware of the upcoming
condition type and thus may, through the recruitment of
different cognitive preparatory mechanisms for that stimulus
type (congruent/incongruent), introduce into the baseline period
activity which could systemically affect the correct baselining
of later ERP components. This is particularly relevant as pre-
stimulus activity diminishes during the epoch window. One such
ERP component typically seen, a CNV-E (Contingent Negative
Variation), is present following a warning stimulus (S1) such as
a fixation cross indicating upcoming stimulus (S2) and results in
an expectant pattern of activity locked to S2.

In our study, when examining ERP activity in these early
time regions in individual participants’ data plots (without
baselining across a range of incrementally high-pass filtered
signals) we found there was a general trend of pre-stimulus
activity extending into early periods of the ERP waveform,
overlapping notably with the P1. Other IAT-ERP studies might
not have considered or encountered such issues with some
studies not citing whether a baseline was used (Barnes-Holmes
et al., 2004; Hurtado et al., 2009; Egenolf et al., 2013), others
where a prestimulus baseline was used (O’Toole and Barnes-
Holmes, 2009; Williams and Themanson, 2011; Hilgard et al.,
2015) and others where a prestimulus baseline was used but
measures were taken to lessen the impact of pre-stimulus activity
such as post-movement ERP activity related to previous trials
Forbes et al. (2012).

We found ERP average waveforms from participants without
pre-stimulus baselining indicate these differences in some
instances do not degrade until 150 ms and would suggest
these differences, if included in the baseline measurement, could
systematically affect later ERP components, resulting in these
component time-windows containing ostensible effects.

Time-frequency decomposition of epochs and related ITC
(Inter-Trial Coherence; Makeig et al., 2002), revealed that
pre-stimulus activity is comprised of contributions across a
wide range of frequencies. Inspection of stimulus-locked ICA
components revealed these patterns are not well captured
by a single set of ICs that are not entangled with other
post-stimulus trial-locked ERP-related activity. Ultimately we
felt this precluded us from meaningfully interpreting earlier
ERP component time-windows that overlap with this potential
systematic bias. Later ERP components are subsequently
increasingly affected if a pre-stimulus baseline is used if
differentiating CNV activity stemming from condition type
(congruent vs. incongruent) is present during this baselining
period.

One strategy to reduce confounding systematic differences
in this late CNV component is not to allow the participant
to be aware of the upcoming stimulus type/task, that is,
by not having blocks with consistent conditions allowing

for different neural preparatory mechanisms to affect pre-
stimulus time regions where baselines are typically extracted
from. This strategy would deviate somewhat from the typical
IAT task structure as it would require adding another
dimension of task switching in the IAT (compared to just
between attribute and target categories). Furthermore, in
this instance at the time of stimulus onset, a participant
would need to be aware of the condition type, thus further
introducing deviations of the IAT experiment structure. Merely
changing the corner labels to inform the participant would
not likely be perceptible until foveation, further introducing
confounds related to required eye-movements and very likely
degrading time-locking characteristics of the ERP components
being studied. Other strategies include varying the S1–S2
difference timings to mitigate consistent pre-stimulus-locked
activity but this process may merely serve to obscure the
level to which preparatory-related EEG signals and other
time-locked within-block ERP activity might be affecting
baselines.

A primary reason for baselining is to remove slow drifts
present in the EEG, which when removed by high-pass filtering
can result in obscured ERP amplitude/latency characteristics
(Rousselet, 2012), particularly so when the ERP is generated as
a result of lower frequency band activity. An issue with this
is comparability with other studies as some ERP components
may have lost contributing stimulus-locked and phase-coherent
related activity in lower frequencies. However, doing this allows
us to overcome some of the problems for which we use baselining
in the first place, that is to remove slow drifts and other noise
sources which complicate comparison of ERP amplitude activity
across participants.

The restrictions imposed by the IAT experimental design
give rise to a number of confounds when adopting a typical
ERP processing strategy. This does not reflect a fundamental
flaw in the IAT task itself, but rather a characteristic of it that
does not fit the typical ERP processing pipeline. In this study
we high-pass filter EEG signals in order to overcome these
limitations at some cost to the comparability of amplitude/time
characteristics to other EEG studies. By not doing so, however, we
introduce systematic confounds across the analysis time-window.
Examination of the impact of this high-pass filtering on ERP
waveforms would indicate it is largely non-detrimental to activity
in early ERP-component time-windows (N1, P2, N2, P3) but does
largely affect (attenuate) stereotyped late P3b activity, which is
notably comprised of lower EEG frequencies in the delta band
(0–4Hz; see Demiralp et al., 2001b). We focus our analysis on
time regions where activity related to N1, P2, N2, and early P3
contributions are present.

