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To investigate cortical roles in standing balance, cortical hemodynamic activity was 
recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while sub-
jects underwent the sensory organization test (SOT) protocol that systematically disrupts 
sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven 
healthy men underwent the SOT during NIRS recording. Group statistical analyses were 
performed based on changes in oxygenated hemoglobin concentration in 10 different 
cortical regions of interest and on a general linear analysis with NIRS statistical parametric 
mapping. The statistical analyses indicated significant activation in the right frontal oper-
culum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), 
right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and 
the supplementary motor area (SMA) under various conditions. The activation patterns 
in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, 
and STG are essential for sensory integration when standing balance is perturbed; (2) 
the SMA is involved in the execution of volitional action and establishment of new motor 
programs to maintain postural balance; and (3) the PPC and PMC are involved in the 
updating and computation of spatial reference frames during instances of sensory con-
flict between vestibular and visual information.

Keywords: nirs, dynamic posturography, sensory conflict, vestibular cortices, supplementary motor cortex, 
spatial reference frames, premotor cortex, posterior parietal cortex

inTrODUcTiOn

For the maintenance of upright position stability, the convergence of sensory information from 
multiple inputs, such as vestibular, somatosensory, and visual information that provides signals for 
the detection of the body’s position in space, is important. The neural systems that regulate postural 
orientation and equilibrium continually integrate a large array of sensory inputs and coordinate 
multiple motor outputs to muscles throughout the body (Lockhart and Ting, 2007; Ting, 2007). The 
neural mismatch (i.e., sensory conflict) among these three sensory inputs elicits vertiginous sensation 
and postural instability (Brandt, 1999). For example, sudden unilateral loss of vestibular function, 
such as with vestibular neuritis, causes immediate ataxia and severe postural instability, and some 

http://www.frontiersin.org/Human_Neuroscience/
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2015.00620&domain=pdf&date_stamp=2015-11-17
http://www.frontiersin.org/Human_Neuroscience/archive
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2015.00620
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:hshojaku@med.u-toyama.ac.jp
http://dx.doi.org/10.3389/fnhum.2015.00620
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00620/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00620/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00620/abstract
http://www.frontiersin.org/Journal/10.3389/fnhum.2015.00620/abstract
http://loop.frontiersin.org/people/246531/overview
http://loop.frontiersin.org/people/26080/overview
http://loop.frontiersin.org/people/130276/overview
http://loop.frontiersin.org/people/245406/overview


November 2015 | Volume 9 | Article 6202

Takakura et al. Cortical Activities in Postural Balance

Frontiers in Human Neuroscience | www.frontiersin.org

patients suffer from residual instability after the process of ves-
tibular compensation (Horak, 2009; Peterka et al., 2011). Motion 
sickness is generated either by unfamiliar body  accelerations or 
by intersensory mismatch between vestibular and visual stimuli 
and induces an unpleasant illusion of movement (Brandt, 1999; 
Keshavarz et  al., 2015). In nature, sensory signals of different 
modalities are in general redundant and plastic to ensure delivery 
of appropriate environmental information to the central nerv-
ous system (CNS) (Day and Guerraz, 2007). In a situation of 
sensory conflict, one distorted or unavailable sensory modality 
is chosen over the other modalities to maintain postural balance 
(Dickstein et al., 2001) or can even override all other modalities 
(Diedrichsen et  al., 2007). Thus, it is now generally acceptable 
that visual, vestibular, and somatosensory inputs are dynamically 
reweighted to maintain upright stance as environmental or nerv-
ous system conditions change, and this phenomenon is referred 
to as “sensory reweighting” (Assländer and Peterka, 2014; Logan 
et  al., 2014). Previous functional imaging studies reported that 
activation or inhibition in vestibular cortices was found according 
to cognitive demands during self-motion perception and sug-
gested that cortical cognitive processes are involved in sensory 
reweighting in a situation of sensory conflict (Brandt et al., 1998; 
Deutschländer et al., 2002; Bense et al., 2005). These results suggest 
that vestibular cortices might be one of the key regions for corti-
cal processing to maintain postural balance in sensory conflict. 
However, positron emission tomography (PET) or functional 
magnetic resonance imaging (fMRI) was used in those studies, 
and participants were not required to maintain a standing balance. 
Therefore, it is unclear how vestibular cortices are involved in  
maintaining postural balance in a situation of sensory conflict.

