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Humans recognize body parts in categories. Previous studies have shown that
responses in the fusiform body area (FBA) and extrastriate body area (EBA) are evoked
by the perception of the human body, when presented either as whole or as isolated
parts. These responses occur approximately 190 ms after body images are visualized.
The extent to which body-sensitive responses show specificity for different body part
categories remains to be largely clarified. We used a decoding method to quantify neural
responses associated with the perception of different categories of body parts. Nine
subjects underwent measurements of their brain activities by magnetoencephalography
(MEG) while viewing 14 images of feet, hands, mouths, and objects. We decoded
categories of the presented images from the MEG signals using a support vector
machine (SVM) and calculated their accuracy by 10-fold cross-validation. For each
subject, a response that appeared to be a body-sensitive response was observed and
the MEG signals corresponding to the three types of body categories were classified
based on the signals in the occipitotemporal cortex. The accuracy in decoding body-
part categories (with a peak at approximately 48%) was above chance (33.3%) and
significantly higher than that for random categories. According to the time course and
location, the responses are suggested to be body-sensitive and to include information
regarding the body-part category. Finally, this non-invasive method can decode category
information of a visual object with high temporal and spatial resolution and this result may
have a significant impact in the field of brain-machine interface research.

Keywords: visual cortex, body perception, decoding, categorization, magnetoencephalography

INTRODUCTION

Neural decoding of visual recognition has been developed to understand how the information of
an image is coded in the human brain. Many studies have demonstrated that the contents of visual
recognition can be inferred from brain signals obtained either invasively or non-invasively. For
example, the electrocorticography (ECoG) signals responded characteristically to visual stimuli of
several categories such as the face and body (Allison et al., 1994; Engell and McCarthy, 2014).
Using a decoding method, the visual object category was successfully classified with the ECoG
signals (Majima et al., 2014). Moreover, even non-invasive signals, such as functional magnetic
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resonance imaging (fMRI) and magnetoencephalography
(MEG), were successfully decoded to infer the presented images
of arbitrary characters, the contents of dreaming (Kamitani and
Tong, 2005; Miyawaki et al., 2008; Horikawa et al., 2013), and
the visual object category (Martin et al., 1996; Gauthier et al.,
2000; Carlson et al., 2003; Kiani et al., 2007; Kriegeskorte et al.,
2008; DiCarlo et al., 2012; Van de Nieuwenhuijzen et al., 2013;
Cichy et al, 2014). The decoding method reveals how visual
information was encoded and how it is processed in the brain
(Peelen and Downing, 2007).

Among the numerous types of visual object recognition, the
discrimination of body parts, including the face, is important
for humans and has been studied well previously (Allison et al.,
2000; Downing et al., 2001; Rizzolatti et al., 2001; Buccino et al,,
2004; Peelen and Downing, 2005, 2007; Thierry et al., 2006;
Taylor et al., 2010). In macaques, single neurons in the inferior
temporal (IT) cortex respond to specific categories of body parts
representing the category information (Desimone et al., 1984;
Tsao et al., 2006). In humans, visual representation of the face
and other body parts selectively activates the fusiform body area
(FBA), fusiform face area (FFA), and extrastriate body area (EBA)
located at the posterior fusiform gyrus and at the posterior end of
the IT sulcus, respectively, as observed by fMRI (Downing et al.,
2001; Peelen and Downing, 2005; Bracci et al., 2010; Orlov et al.,
2010). In transcranial magnetic stimulation (TMS) studies, the
EBA was demonstrated as the essential region for the perception
or discrimination of human body parts except the face (Urgesi
et al.,, 2004, 2007; Pitcher et al., 2009). Moreover, it has been
demonstrated that the FFA selectively responds to human faces
(Kanwisher et al., 1997; McCarthy et al., 1997; Gauthier et al,,
1999; Engell and McCarthy, 2014).