Bidet-Caulet et al. (2012) outline similar issues encountered
pre-stimulus with regard to the baselining and CNV activity, and
they use an approach of high-pass filtering at 4Hz in order to
effectively analyze early ERP stimulus-locked ERP components.

ERP plots (including a range of other scalp plots and graphs)
used in this study are given in the supplementary data for this
paper using a variety of frequency and baselining methods to
further highlight this problem and how our solution results in
earlier ERP waveform characteristics being largely retained, both
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in amplitude and timing. Time-frequency wavelet analysis too
indicates there are different frequency and spatial topographies
for the ERP components of interest and their correlative
relationship to D-score, indicating high-pass filtering artifacts do
not contribute to this result.

2.4.2. Electrode Reference Choice
Other ERP studies investigating the IAT have typically used
an averaged (linked) mastoid reference (TP9 + TP10). EEG
reference choice is known to affect the spatial, temporal and
polarity characteristics of ERP waveforms and hence the chosen
reference site should be carefully considered not only to allow
comparability of results to other studies but also such that it is
not affected by activity related to the factors being investigated in
the experiment.

The spatial dispersion of statistical activity seen in statistical
scalp plots in our study suggests that the linked-mastoid
reference choice may not be entirely optimal and should at least
warrant consideration as these electrode sites are located near to
temporal-lobe regions implicated in language-processing. While
there is generally high agreement in our study for the locus
points of statistical activity between linked-mastoid and common
average reference schemes, differences are evident notably in
terms of higher spatial dispersion of statistical activity for the
linked-mastoid reference to a common average reference scheme.
In the supplementary appendix to this paper, we provide grand
average ERP waveforms using a common average reference
scheme to highlight the potential contribution of activity at
the TP9 and TP10 reference sites. Similar issues surrounding
EEG referencing schemes are also considered by Dien (1998),
Hagemann et al. (2001) and Luck (2005).

2.5. Analysis of Neural data
2.5.1. ERP Time-windows and Channel Selection
ERP time-windows were determined by inspecting grand-
averaged ERP plots across participants irrespective of condition
type. ERP time-windows were selected so as to include within
the window a primary, and any secondary, troughs or peaks
characteristic of ERP activity of that type. An important point
to note is that peaks in ERP averages are not the same as
ERP components, as ERP components contributing to averaged
activity can have varying latencies and overlap. In this work we
refer to ERP time-windows as time periods known to contain
stereotyped underlying ERP activity. A further discussion of this
can be found in Luck (2005).

There are topographic variations of ERP activity in the IAT
literature implicating a number of fundamental ERP components
active in time regions corresponding to the P1, N1, P2, N2,
and P3. To our knowledge, as we are first to investigate ERPs
in the nature-IAT. We did not preselect explicit channel-ERP
mappings in our study. Instead, we identified these channels and
time regions from visual inspection of ERP time-topographies
on grand-averaged epochs—averaging across participants and
conditions. With respect to time regions and channels, the
literature identifies a variety of stereotyped ERP morphologies
that can be present in the IAT. Importantly here, there are
variations in expected ERP channel × time morphologies

determined by the IAT task itself and the stimulus content used
(pictures vs. words) introducing uncertainty with regards to what
the expected ERP patterns will be in an untested IAT.

In our study, the N100 was identified as being present in
the 110–150ms time window, the P200 in the 160–230ms time
window, a pattern of fronto-central tending negativity hereafter
referred to as N200 in the 250–310ms time window and a frontal
P300-like component in the 330–450ms time-window.

From the existing IAT (and EEG) literature we know a
broad range of ERP components are to be expected such as
the P1, N2, P2, P3, and N400 in the IAT-EEG. From N200
studies, we know variations of this component can manifest
with anterior (Fz), central (Cz), and posterior (Pz) scalp
distributions. Similarly, N400 ERP effects are described occurring
in overlapping time periods on these electrode locations. Given
our focus investigating early negative ERPs (N2, N400, MFN)
electrode sites Fz, Cz, and Pz were chosen as regions of interest
(ROIs) with regard to the IAT and key electrode sites for
comparisons.