The traditional view suggests that balance control occurs at 
a very automatic level, primarily involving the spinal cord and 
brainstem. However, there is growing evidence that the cerebral 
cortex and cognitive processing are involved in controlling specific 
aspects of balance (Maki and McIlroy, 2007). For example, a high 
incidence of falls has been found in patients with cortical lesions 
or cognitive deficits (De Vincenzo and Watkins, 1987; Mion et al., 
1989; Vlahov et al., 1990; Rapport et al., 1993). Furthermore, a 
response to an unpredictable perturbation requires an online 
response modification based on a subject’s intentions (i.e., online 
use of cortical influence) (Jacobs and Horak, 2007). Recent 
human studies suggested the involvement of cortical structures, 
such as the supplementary motor area (SMA), anterior cingulate 
cortex (ACC), and posterior parietal cortex (PPC), during control 
of balance and posture (Mihara et al., 2008; Varghese et al., 2014; 
Hülsdünker et  al., 2015). Previous studies have suggested that 
the SMA is involved in establishing motor programs (Picard and 
Strick, 1996), preparation for foot movement (Sahyoun et  al., 
2004), human locomotion (Miyai et al., 2001), and human bal-
ance control (Mihara et al., 2008). The ACC is involved in error 
detection and processing during balance control (Sipp et al., 2013; 
Hülsdünker et al., 2015), and the PPC receives multimodal inputs 
from somatosensory, vestibular, and visual systems. The PPC is 
a key region for sensory information processing and sensorimo-
tor transformation processes (Reichenbach et  al., 2014). Thus, 
involvement of the frontal and parietal cortices might be crucial 
during balance control. However, it is unclear how the frontal, 

especially the motor-related, and posterior parietal cortices are 
involved in postural balance activities in sensory conflict.

Computerized dynamic posturography (CDP), which was 
originally developed by Nashner (1970), Nashner et  al. (1989) 
provides an objective assessment of balance control and postural 
stability under dynamic test conditions. As a part of CDP, the 
sensory organization test (SOT) protocol systematically disrupts 
sensory integration processes (i.e., somatosensory or visual 
inputs or both) while measuring a subject’s ability to maintain 
equilibrium. The SOT has been used extensively in both research 
and clinical practice (Black et al., 1995; Di Fabio, 1995; Cohen 
et al., 1996; Shahal et al., 1999; Allum et al., 2002; Ferber-Viart 
et al., 2007; Wrisley et al., 2007; Ray et al., 2008; Honaker et al., 
2009; Leitner et al., 2009). In the SOT, information received from 
the patient’s eyes, feet, and joints that is useful for the mainte-
nance of equilibrium can be effectively canceled by means of the 
calibrated “sway referencing” of the support surface (floor) on 
which the patient stands and/or the visual surround around the 
patient (i.e., the support surface and/or the visual surround tilts 
to directly follow the patient’s anterior–posterior body sway so 
that sensory organs do not detect the changes). By controlling 
the sensory (visual and proprioceptive) information through 
sway referencing with the eyes open or closed, the SOT protocol 
systematically eliminates the efficacy of visual and/or proprio-
ceptive information. Thus, the SOT protocol can create different 
scenarios of sensory conflict.

Near-infrared spectroscopy (NIRS), one of the functional 
neuroimaging techniques, detects differences in the absorption 
spectra of oxygenated hemoglobin (Oxy-Hb) versus deoxygen-
ated hemoglobin (Deoxy-Hb) in the near-infrared spectrum 
range. Among the various neuroimaging techniques, functional 
NIRS (fNIRS) can non-invasively facilitate the measurement 
of task-related cortical responses (Jöbsis, 1977; Colacino et  al., 
1981). In terms of the subject’s motion, the imaging technique is 
relatively robust. Accordingly, fNIRS is suitable for investigating 
the cortical control of postural balance (Mihara et al., 2008).

In the present study, we recorded brain hemodynamic activ-
ity during the control of postural balance in the SOT using a 
multichannel NIRS system to investigate the cortical cognitive 
processes during instances of sensory conflict in postural balance 
activities. A previous study investigated hemodynamic changes 
during CDP using fNIRS and reported that there were bilateral 
activations in the temporal-parietal areas [superior temporal 
gyrus (STG) and supramarginal gyrus (SMG)] when both vision 
and proprioceptive information were degraded (Karim et  al., 
2013). However, the recorded cortical regions were limited to the 
bilateral temporal areas, and the involvement of the motor and 
parietal cortices in the control of postural balance during CDP 
was unknown. In our study, we decided to record hemodynamic 
responses from more extended cortical areas including the tem-
poral, frontal, and parietal cortices in the right hemisphere.

Analyses of spontaneous hemodynamic fluctuations observed 
in fMRI or NIRS have revealed temporal correlations in signal 
changes between widely separated brain regions during the rest-
ing state, termed “resting-state functional connectivity” (Liu et al., 
2008; Lu et al., 2010; Sasai et al., 2011, 2012). Functional connec-
tivity is characterized in fMRI by a temporal correlation between 
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two raw time series with “low frequency (0.01–0.1  Hz), which 
is separable from respiratory (0.1–0.5  Hz) and cardiovascular 
(0.6–1.2 Hz) signal frequencies (Cordes et al., 2001) and reflects 
a level of functional communication between regions (van den 
Heuvel and Hulshoff Pol, 2010). A recent study showed that NIRS 
can collect information regarding resting-state networks defined 
in fMRI (Sasai et  al., 2012). Furthermore, other recent studies 
investigated task-relevant changes of functional connectivity dur-
ing working memory tasks (Sala-Llonch et al., 2012) and during 
motor tasks (Bajaj et al., 2014). We also analyzed changes of func-
tional connectivity between the frontal, parietal, and temporal 
cortices during postural balance in a situation of sensory conflict.