Using MEG and electroencephalography, the visual image of
the face and body was shown to activate a selective response
known as M170 and M190, respectively (Thierry et al., 2006;
Peelen and Downing, 2007; Ishizu et al., 2010; Gao et al., 2013;
Cichy et al,, 2014). However, it remains unclear whether these
body perception responses are selective to a particular category
of body parts, such as the hand or the foot. Here we performed a
decoding analysis using the MEG signals recorded while viewing
body parts to reveal the temporal and spatial distribution of
category information related to human body parts.

Magnetoencephalography signals were recorded while the
subjects viewed several images of three categories of body parts
(foot, hand, or mouth) or non-human objects. To elucidate
responses characteristic to the body parts, we analyzed these
signals through a source reconstruction method using Variational
Bayesian Multimodal EncephaloGraphy (VBMEG; Sato et al.,
2004; Yoshioka et al., 2008) and a decoding method using a
support vector machine (SVM). For all subjects, we observed
characteristic MEG responses with dipole patterns on the
occipitotemporal cortex from 140 to 240 ms after the presentation
of images. Using VBMEG, signal sources were identified mainly
in the EBA and FFA. Notably, cortical activities in these areas
varied significantly, responding differently to the three types of
body parts. Moreover, the three categories of body parts were
successfully classified using MEG signals around 190 ms after
the visual stimulations. Therefore, the category of body part was

non-invasively decoded using MEG signals corresponding to a
body-sensitive response. Here we show that even a non-invasive
method can decode the category information of the visual object
with high temporal and spatial resolution.

MATERIALS AND METHODS
Subjects

Nine healthy subjects (one male and eight females; mean
age £ SD: 24.3 + 5.0 years) participated in this study. All
were right-handed (as assessed by the Edinburgh Handedness
Inventory), had normal or corrected-to-normal vision, and
had no history of neurological or psychiatric disorders. The
experiments were conducted according to the principles of
the Declaration of Helsinki, and the experimental procedures
were approved by the Ethics Committee of Osaka University.
Informed consent to participate in the study was obtained from
all subjects.

Visual Stimuli

All subjects were instructed to watch visual stimuli, while the
MEG signals were recorded. The stimuli consisted of 14 simple
white-on-black pictures showing four types of hands, four types
of feet, four types of mouths, and two types of objects. The
pictures of stimuli are shown in Figure 1. Each picture was
presented 40 times (in total 560 presentations per subject). For
each picture presentation, a fixation point was presented for
1000 ms before the picture itself was presented for 500 ms.
Pictures were presented in a pseudo-random order.

Pictures were displayed on a projection screen 325 mm
away from the subjects’ eyes using a visual presentation system
(Presentation, Neurobehavioral Systems, Albany, CA, USA) and
a liquid-crystal projector (LVP-HC6800, Mitsubishi Electric,
Tokyo, Japan). The luminance of each image was adjusted to
a value of 7 to prevent any bias due to luminosity. To reduce
contamination from muscle activities and eye movements, we
instructed the subjects to not move their shoulders and watch
the center of the display without moving their eyes or blinking.
Additionally, to monitor the attention paid by the subjects to
stimuli, we instructed the subjects to press the buttons assigned
to each body-part category when prompted by a directive.
This happened 40 times per task. Some apparent artifacts were
removed before the offline analysis.

MEG Recordings

Neuromagnetic activities were recorded in a magnetically
shielded room with a 160-channel whole-head MEG system
equipped with coaxial type gradiometers (MEG Vision NEO,
Yokogawa Electric Corporation, Kanazawa, Japan). The subject
was lying supine on a bed with his/her head centered. Before and
after recording, the head position was measured with five coils
placed on face (two at the external meatus of each ear and three
points on the forehead). Data were sampled at a rate of 1000 Hz
and filtered with an online low-pass filter at 200 Hz. After data
acquisition, a notch filter at 60 Hz was applied to eliminate the
AC line noise.
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FIGURE 1 | Visual stimulus set. We used 14 white-on-black images of body parts and other objects. There were four images of each body part and two images of

foot

hand

mouth

-
objects.