2.5.2. Repeated-Measures ANOVA
Repeated-measures ANOVAs were used to identify significant
neural activity during ERP time regions. Channels for each
repeated-measures ANOVA were identified from grand-average
ERP plots without differentiating trials based on D-score
type or condition (congruent/incongruent), selecting those that
displayed stereotyped ERP activity of the N1, P2, N2, and P3.

Repeated-measures ANOVA models were used for each
identified ERP time frame examining electrode site × condition
(Congruent/Incongruent) as within-participant factors and
a between-participant factor of “D-score range” identifying
high, medium and low D-scorers (a 7/8/7 split, 22 in
total). Greenhouse-Geisser corrected p-values and statistics are
reported.

2.5.3. Repeated-Measures ANOVA Post-hoc Analysis
Correlation based measures are used as part of our post-hoc RM-
ANOVA analysis given the presence of between-subject effects
of D-score magnitude. These are presented both in terms of
contrast, explaining significant effects found in our ANOVAs
and in parallel as measures to capture a type of statistical
relationship not readily captured by repeated-measures ANOVA
analysis.

Correlations are examined using EEG time-window average
amplitudes. In Table 2, we show Pearson-r correlational
coefficients for behavioral measures and ERP time-window
activity across selected electrode sites Fz, Cz, and Pz, and for
electrodes of peak correlation.

2.5.4. The LORETA Approach
sLORETA is used alongside correlation analysis with D-score, to
identify potential functionally and spatially distinct brain regions
that are active in ERP time ranges. Given the complexity of
the resulting relationships, either temporal or spatial in nature,
which are introduced by utilizing reference channels that are
not electrically silent (i.e., located near to language areas), scalp
plots of ERP or statistical activity can be misleading as activity
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at a particular site might be indicative of two or more channels
(and/or ERP components) interacting in a complex way.

In this study, LORETA is used to identify, within the precision
of LORETA’s localization error, brain regions and structures
involved with early ERP component activity which gives a better
sense of cortical regions that are involved. Both approaches
are carried out here as they are considered complimentary in
understanding brain activity driving early IAT-ERP effects.

Reported LORETA correlation p-values are adjusted for
multiple comparison and presented in the format [r = 0.51, p =
0.005].

2.6. Conventions used in the Analysis
Description
Further references to congruent and incongruent EEG and
reaction times will be described in a format of measure-
type(measure-src): RT(C) = congruent reaction time, RT(I) =

incongruent reaction time, RT(I − C) = RT(I) − RT(C),
E(C) = congruent EEG amplitude measure, E(I) = incongruent
amplitude measure and E(I − C) = E(I)− E(C).

Significant trends are reported for alpha < 0.05 and weakly
significant trends for alpha < 0.10.

Statistics for both multivariate and univariate are reported
inside square brackets e.g., [r(21) = 0.8, p = 0.001].

2.6.1. Other methods
There is evidence for the presence of non-linear relationships
surrounding ERP measures with regard to IAT-effect in our
experiment as has been found in other studies Williams
and Themanson (2011). Although we do not explore these
relationships in the paper, we include them in the Supplementary
Materials.

3. RESULTS

3.1. Behavioral IAT Analysis
Analysing the behavioral RT data for participants between
congruent (M = 731.73ms, s.e. = 296.13) and incongruent

(M = 822.96ms , s.e.= 338.2) conditions, there was a significant
difference found in reaction times. Reaction times for each
condition for each subject submitted to a Wilcoxon signed-rank
test revealed significant differences in reaction time [Z = 19, p=
0.000483]. This confirms our group shows a pro-nature bias.

In Figure 2 we can see that a significant correlation exists
between a participant’s D-score and reaction time in congruent
(Pearson-r p = 0.01023) conditions compared to incongruent
(Pearson-r p= 0.74158) conditions. This indicates our measured
IAT-effect is being driven by reduced reaction times in congruent
blocks without corresponding related increases in incongruent
block reaction times.