We would expect the following changes in cortical activities 
during instances of sensory conflict in postural balance: (1) 
when only vestibular inputs are normal, but somatosensory and 
visual inputs are disrupted or absent in SOT conditions 2–6, 
sensory reweighting to the vestibular input would be induced, 
and activations in the vestibular cortices would be stronger along 
with increases in conflict due to disrupted or absent inputs (i.e., 
SOT5 and 6); (2) the frontal and parietal cortices would activate 
more strongly along with increases in conflict due to disrupted 
or absent inputs (i.e., SOT5 and 6); and (3) in functional con-
nectivity analyses, network correlations among the vestibular, 
frontal, and parietal cortices would be increased during postural 
balancing in sensory conflict. The magnitudes and patterns of 
network activities in each SOT would be different.

MaTerials anD MeThODs

subjects and Tasks
Eleven healthy men [aged 33.4 ± 7.4 (mean ± STD) years, all right 
handed] were enrolled in this study. All subjects were treated in 
strict compliance with the Declaration of Helsinki and the U.S. 
Code of Federal Regulations for the protection of human subjects. 
The experiments were conducted with the full consent of each 
subject using a protocol approved by the ethical committee for 
human experiments of the University of Toyama.

Tasks
Each subject performed the EquiTest® SOT (Version 5.08b, 
NeuroCom International, Inc., Clackamas, OR, USA), which 
provides an extremely sensitive objective assessment of the 
main sensory systems involved in balance and stability. The SOT 

protocol sets up six conditions that systematically disrupt the sen-
sory integration processes (i.e., proprioceptive or visual inputs or 
both) while measuring a subject’s ability to maintain equilibrium. 
The six sensory conditions evaluate the relative contributions of 
vision and vestibular and somatosensory inputs in the balance 
function (Table  1). Under SOT condition 1 (SOT1), all three 
sensory systems were operational while the participant stood on 
a fixed platform with his eyes open, and a baseline measure of 
stability was obtained. SOT2 was the same as the SOT1, except 
that the eyes were closed. SOT3 was similar to SOT1, but the 
visual surround moved to track the participant’s sway, which 
provided inaccurate orientation cues. Under SOT4, the subject 
stood with his eyes open and the visual surround fixed, but the 
platform moved in response to his/her sway so that the ankle 
joints did not bend along with the sway, providing an inaccurate 
proprioceptive input to the brain. SOT5 was identical to SOT4, 
except that the eyes were closed, so that only the vestibular system 
was fully operational. SOT6 was the same as SOT4, except that 
the visual surround moved along with the participant’s sway, and 
thus both vision and proprioception were compromised, leaving 
the vestibular system as the only reliable sensory source.

In this study, each subject completed five trials under each 
condition. Each trial lasted 20 s, and each intertrial interval was 
set for more than 60 s. During the intertrial interval, each subject 
stood on a fixed platform with his eyes open and with the three 
sensory systems operational (i.e., under the same conditions as 
SOT1). After completing three trials under the six SOT condi-
tions, the subjects rested for a few minutes to recover from their 
fatigue. Thus, this task involved 30 trials overall and typically 
lasted about 60 min.

fnirs recording
A head cap (FLASH-PLUS; Shimadzu Co., Ltd., Japan) for fNIRS 
was placed on the subject’s head. The two optodes (the source 
and the detector) of the fNIRS-imaging system (OMM-3000; 
Shimadzu Co., Ltd.; 15 sources, 16 detectors, and 50 channels) 
were then attached to the parietal and right temporal parts of 
the head cap (Figure 1A). We could not record hemodynamic 
responses from whole cortical areas with our NIRS system. 
Therefore, we decided to record them from the right hemisphere 
in this study because a previous study indicated the dominance 
for vestibular cortical functions in the non-dominant hemisphere, 
i.e., in the right hemisphere of right-handed subjects (Dieterich 
et al., 2003).