Analysis of MEG Data

We analyzed epochs from —500 ms before stimulus onset to
500 ms after stimulus onset and applied a band pass filter
from 1 to 30 Hz to the MEG signals. The beginning of the
visual presentation of the picture is referred as time 0 ms. The
baseline correction was made using the epoch between —500 and
—100 ms before stimulus onset. We used 120 channels, except
for the frontal cortex channel, to remove noise attributable to
blinking.

The amplitudes and latencies in the recoded signals to
stimulus were compared for each category to investigate whether
body-sensitive responses were elicited. For the analyzed period,
isomagnetic fields were obtained for each subject. Generally,
isomagnetic fields show a dipole pattern centered around the
occipitotemporal cortex. We call each location of single-current
dipole as “vertex”. The sensor with the maximum negative
component was chosen, and its component was defined as the
peak amplitude in each subject; the timing of the peak amplitude
was defined as the peak latency. The mean amplitude and latency
of all subjects were compared among categories.

The average cortical currents of all subjects in each category
were estimated using VBMEG from the selected signals. We
reconstructed the cortical surface using FreeSurfer image analysis
(Dale et al, 1999). With VBMEG, we estimated 4004 single-
current dipoles that were equidistantly distributed on and
perpendicular to the cortical surface. The method calculated an
inverse filter to estimate the cortical current for each dipole from
MEG sensor signals (Fukuma et al., 2015). The inverse filter was
estimated from MEG signals during the time when the body-
sensitive responses were observed. The filter was then applied
to sensor signals in each trial to calculate cortical currents. The
estimated cortical currents were time-averaged with 20-ms time
window for each vertex.

The time-averaged estimated cortical currents of single trails
of each participant at each location were compared by one-
way analysis of variances (ANOVAs) among the three categories
of different body parts (foot, hand, and mouth) or two
categories from the three body parts (foot/hand, foot/mouth,
and hand/mouth). At each of 4004 locations on the cortex, we
obtained 160 values of time-averaged estimated cortical currents
for each category of the three body parts. The 160 values of
the three or two groups were compared by one-way ANOVA to
obtain F-value. Notably, we performed ANOVA four times for
each subject. One is the ANOVA of three categories of different
body parts. The others are the ANOVA of two categories for each;
(1) foot and hand, (2) foot and mouth, and (3) hand and mouth.
The F-value of ANOVA was estimated for each location. Then,
we averaged the F-values for each location among all subjects for
each comparison. The averaged F-values were color-coded on the
normalized brain surface.

Finally, we calculated the decoding accuracies from the MEG
responses. MEG signals of each sensor were averaged in a 20-
ms time window slid by 10 ms for the period from -100 to
500 ms. Then, these time-averaged amplitudes of each sensor
were used as inputs for the decoding algorithms. The decoding
accuracies of the estimates were evaluated using a 10-fold cross-
validation (Yanagisawa et al., 2009). Using the obtained features,
a linear classifier was estimated by the SVM to infer the category
of the body part presented on a trial-by-trial basis (Fukuma
et al., 2015). The classifier calculated the linearly weighted sum
of the 20-ms time-averaged features of MEG signals plus bias
for each class. Then the class with the maximum value was
chosen as the inferred class. Individual weights and bias for each
class were determined using the SVM applied to a training data
set. The SVM algorithm was implemented using Matlab 2012a
(Mathworks; Natic, MA, USA).
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Here we performed two types of decoding for the same MEG
responses. First, in the “categorical class”, the MEG responses for
the 12 images of body parts were divided into three categorical
classes of body parts. Each class consists of the responses for
four types of images belonging to a single body-parts category
(four images of each row in Figure 1). The body-part category
was inferred by MEG responses using the decoding method. On
the other hand, in the “random class,” the same MEG responses
for twelve images of body parts were divided into three random
classes. Each class consists of four types of image belonging
to three categories of body parts (e.g., one image of foot, one
of hand, and two of mouth). Each of the three groups has
responses for the three body parts. The randomly assigned groups
were classified by the MEG responses using the same decoding
method. Notably, each of the decoding method classified the
MEG responses into three groups (3-choice classification). Then,
we compared the decoding accuracy between the categorical
class, and the random class to evaluate whether the MEG
responses have the information of body-part category.