3.2. Neural IAT Analysis (ANOVA)
3.2.1. Repeated Measures ANOVA analysis
Amplitude averages across participants for ERP time-windows
were submitted to a repeated measures ANOVAwith congruency
conditions and channels as within-subject factors, and D-score
range as a between-subject factor. D-score ranges were acquired
by using a 7/8/7 split (byD-score) of available participants. Effects
with a significance of alpha < 0.10 are reported. In Figure 5 we
show ERP averages across condition, D-score range and electrode
site.

3.2.1.1. N100

The N100 was examined across electrode sites Fz, Cz, Pz, F3, F4,
C3, C4, P3, P4, CP1, CP2, FC1, and FC2. A significant main effect
was found for channels [F(2.914, 55.357) = 37.682, η2 = 0.665, p <

0.001].

3.2.1.2. P200

The P200 was examined across electrode sites Fz, Cz, F3, F4, C3,
C4, FC1, and FC2. A significant main effect for channels was
found [F(2.562, 48.683) = 35.202, η2 = 0.478, p < 0.001].

3.2.1.3. N200

The N200 was examined across electrode sites Fz, Cz, Pz, F3, F4,
C3, C4, P3, P4, CP1, CP2, FC1, and FC2. Main effects were found
for channels [F(2.588, 49.171) = 24.279, η2 = 0.561, p < 0.001],

FIGURE 2 | Reaction times across subjects broken down across congruent and incongruent conditions (y-axis) with calculated D-scores (x-axis).

Frontiers in Human Neuroscience | www.frontiersin.org 8 November 2015 | Volume 9 | Article 605

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Healy et al. Neural Patterns of the Implicit Association Test

conditions [F(1, 19) = 3.252, η2 = 0.146, p = 0.087] and D-
score range [F(2, 19) = 4.866, η2 = 0.339, p = 0.02]. A weakly
significant interaction effect for condition × D-score range was
found [F(2) = 1.34, η2 = 0.124, p = 0.079].

3.2.1.4. P300

The P300 was examined across electrode sites Fz, F3, F4, FC1,
FC2, Pz, P3, P4, C3, C4, Cz, CP1, CP2, CP5, and CP6. Main
effects were found for channels [F(2.580, 49.023) = 15.586, η2 =

0.451, p < 0.001] and D-score range [F(2, 19) = 7.529, η2 =

0.442, p = 0.004]. No main effect was found for congruency
condition.

3.3. Neural Correlates of D-score
3.3.1. N100, P200
As neither the N100 or P200 time windows emerged with
significant effects (i.e., p < 0.10) we do not report them further
in this study.

3.3.2. N200
Repeated-measures ANOVA revealed a number of significant
effects for the N200 for between-subjects (i.e. D-score is
predictive of ERP amplitudes) and of within subject-effects,
such that N2 amplitudes congruent (M = −1.983mV, s.e. =
0.274) were enhanced (more negative) compared to incongruent
(M =−1.798mV, s.e.= 0.25) conditions. There was an effect for
between-subjects for D-score range indicating mean amplitudes
were more negative for high D-scores (M = −3.037mV, s.e. =
0.456) compared to low D-scores (M =−1.339 mV, s.e.= 0.456)
and different form medium D-scores (M = −1.295mV, s.e. =
0.426).

Condition × D-score emerged as a significant interaction
where medium D-scores displayed greater mean amplitude
differences between congruent (M = −1.537mV, s.e. =

0.486) and incongruent conditions (M = −1.053mV, s.e. =
0.414) compared to differences between conditions for high
D-score congruent (M = −2.978mV, s.e. = 0.486) and
incongruent (M = −3.095mV, s.e. = 0.443), and low D-score
congruent (M = −1.433mV, s.e. = 0.486) and incongruent
(M =−1.245mV, s.e.= 0.443) conditions.

Significant linear relationships were present for the N200
time-window examining Pearson-r correlation between D-score
congruent [CP6, r = −0.54, p = 0.009] and incongruent
conditions [C4, r = -0.54, p= 0.009] (Table 2).

Examining Table 2 we see see these linear relationships are
primarily constrained with respect to D-score × amplitude
with no significant (univariate) correlations present at electrode
sites (matched for the electrode site with the most significant
correlation) comparing other behavioral measures. Here we can
see stronger patterns of correlation across electrode sites for
congruent reactions times to neural measures than incongruent
reactions times. Similarly, we see increased correlations for the
standardized reaction differences between congruent blocks (D-
score) compared to non-standardized differences [i.e., rt(I-C)].