TaBle 1 | The six experimental conditions of the sensory Organization Test (sOT).

sOT Vision Platform Visual surround accurate sensory  
inputs

compromised  
sensory inputs

1 Eyes open Fixed Fixed Vest, Vis, Som None

2 Eyes closed Fixed Fixed Vest, Som None

3 Eyes open Fixed Sway-referenced Vest, Som Vis

4 Eyes open Sway-referenced Fixed Vest, Vis Som

5 Eyes closed Sway-referenced Fixed Vest Som

6 Eyes open Sway-referenced Sway-referenced Vest Vis, Som

Vest, vestibular; Vis, visual; Som, somatosensory.
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The distance between the NIRS source and the detector was 
set at 3 cm, and the optodes were positioned crosswise from each 
other. Hemodynamic responses were measured at the midpoints 
between the source and detector, which were called “NIRS chan-
nels.” Three different wavelengths (780, 805, and 830 nm), each 
with a pulse width of 5 ms, were used to detect hemodynamic 
responses. The details of the head cap and the systems have been 
described previously (Takeuchi et al., 2009; Takamoto et al., 2010; 
Takakura et al., 2011). After the recording, the three-dimensional 
(3-D) locations of the optodes were measured by a 3-D Digitizer 
(Nirtrack; Shimadzu Co., Ltd.) in reference to the nasion and 
bilateral external auditory meatus.

FigUre 1 | an illustration of the arrangement of the optodes (sources 
and detectors) and recording channels (a) and a schema of the 
10 regions of interest (rOis) for the group-averaged nirs data 
analysis (B). f-Op, right frontal operculum/inferior frontal gyrus; p-Op, right 
parietal operculum; FEF, frontal eye field; SMG, right supramarginal gyrus; 
AG, right angular gyrus; STG, right superior temporal gyrus; l-SMC, lateral 
part of the sensorimotor cortex in the right hemisphere; m-SMC, medial part 
of the sensorimotor cortex; SPL, superior parietal lobule; SAC, 
somatosensory association cortex; SMA, supplementary motor area.

To estimate the anatomical locations of the optodes and the 
NIRS channels, we used the “Spatial registration of NIRS channel 
locations” function of the NIRS-SPM (statistical parametric map-
ping) Version 3.0 software, which is an SPM5- and MATLAB-
based software package for the statistical analysis of NIRS signals 
freely downloadable from http://bisp.kaist.ac.kr/NIRS-SPM 
(Ye et al., 2009). Using the “Stand alone” option [without using 
magnetic resonance imaging (MRI) images], we estimated the 
spatial representation of the NIRS channel locations on the nor-
malized brain surface (Friston et al., 1995; Ashburner et al., 1997; 
Ashburner and Friston, 1999) using a Montreal Neurological 
Institute (MNI) brain template, which corresponds to the space 
described by Talairach and Tournoux (1998). In each subject, 
the estimated locations of the NIRS channels were anatomically 
labeled using the 3-D digital brain atlas known as “Talairach 
daemon” (Lancaster et al., 2000), which is incorporated into the 
NIRS-SPM.

The MRI images of the heads of some subjects were used later 
to reconstruct a realistic 3-D head model, and the location of each 
NIRS channel and topographical maps of the changes in Oxy-Hb 
concentration were superimposed on the surface of the 3-D MRI 
reconstructed brain of those subjects with Fusion 3-D imaging 
software (Shimadzu Co., Ltd.).

regions of interest
In this study, we divided the NIRS channels into several groups 
that covered the different cortical regions of interest (ROIs) 
(Figure 1B). We created 10 ROIs on the brain surface: the right 
frontal operculum/inferior frontal gyrus (f-Op), the right parietal 
operculum (p-Op), the frontal eye field (FEF), the right SMG, the 
right angular gyrus (AG), the right STG, the lateral part of the 
sensorimotor cortex in the right hemisphere (l-SMC), the medial 
part of the sensorimotor cortex (m-SMC), the superior parietal 
lobule (SPL), and the SMA. Each ROI included two to four NIRS 
channels according to the number of anatomically estimated 
channel locations in the MNI template. A schematic presentation 
of these brain regions is shown in Figure 2.

One of our great interests is how the vestibular cortex acti-
vates under each SOT condition. It is now generally accepted 
that there is no primary vestibular cortex that exclusively 
receives vestibular afferents, and several multimodal sensory 
areas have been identified as vestibular cortical areas (Brandt 
and Dieterich, 1999; Lopez and Blanke, 2011). A systematic 
review of human imaging studies on the vestibular cortex indi-
cated that the posterior insula and temporoparietal junction, 
anterior insula, PPC, precuneus, middle and superior frontal 
gyri, somatosensory cortex, cingulate gyrus, and hippocampus 
were activated by various vestibular stimulations (Lopez and 
Blanke, 2011). Therefore, we set up the ROIs (i.e., p-Op, STG, 
AG, f-Op, SMG, SPL, FEF, and l-SMC) to cover these cortical 
areas except for the deeper parts of the brain (i.e., the cingulate 
cortex and hippocampus). The m-SMC was selected to compare 
the activities with that in the l-SMC. We also selected the SMA 
as a ROI because our second interest is how the frontal motor 
cortices, especially the SMA, and parietal cortex activate under 
each SOT condition.
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Data analysis
Analysis of EquiTest® Posturography Data
To evaluate the subject’s postural stability during each SOT condi-
tion, the equilibrium score was used in this study. The subject’s 
sway was calculated from the maximum anterior and posterior 
centers of gravity displacements over the 20-s trial period. 
Maximum displacement without losing balance was assumed to be 
within a range of 12.5° (6.25° anterior, 6.25° posterior). The equi-
librium score was calculated according to the following formula: 
equilibrium score = {12.5 − [(the maximum anterior sway angle 
in degrees during a trial) − (the maximum posterior sway angle 
in degrees during the same trial)]} × 100/12.5 (Chaudhry et al., 
2004). Equilibrium scores were then expressed as percentages, 
with 0 indicating sway exceeding the limits of stability and 100 
indicating perfect stability. The mean equilibrium score for five tri-
als under each SOT condition was calculated for each subject. The 
data of mean equilibrium scores were analyzed by one-factorial 
repeated-measures ANOVA with SOT as the within-subject vari-
able. The level of statistical significance was set at P < 0.05. These 
statistical analyses were performed with a commercial statistical 
package (IBM SPSS Statistics Version 22.0, IBM Corporation).