RESULTS

The body-sensitive responses were captured by MEG signals
while the subjects were viewing four types of images representing
three body parts. The isomagnetic fields from 140 to 240 ms after
stimulus onset showed a clear dipole pattern centered on the
occipitotemporal cortex for all subjects (Figure 2). The largest
mean amplitude was evaluated for each category of visual images:
mouth, hand, foot, or objects. The timing of the peak amplitudes
(latency) and the peak amplitudes were not significantly different
among the categories of visual images (one-way ANOVA; latency,
p = 0.61, amplitude, p = 0.42; Figure 3).

The cortical currents were estimated from the MEG signals by
the source reconstruction technique using VBMEG to identify
the cortical area sensitive to the category of body part. Those
were color-coded on the normalized brain. The average cortical
potential of all subjects was highest around the FBA and EBA at
approximately 190 ms after stimulus presentation (Figure 4).

The variance of the cortical currents among the three
categories or two categories of body parts was evaluated by one-
way ANOVA. The F-values were averaged among all subjects and
color-coded on the reconstructed surface of the normalized brain.
Significant high F-values were obtained around the EBA and FBA
(Figure 5). The high F-values on the occipitotemporal cortex
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FIGURE 3 | Average waveform of the selected channels in each
category for all subjects. There were no differences among categories in
peak amplitudes and latencies.
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FIGURE 2 | Isomagnetic fields of a representative subject at the peak latencies of each category. In all subjects, similar dipole patterns were observed
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FIGURE 4 | Average cortical current of responses to each body part from 180 to 200 ms after stimulus onset. The average cortical currents from 180 to
200 ms are color-coded on the normalized brain surface. The cortical currents estimated from MEG signals of each subject and averaged from 180 to 200 ms. The
time-averaged cortical currents were averaged within the three different body-part categories for each subject. Then, those averaged cortical currents were averaged
among all subjects. The activation were observed around the FBA and EBA in each category.
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FIGURE 5 | Average F-values of all subjects calculated by one-way ANOVA among categories of body parts. The F-value of one-way ANOVA was
evaluated among three categories or two categories of the body parts at each vertex of cortical surface in each subject. Then we averaged all F-values in each
subject. The group average F-values of the three Body part categories and of the contrast between pairs of two body parts are color-coded on normalized brain.
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clearly demonstrated that the cortical currents significantly varied
between at least two types of body parts. Moreover, showing
foot/hand, foot/mouth, and hand/mouth combinations induced
similar pattern of results, although the variances were larger when
the “mouth” category was included. These results suggest that
the cortical currents on the occipitotemporal cortex are activated
selectively for categories of body parts.

Further, using decoding techniques, body-part categories,
including different types of visual images, were successfully
classified by the MEG signals of each single trial. Starting

from 100 and peaking at 160 ms, the accuracy of “categorical
class” was 47.9 + 59% for classifying three categories of
body images and significantly exceeded the rate that would
occur by chance (33.3%), (n = 9, binomial test; p < 0.01).
Alternatively, the accuracy of “random class” peaking with
35.7 £ 1.6% did not significantly exceed chance level (n = 9,
binomial test; p > 0.05). Moreover, the accuracy of “random
class” was significantly lower compared with that of “categorical
class” from 160 to 240 ms (n = 9, student’s t-test; p < 0.01;
Figure 6).
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FIGURE 6 | Classification accuracies. Error bars indicate 95% confidence intervals. The accuracy of the categorical class from 160 to 240 ms was significantly