LORETA analysis shown in Figures 3A,B reveals
characteristic shared activations between congruent and
incongruent conditions in similar brain structures with these

FIGURE 3 | Correlated LORETA voxel activity and D-score. D-score is

correlated with congruent and incongruent ERP time-window averages across

participants localizing activity driving correlated scalp EEG measures. Multiple

comparison corrected p-values for peak correlations are presented on top of

each condition × ERP plot.

outlined in Table 1 and Figure 4. Broadly, most significant
correlations with D-score were found in areas extending from
anterior, inferior, and insular regions of the left temporal lobe
(BA13) and postcentral gyrus (BA 43) as shown in Table 1

(BA42, BA13, BA43, and BA22).

3.3.3. P300
Repeated-measures ANOVA for the P300 time-window revealed
a significant relationship for a between-subjects effect for D-score
range such that mean ERP amplitudes were larger in high (M =

0.763mV, s.e. = 0.140) compared to medium (M = 0.119mV,
s.e.= 0.131) and low (M = 0.087mV, s.e.= 0.130) groups.

LORETA revealed significant patterns of activation revealed
as correlated with D-score for congruent and incongruent
conditions. Figures 3C,D show the respective congruent and
incongruent correlated activations.

More prominent differences emerge, differentiating correlated
neural activity of the congruent and incongruent conditions
for regions surrounding: Medial Frontal Gyrus (BA 10) being
more correlated with D-score in congruent [r = 0.605, p =

0.0732] v. incongruent conditions [r = 0.459, p = 0.333], and
for Postcentral Gyrus (BA 3) in congruent [r = 0.0, p = 0.99] v.
incongruent conditions [r = 0.627, p= 0.037] (Table 2).
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TABLE 1 | LORETA-derived regions of peak correlation of D-score across congruent and incongruent conditions.

Component Condition Area Brodmann Side R P X Y Z

area

N200 C Temporal lobe - STG 42 L 0.619 0.0530 −55 −30 15

Temporal lobe - STG 22 L 0.6 0.0734 −45 5 −5

Insular - Sub-lobar 13 L 0.595 0.0786 −40 5 −5

Postcentral gyrus* 43 L 0.598 0.075 −65 −20 20

Insular - Sub-lobar* 13 L 0.550 0.144 −45 0 −10

I Postcentral gyrus 43 L 0.643 0.041 −65 −20 20

Insular - Sub-lobar 13 L 0.605 0.0812 −45 0 −10

Temporal lobe - STG* 42 L 0.541 0.190 −55 −30 15

Temporal lobe - STG* 22 L 0.521 0.230 −45 5 −5

Insular - Sub-lobar* 13 L 0.560 0.149 −40 5 −5

P300 C Cingulate gyrus 24 R 0.645 0.033 10 −20 45

Insular - Sub-lobar 13 L 0.623 0.0548 −45 −25 20

Medial frontal gyrus 10 R 0.605 0.0732 15 60 5

Superior temporal gyrus* 22 L 0.534 0.1842 −50 5 −5

Cingulate gryus* 31 R 582 0.103 20 −25 40

Postcentral gryus* 3 R 0 0.99 30 −25 40

I Superior temporal gyrus 22 L 0.645 0.0244 −50 5 −5

Cingulate gryus 31 R 0.627 0.037 20 −25 40

Postcentral gryus 3 R 0.627 0.037 30 −25 40

Cingulate gyrus* 24 R 0.570 0.095 10 −20 45

Insular - Sub-lobar* 13 L 0.501 0.231 −45 −25 20

Medial frontal gyrus* 10 R 0.459 0.333 15 60 5

Rows marked with * are provided to allow comparison of matched MNI (x, y, z) coordinates between respective maximima of peak correlation between congruent and incongruent

conditions.

Non-standardized reaction time differences here [rt(I-C)]
seem to show increased patterns of correlation to neural
measures respective to D-score (compared to the case for the N2)
suggesting that differences in reaction times (related to response-
locked activity) are more likely driving contributions here for the
IAT measurement.