FigUre 2 | locations of the recording channels and 10 regions of 
interest (rOis) on a 3-D Mri reconstruction of the brain of one of the 
subjects. (a,B) indicate the top and right views of the brain, respectively. 
The red and green lines indicate the central sulcus and right Sylvian fissure, 
respectively. f-Op, right frontal operculum/inferior frontal gyrus; p-Op, right 
parietal operculum; FEF, frontal eye field; SMG, right supramarginal gyrus; 
AG, right angular gyrus; STG, right superior temporal gyrus; l-SMC, lateral 
part of the sensorimotor cortex in the right hemisphere; m-SMC, medial part 
of the sensorimotor cortex; SPL, superior parietal lobule; SAC, 
somatosensory association cortex; SMA, supplementary motor area.

Analysis of Hemodynamic Responses
In the present study, we focused on changes in Oxy-Hb con-
centration, which has been reported to be sensitive to neuro-
hemodynamic relationships (Hoshi et  al., 2001; Strangman 
et  al., 2002; Yamamoto and Kato, 2002). The NIRS data were 
summed and averaged with reference to the onset of each SOT 
trial. Furthermore, the effect size was calculated to adjust for the 
influences of different path length factors among the different 
subjects and cortical regions (Schroeter et al., 2003; Suzuki et al., 
2008). The effect sizes of the hemodynamic responses were cal-
culated according to the following formula: effect size = [(mean 
Oxy-Hb levels during each SOT for 20 s) − (mean Oxy-Hb levels 
during the rest period for 20 s before the start of each SOT)]/
(standard deviation of Oxy-Hb levels during the rest period of 
20 s before the start of each SOT). For each channel, the effect 
sizes of five trials were averaged. The effect sizes in all of the NIRS 
channels within the same ROI were averaged in each subject for 
each SOT condition.

Statistical Analysis of Changes in Oxy-Hb
The data of the effect sizes in Oxy-Hb concentration were 
analyzed by two-factorial ANOVA with repeated-measures 
[the SOT condition (SOT1-6: within-subject factors) × the ROI 
(within-subject factor)]. The Greenhouse–Geisser adjustment to 
the degrees of freedom was applied to all ANOVA to correct for 
the violation of the assumption of sphericity. When significant 
interactions were found, post hoc tests were performed using tests 
for the simple effect of one-factorial ANOVA and/or the Fisher 
protected least significant difference test. The level of statistical 
significance was set at P < 0.05. These statistical analyses were 
also performed with IBM SPSS Statistics Version 22.0 (IBM 
Corporation).

Statistical Analysis Based on the General  
Linear Model
Group statistical analyses using NIRS-SPM were also performed 
for each SOT condition. Based on the general linear model 
(GLM) and Sun’s tube formula/Lipschitz–Killing curvature-based 
expected Euler characteristics, NIRS-SPM not only provides acti-
vation maps of Oxy-Hb, Deoxy-Hb, and total hemoglobin but also 
allows for super-resolution activation localization. More details 
are described in Ye et al. (2009) and Li et al. (2012). The GLM is a 
statistical linear model that explains data as a linear combination 
of an explanatory variable plus an error term. Because the GLM 
measures the temporal-variational pattern of signals rather than 
their absolute magnitude, it is more robust in many cases, even for 
those signals with an incorrect diffusion path length factor or with 
severe optical signal attenuation due to scattering or poor contact 
(NIRS-SPM users’ guide). The level of statistical significance was 
set at P < 0.05 (uncorrected) in this study.

To estimate the 3-D localization of the activated cortical 
regions on the normalized brain from the results of the group 
analysis, the following analyses were also performed: (i) a total of 
550 anatomical locations of NIRS channels were estimated for all 
subjects using the “Spatial registration of NIRS channel locations” 
function of NIRS-SPM; (ii) the T-values at the coordination of the 
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NIRS channels under all SOT conditions were estimated for all 
subjects from the T-value map of group statistical analyses using 
NIRS-SPM; (iii) all of the estimated locations of the NIRS chan-
nels were anatomically labeled using the 3-D digital brain atlas 
known as the Talairach daemon (Lancaster et al., 2000), which 
is incorporated into NIRS-SPM; and (iv) the NIRS channel that 
showed the highest T-value in the same anatomical brain region 
was postulated to be the representative 3-D location of the region.