DISCUSSION

This study has demonstrated that the MEG signals during
perception of body images significantly varied among each
category of the body part at a level suitable to be classified by a
decoding method in a single trial. The responses showed some
characteristics of M190 responses and significantly varied among
the body parts. Moreover, the significantly variable regions, which
was shown with the high F-values of ANOVA, were located in the
body-selective regions including EBA and FBA/FFA (Downing
etal., 2001; Peelen and Downing, 2005; Thierry et al., 2006; Ishizu
et al., 2010).

Using the MEG signals from 160 to 240 ms, the “categorical
class” group was successfully classified with significant high
accuracy compared with a chance level or “random class” group.
This result suggests that the MEG signals from 160 to 240 ms
selectively respond to categories of body parts and not only to
a specific image of a body part.

The “categorical class” group includes category information
of body parts, while the “random class” group does not.
The presence of category information certainly contributed to
the high accuracy of “categorical class.” As the accuracy of
“categorical class” was significantly high from 160 to 240 ms,
this suggests that the response at this time interval is involved
in categorization of body parts. The timing of this response
corresponds to the body-sensitive responses timing in previous
studies (Thierry et al., 2006; Peelen and Downing, 2007; Ishizu
et al., 2010; Meeren et al., 2013). Moreover, the responses of
the EBA and FBA/FFA varied significantly among body-part
categories with high F-values of ANOVA (Figure 4). These were
consistent with the previous studies that have shown that the
responses in these area were specific to the body parts (Bracci
et al., 2010; Orlov et al., 2010). Overall, our study and previous

studies suggest that body-sensitive responses at the EBA and
FBA/FFA are involved in the discrimination of the body-part
categories and the responses include category information of
body parts.

Notably, among the three categories of body parts, the
mouth category showed significant difference compared with
the other categories. The variance of the cortical currents was
evaluated between each pair of three categories: foot/mouth,
hand/mouth, and foot/hand. The significant variance of cortical
currents was observed around fusiform area with high F-values
for the comparison of foot/mouth and hand/mouth. These
results showed the responses to mouth around fusiform area
were significantly different from those to foot and hand. These
results are consistent with the previous studies demonstrating
that the FFA responds selectively to human faces (Kanwisher
et al,, 1997; McCarthy et al., 1997; Gauthier et al., 1999; Engell
and McCarthy, 2014). Thus, body sensitive responses occurring
at the EBA and FBA/FFA possess enough information for
classifying the body parts including face into the particular
category.

Although previous studies in humans and non-human
primates have shown body-selective neural responses in
occipitotemporal areas (Kiani et al, 2007), our results
demonstrate for the first time that the category information
of the body parts can be non-invasively evaluated, with
high temporal and spatial resolution, even in a single trial
response. Using a decoding technique to analyze MEG signals,
the representation and processing of visual information is
determined at high spatiotemporal resolution. The differences
in low-level properties, such as rough shapes for each body
parts, might be responsible for decoding accuracies in this study.
However, the high accuracy timing was close to 190 ms and
responding regions for each body part were near to the EBA.
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Thus, it is the category information of body parts that was most
likely to contribute to the decoding accuracy.

Notably, being able to decode categorical information, as
in our study, is an important step in the context of brain-
machine interface (BMI) research (Yanagisawa et al., 2011; Sugata
et al., 2012). Successful decoding of a visual objective category
demonstrates the possibility to infer the category of any arbitrary
visual image. A decoder trained on a finite number of images
cannot decode a random arbitrary visual image because there are
infinite variations of images in the world. However, using our
decoding method, we can infer the category of an image that was
not used in the training of the decoder. Therefore, our method
will contribute to enhance the BMI performance by providing
arbitrary object recognition.
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