4. DISCUSSION

The aim of the study reported here was to examine how ERP
measures in the IAT might offer an insight into the neural
mechanisms underlying the more rapid associations that drive
IAT effects. Of primary interest in our work was examining how
ERPmeasures underlying both congruent and incongruent block
types might offer evidence of the neural mechanisms involved
with these relatively more rapid associations. In our results from
behavioral measures we find average congruent reaction times
are significantly correlated with participant D-score, while the
reaction times in incongruent conditions are not. From this
we would expected neural activity predictive of D-score to be
present only in congruent blocks. Similarly, we would expect ERP
measures for time-windows during the incongruent blocks to be
largely unpredictive of D-score, however, we find this is not the
case.

Our hypothesis was positioned such that in a situation where
the measurable IAT effect is primarily modulated by reduced
congruent reaction times, in the respective incongruent blocks
we should find shared patterns of ERP activity correlated with the
size of IAT effect, given the involvement of proactive cognitive
control and other top-down control processes. This is related to
the motivational/attention aspects in the IAT affecting the level
to which an implicit bias might be measured. Given evidence
that groups typically have positive IAT scores on the n-IAT,
we suspected those participants with lower D-scores (a lower
standardized difference in reactions times) might be engaging in
the task differently due to factors like less motivational effort thus
not engendering conditions necessary to capture IAT effects.

The aim of searching for such evidence was to disentangle
cortical generators involved with the production of an IAT effect
in early time periods of the ERP time window (early negativities
between 250 and 450ms) following stimulus presentation that
have been previously implicated in other studies to be sensitive to
the IAT effect size, and in cognitive control and error monitoring.

In our study we identified an N2-like ERP component
in the 250–310 ms range. While we have labeled activity in
this time-region as indicative of an N2 ERP, there is close
overlap in time regions of an N400 described in other related
EEG-IAT studies. Importantly, some of these studies identify
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FIGURE 4 | Selected ROIs revealed through LORETA D-score regressions.

correlational relationships between congruent, incongruent and
incongruent-congruent activity ERP measures and D-score
(Williams and Themanson, 2011). The N400 has been widely
used as a measure of semantic congruency for words (Kiefer,
2002) and statements (Kutas and Hillyard, 1980). Williams
and Themanson (2011) report a significantly smaller N400 for
congruent conditions compared to incongruent conditions in
an IAT suggestive that the N400 is an indicator of semantic
(integration) congruency where greater incongruency results in
larger (more negative) amplitudes. LORETA analysis estimating
the source of correlated neural activity and D-score for both
block types in our study implicate a number of left-temporal
cortical regions, known generators in the N400 and more widely
understood to be involved with language processing (Maess et al.,
2006). Lau et al. (2008) identify a dominant (left-hemispheric)
pattern across a range of studies utilizing EEG and non-EEG
imaging modalities investigating the N400, and indicate the
posterior middle temporal cortex as being the only area to show
consistent effects across studies. It would seem that although
no apparent N400 ERP component is present in our averaged
waveforms, there is evidence overlapping ERP activity from
the N400 time-frame might present during our N200 analysis
window.

Forbes et al. (2012) suggest that a number of brain regions
surrounding the left temporal lobe (as indicated by integrating
both EEG source localization and lesion studies) are implicated as
being important in the production of reduced congruent reaction
times in the IAT. Interestingly, they find patients (lesion) vs.
controls show no significant difference on incongruent reaction
times or D-scores but show statistically significant differences
where patients were slower to respond in congruent conditions.
Similarly, they identify that volume loss in large regions of the
left insula exhibit robust associations with slower reaction times
in congruent blocks. In the context of our results, these findings
support the role of left temporal/insular brain regions as being
important in the production of an IAT effect. Another similarity
in results is a strong indication that a number of shared brain
structures are recruited across both congruent and incongruent
conditions, but importantly there are differences associated with
activations, suggesting different recruitment of brain regions
based on condition.

The N2 has been found to reflect a conflict detection
function (Yeung et al., 2004) between possible choices prior
to response selection and performance. Hilgard et al. (2015)
show that the medial-frontal negativity (MFN) ERP between
250 and 450ms post stimulus at midline regions is larger
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TABLE 2 | Pearson-r correlation coefficients across behavioral and EEG activity measures.