Analysis of Functional Connectivity Between 
Activated Cortical Regions in SOTs
Functional connectivity was analyzed to elucidate the cortical 
network activity in the SOTs. First, all channels in activated 
cortical regions indicated in the group statistical analysis using 
NIRS-SPM were selected using the Talairach daemon. A band-
pass Fourier filter (0.01–0.1  Hz) in the raw time series of the 
Oxy-Hb signals was used to remove long-term baseline drift and 
higher frequency cardiac or respiratory activity (Cordes et  al., 
2001; Lu et al., 2010). After these processes, for a given pair of 
ROIs in each subject, we calculated cross-correlations of NIRS 
signals between all possible channel pairs because each ROI 
included multiple channels. Then, the highest value was used as 
a coefficient between the given pair of ROIs. We calculated mean 
coefficients among all subjects in each pair of brain regions and 
mapped mean coefficients >0.6 (Sasai et al., 2011) as significant 
functional connectivity in each SOT.

For statistical comparison, all coefficients were converted 
to z scores using Fischer’s z transformation. The z score data 
were analyzed by two-factorial ANOVA with repeated-measures 
[the SOT condition (SOT1-6: within-subject factors) × the pair 
of regions (within-subject factors)]. When significant interac-
tions were found, post hoc tests were performed using tests for 
the simple effect of one-factorial ANOVA and/or the Fisher 
protected least significant difference test. The level of statistical 
significance was set at P < 0.05. These statistical analyses were 
also performed with IBM SPSS Statistics Version 22.0 (IBM 
Corporation).

resUlTs

Posturography Data in sOT
Figure 3 depicts anterior–posterior body sway in a representative 
subject under each SOT condition. Anterior–posterior deflec-
tions of the center of gravity in five trials are overlaid for each SOT 
condition (Figures  3A–F). The data indicated stronger deflec-
tions in SOT4–6 than in SOT1–3. Repeated-measures one-way 
ANOVA with Greenhouse–Geisser adjustment indicated that a 
significant main effect of the SOT was found [F(5,50) = 28.348, 
P < 0.001]. Post hoc tests with the Fisher protected least signifi-
cant difference test indicated that anterior–posterior deflections 
were significantly stronger in SOT4–6 than in SOT1–3 and were 
stronger in SOT5 and 6 than in SOT4 (Figure 3G).

hemodynamic responses to sOT
Hemodynamic responses in a representative subject in 10 ROIs 
under the various SOT conditions are shown in Figure 4. Oxy-Hb 

and total Hb concentrations in the f-Op, p-Op, and STG around 
the Sylvian fissure were increased under SOT2, 3, 5, and 6, 
and especially under SOT5 and 6. These Oxy-Hb and total Hb 
responses were gradually decreased after the end of the task. 
Recognizable hemodynamic responses were not found in any of 
the ROIs under SOT1.

statistical analyses of the nirs Data
To analyze the statistical significance of the hemodynamic 
responses among the SOTs, the effect sizes in Oxy-Hb concentra-
tion were analyzed by two-way ANOVA (SOT × ROI). A signifi-
cant main effect of ROI [F(9,90) = 16.128, P < 0.001, ϵ = 0.311] 
and a significant interaction of SOT × ROI [F(45,450) = 5.658, 
P < 0.001, ϵ = 0.116] were observed.

Subsidiary statistical analyses performed using one-
way ANOVA in individual ROIs indicated that significant 
main effects of the SOT conditions were found in the p-Op 
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FigUre 5 | comparison of hemodynamic responses [effect sizes in 
Oxy-hb concentration during each sensory organization test sOT)] 
among the six sOT conditions in the right frontal operculum/inferior 
frontal gyrus (f-Op) (a), right parietal operculum (p-Op) (B), and right 
superior temporal gyrus (sTg) (c). These three ROIs indicated significant 
main effects of the SOT conditions in subsidiary statistical analyses after 
two-factorial ANOVA with repeated-measures (SOT condition × ROI). ***, **, 
*Significant difference between different SOT conditions in post hoc tests at 
P < 0.001, P < 0.01, and P < 0.05, respectively.