N200 P300

Fz Cz Pz Max Fz Cz Pz Max

D,I-C −0.21 −0.14 −0.08 0.39**(P8) 0.35 0.40** 0.50* 0.50*(Pz)

D,C+I −0.46* −0.47* −0.42** −0.54*(C4) 0.57* 0.52* 0.34 0.62*(C4)

D,I −0.48* −0.49* −0.44* −0.54*(C4) 0.61* 0.57* 0.47* 0.64*(C4)

D,C −0.44* −0.45* −0.39** −0.54*(CP6) 0.51* 0.42** 0.13 0.54*(F4)

rt(I-C),I-C −0.17 −0.11 −0.04 0.36**(P8) 0.29 0.34 0.37** 0.37**(Pz)

rt(I-C),C+I −0.26 −0.32 −0.36 −0.38**(C4) 0.51* 0.46* 0.37** 0.57*(C4)

rt(I-C),I −0.29 −0.33 −0.37** −0.39**(C4) 0.55* 0.51* 0.44* 0.60*(C4)

rt(I-C),C −0.25 −0.30 −0.34 −0.41**(CP6) 0.48* 0.39** 0.22 0.50*(F4)

rt(C),I-C 0.14 0.15 0.10 −0.09(P8) −0.11 −0.10 −0.17 −0.17(Pz)

rt(C),C+I 0.35 0.36** 0.35 0.27(CP6) −0.32 −0.33 −0.13 −0.28(F4)

rt(C),I 0.35 0.37** 0.36** 0.40**(C4) −0.30 −0.30 −0.15 −0.27(C4)

rt(C),C 0.33 0.32 0.30 0.23(CP6) −0.29 −0.30 −0.03 −0.24(F4)

rt(I),I-C 0.05 0.10 0.09 0.11(P8) 0.04 0.08 0.03 0.03(Pz)

rt(I),C+I 0.22 0.20 0.16 0.19(C4) −0.05 −0.09 0.07 0.01(C4)

rt(I),I 0.21 0.20 0.17 0.19(C4) −0.01 −0.03 0.08 0.05(C4)

rt(I),C 0.21 0.17 0.13 0.01(CP6) −0.04 −0.09 0.09 0.02(F4)

Correlated variable pairs presented in the first column as Behavioral Measure, EEG Measure. *Indicates univariate p < 0.05 and **Indicates univariate p < 0.1. D, D-score; C, Congruent;

I, Incongruent; rt(), Reaction Time. Max columns represent the electrode site with smallest p-value for D-score correlated with EEG measure (first 4 rows) where electrode site for each

EEG measure type (C+I, I-C, C, I) is maintained across subsequent comparisons as a way to interpret the source of EEG activity driving correlations with D-score at that site.

for incongruent mappings, compared to congruent mappings,
indicating increased proactive control is required during
incongruent blocks. Although we find congruent (instead of
incongruent) mappings in our IAT generated seemingly more
negative going waveforms in this time region, their study
highlights how the involvement of reactive control in the
IAT (due to task switching) generates a similar temporal and
spatially overlapping positive ERP (D-pos) in this time region
which might be one explanation for the relationship we found.
Importantly, as relative differences in these ERP measures
between congruency conditions have been to understand
congruency effects with respect to semantic integration and
cognitive control, we find absolute measures here to be involved
as well. There is other evidence that for early ERP negativities
being sensitive to task constraints, for example Jodo and Kayama
(1992) show that the N2 amplitude is enhanced by reaction time
constaints on a go/no-go task.

One important difference in our study is that we find an
N2 component where other studies have not, in the IAT task.
A possible explanation for this is the stimuli used in the n-
IAT task; differences exist when comparing waveforms as a
function of content used in the task, i.e., pictures vs. words
(Williams and Themanson, 2011). Fleischhauer et al. (2014) do
not find evidence of significant effects in the N2 (as expected).
Although the authors here are considering implicit measures of
neuroticism, the stimuli and experimental structure are similar
to ours.