FigUre 4 | examples of the hemodynamic responses (changes in 
Oxy-hb, Deoxy-hb, and total hb concentrations) in all 10 regions of 
interest (rOis) under the six sensory organization test (sOT) 
conditions in a representative subject. Red, green, and blue lines 
indicate changes in Oxy-Hb, total Hb, and Deoxy-Hb levels, respectively. 
Black horizontal bars indicate the 20-s time periods of the SOT.
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[F(5,50) = 5.992, P < 0.001], f-Op [F(5,50) = 4.684, P < 0.01], 
and STG [F(5,50) =  9.603, P <  0.001]. Post hoc multiple com-
parisons using a Fisher protected least significant difference 
test indicated that in f-Op, the hemodynamic activities under 
SOT5 and 6 were significantly larger than those under SOT1-3 
(Figure 5A). In p-Op, the hemodynamic activities under SOT5 
and 6 were significantly larger than those under the SOT1, 3, and 
4 (Figure 5B). Furthermore, that under SOT2 was significantly 
larger than that under SOT1 and smaller than that under SOT6 
(Figure 5B). In the STG, the hemodynamic activities under SOT5 
and 6 were significantly larger than those under SOT1, SOT3, and 
SOT4 (Figure  5C). Furthermore, the activity under SOT2 was 
significantly larger than that under SOT1 and smaller than that 
under SOT5 (Figure 5C).

The results of the group statistical analyses based on the GLM 
with NIRS-SPM are shown in Figure 6 (top view) and Figure 7 
(side view). The statistical results are also listed in Table 2. The 
topographical maps indicated significant activation in the right 
p-Op and STG under SOT2, 4, 5, and 6. The right f-Op was also 

activated under SOT2, 5, and 6. Under SOT3, the right SMG 
and the right dorsal premotor cortex (d-PMC) were activated. A 
significant activation in the SMA was also observed under SOT5 
and 6. Furthermore, the right ventral premotor cortex (v-PMC) 
and d-PMC were also activated under SOT6.

Functional connectivities among 
activated cortical regions
We analyzed functional connectivities between activated cortical 
regions using group statistical analysis with NIRS-SPM (i.e., f-Op, 
d-PMC, v-PMC, SMA, SPL, SMG, p-Op, and STG). The highest 
coefficients in all 28 pairs of regions were selected as functional 
connectivities in each subject. Figure 8 illustrates pairs of regions 
greater than a threshold (r > 0.6) in each SOT. There were high 
functional connectivities between cortical regions around the 
Sylvian fissure and the v-PMC. Furthermore, there were high con-
nectivities between the parietal cortical regions (i.e., SPL and SMG) 
and frontal cortical regions (i.e., SMA, d-PMC, and v-PMC). The 
networks to maintain postural balance during the SOT showed 
almost the same patterns in all six SOT conditions (Figure 8).

To analyze the statistical significance of the functional con-
nectivities among the six SOT conditions, two-way ANOVA 
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FigUre 7 | The results of the group analyses using nirs-sPM are 
shown in the right-side views of the normalized brain surface. The 
cortical regions are activated under sensory organization test (SOT) 
conditions 2–6 (a-e). The color scales represent the statistical significance of 
the T-values. f-Op, right frontal operculum/inferior frontal gyrus; p-Op, right 
parietal operculum; SMG, right supramarginal gyrus; STG, right superior 
temporal gyrus; d-PMC, dorsal premotor cortex in the right hemisphere; 
v-PMC, ventral premotor cortex in the right hemisphere.

FigUre 6 | The results of the group analyses using nirs-sPM shown 
in the top views of the normalized brain surface. The cortical regions are 
activated under sensory organization test (SOT) conditions 2–6 (a-e). The 
color scales represent the statistical significance of the T-values. d-PMC, 
dorsal premotor cortex in the right hemisphere; SPL, superior parietal lobule; 
SMA, supplementary motor area.
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(SOT  ×  region pair) was performed. There was a significant 
main effect of region pair [F(27,270) = 22.731, P < 0.001] and a 
significant interaction of SOT × region pair [F(135,1350) = 1.725, 
P < 0.001]. Subsidiary one-way ANOVA in individual region pairs 
indicated that significant main effects of the SOT conditions were 
found in the pairs between p-Op and v-PMC (p-Op_v-PMC) 
[F(5,50) = 2.852, P < 0.05], between p-Op and STG (p-Op_STG) 
[F(5,50) = 4.105, P < 0.01], and between f-Op and STG (f-Op_
STG) [F(5,50) = 3.233, P < 0.05]. Post hoc multiple comparisons 
indicated that in p-Op_v-PMC, the z score was significantly larger 
in SOT6 than in SOT1, 2, and 5 (Figure 9A). In p-Op_STG, the z 
scores were significantly larger in SOT5 and 6 than in SOT1 and 2 
(Figure 9B). In f-Op_STG, the z score was significantly larger in 
SOT6 than in SOT1, 2, and 5 (Figure 9C). Furthermore, the z score 
was significantly larger in SOT3 and 4 than in SOT2 (Figure 9C).