Caution is warranted in interpreting the P3-like activity
identified in our study as it differs from the more classical
and response-locked P3b found in other IAT-EEG studies. The
P3 has been shown to index attention toward self-referent

materials in an IAT (Chen et al., 2014) so our discovery of
the involvement of this component in an IAT responding to
both congruent and incongruent self-referent mappings was
somewhat expected. The P3b component (the more common P3
variant identified in existing IAT studies) is notably comprised
of lower-frequency EEG activity (0–4Hz). As we use high-pass
filtering, P3-related ERP activity is highly attenuated in our ERP
measures. Also, the timecourse of this P3-like activity in our
study overlaps with time regions where other studies have found
N400 to be present. Importantly, the N400 is not necessarily
characterized by a negative deflection in the ERP waveform,
as it is measured relatively as a more negative going signal
with respect to other experimental conditions. The P3a is a
frontal-central tending ERP and is seen in target detection tasks
to novel and infrequent stimuli, and it also reflects attention
mechanisms during task processing (Polich, 2007). Wavelet
analysis indicates this component is partly comprised of theta
band (4-8Hz) activity (Demiralp et al., 2001a) and source
localization analysis reveals a wide range of cortical generators.
Our preprocessing strategy—using high-pass filtering to avoid
the use of pre-stimulus baselining confounds—compromises a
robust interpretation of this frontal P3-like activity with respect
to existing ERP literature. Although we find, however, in a
variety of alternatively explored filtering strategies this earlier
occurring frontal P3-like activity remains present particularly
in conjunction with its posterior counterpart (P3b). As other
IAT-ERP indices have been implicated in this time-region we
choose to retain this time-region in our analysis. There is strong
suggestion of overlapping cortical generators of IAT-sensitive
ERPs in both our N2 and P3 analysis time windows as can be
seen in our LORETA analysis particularly for the incongruent
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FIGURE 5 | ERP averages across electrode sites for high, medium and low D-scorers across congruent/incongruent conditions using a

linked-mastoids reference. Signals are filtered in the range 4–30Hz.

block conditions. This would indicate ERP activity might not
only be modulated by differences in amplitude of underlying
components but also latency. We do find, however, significant

patterns of correlated activity using LORETA of brain-regions
typically implicated in the generation of the P3 (notably
cingulate cortex and medial frontal gyrus; Volpe et al., 2007).

Frontiers in Human Neuroscience | www.frontiersin.org 13 November 2015 | Volume 9 | Article 605

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Healy et al. Neural Patterns of the Implicit Association Test

Egenolf et al. (2013) similarly examine covarying relationships of
brain-region activation to the magnitude of behavioral IAT effect
and find differences in a time window of 510–710ms between
incongruent and congruent ERP activity that is proportional to
the IAT effect, a time region largely corresponding to the P3
ERP.

Given previous results of the n-IAT we would expect averaged
D-score across participants to be more positive (i.e., groups of
participants in previous studies tended to show a stereotypic pro-
nature IAT effect like we similarly have). These results might
indicate the nIAT-effect cannot be measured reliably on all
participants, due to differences such asmotivation during the task
and/or different patterns of top-down control employed in the
task. The presence of such an effect is important in understanding
instances where the IAT might be failing to measure an expected
bias and would be a potential source of detrimental noise in
measuring relationships to explicit measures.

5. CONCLUSIONS

The results presented in this paper indicate that EEG is
informative in understanding cognitive processes behind the n-
IAT. Our results both confirm patterns of activity seen in other
IAT studies and also extend these by showing novel behavioral-
ERP predictive relationships. Importantly, we identify that N2-
/MFN- related amplitudes in our ERP analysis time window
show a correlational relationship with D-score, highlighting the
potential involvement of participant motivation via proactive
cognitive control and top-down attention related mechanisms as
a source of noise in the successful measurement of an IAT-effect.
This has broad implications for other studies utilizing the n-IAT
(and other IATs in general) in that it might offer an explanation
as to why IAT measures can often fail to correlate with explicit
measures. Such a line of evidence would indicate other secondary
measures (including EEG) alongside the IAT may be useful in
measuring these motivational related factors so as to enable an
experimenter to disqualify participants who may be IAT averse.

One notable difference between this study and other studies
is how the data are preprocessed due to the presence of pre-
stimulus locked ERP activity related to the CNV. Although

this potential problem of the IAT-ERP related to confounds
introduced by standard baselining exists, there is little reported
in the IAT literature that it has been at least taken account of.

One area of future work to be explored next is to
examine predictive relationships and functional/structural brain
differences that emerge within, and across, participants for a
variety of IAT tasks.
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