DiscUssiOn

The present study indicated the occurrence of activations in the 
right temporal-parietal areas (STG and SMG) when both vision 

and proprioceptive information were degraded, consistent with 
a previous study (Karim et al., 2013). Furthermore, the present 
results indicated activation of the broader cortical networks for 
vestibular information processing, spatial cognition, and motor 
control and learning, which might be essential for postural bal-
ance control, during CDP (see below).

cortical regions around the sylvian 
Fissure
In the present study, changes in Oxy-Hb concentration were 
significantly increased in the right f-Op, right p-Op, and right 
STG under SOT5 and 6. Furthermore, group statistical analyses 
by NIRS-SPM indicated significant activation in the right p-Op 
and STG under SOT2, 4, 5, and 6 and in the right f-Op under 
SOT2, 5, and 6. These results strongly suggest that cortical activi-
ties around the Sylvian fissure were required to maintain postural 
stability in SOT2, 4, 5, and 6. The posturography data indicated 
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TaBle 2 | significantly activated cortical regions in the six sOT conditions in group analyses using nirs-sPM.

side View sOT1 sOT2 sOT3 sOT4 sOT5 sOT6

Frontal lobe f-OP R R + 2.9231 + 2.1462 + 2.9506
v-PMC R R + 3.7418
d-PMC R T + 2.6782 + 3.3947
SMA R/L T + 3.1887 + 2.8244

Temporal lobe STG R R + 3.5145 + 3.1685 + 3.1913 + 4.0809

Parietal lobe p-Op R R + 2.4061 + 3.3087 + 2.7456 + 3.6151
SMG R R + 3.5711 + 3.9853
SPL R T + 2.8254

“View” indicates direction of the statistical map in which the activated cortical region and T-value were analyzed. SOT, sensory organization test; NIRS-SPM, near-infrared 
spectroscopy-statistical parametric mapping; f-Op, frontal operculum/inferior frontal gyrus; v-PMC, ventral premotor cortex; d-PMC, dorsal premotor cortex; SMA, supplementary 
motor area; STG, right superior temporal gyrus; p-Op, parietal operculum; SMG, supramarginal gyrus; SPL, superior parietal lobule; R, right; L, left; T, top; +, statistically significant 
activation in a given condition. The number beside the + symbol indicates the T-value of group analyses using NIRS-SPM.

FigUre 8 | schematic presentation of functional connectivity maps 
among the activated cortical regions in nirs-sPM under the six 
sensory organization test (sOT) conditions. (a-F) indicate functional 
connectivity maps in SOT 1–6, respectively. The orange and red lines show 
correlations > 0.6 and 0.7 (averaged across all participants), respectively. 
f-Op, right frontal operculum/inferior frontal gyrus; p-Op, right parietal 
operculum; SMG, right supramarginal gyrus; STG, right superior temporal 
gyrus; d-PMC, dorsal premotor cortex in the right hemisphere; v-PMC, 
ventral premotor cortex; SPL, superior parietal lobule; SAC, 
somatosensory association cortex; SMA, supplementary motor area; CS, 
central sulcus in the right hemisphere; SyF, Sylvian fissure in the right 
hemisphere.
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that anterior–posterior deflections of the body were significantly 
increased in SOT5 and 6 (Figure 3). These changes are consistent 
with the increase in Oxy-Hb concentration in SOT5 and 6. These 
results suggest that severe postural instability in sensory conflict 
activates the right p-Op, f-Op, and STG.

Previous animal (Fredrickson et  al., 1966; Odkvist et  al., 
1974; Faugier-Grimaud and Ventre, 1989; Guldin and Grüsser, 
1998) and human (Lobel et al., 1998; Bense et al., 2001; Bottini 
et  al., 2001; Fasold et  al., 2002; Dieterich et  al., 2003; Eickhoff 
et  al., 2006; Dieterich and Brandt, 2008) studies indicated that 
these three cortical regions (p-Op, f-Op, and STG) are parts of 
the multisensory vestibular cortical areas. In particular, p-Op is a 
homolog of the parieto-insular vestibular cortex (PIVC) that has 
been postulated to be a core region within the vestibular cortical 
system with its strong interconnections with other vestibular 
cortical areas (Brandt and Dieterich, 1999; Eickhoff et al., 2006). 
These results strongly suggest that cortical activities around the 
Sylvian fissure reflect activations in the vestibular cortical areas 
in SOT2, 4, 5, and 6.

Extensive studies reported that the cortical areas related to 
high-level cognitive processing are involved in shaping the pos-
tural responses evoked by external postural perturbations (Miyai 
et  al., 1997; Woollacott and Shumway-Cook, 2002; Jacobs and 
Horak, 2007; Maki and McIlroy, 2007). Using EquiTest®, Miyai 
et  al. (1997) investigated the location of supratentorial strokes 
associated with impaired standing balance (ISB) that were not 
ascribed to hemiparesis, proprioceptive deficits, or visual-ves-
tibular abnormality. The patients who could stand under SOT1 
but not under SOT5 were designated as the ISB group. A second 
group of the patients who could maintain their standing bal-
ance during both SOT1 and 5 were selected as controls (control 
group). Most patients in the ISB group had lesions in the insula 
or adjacent structures including the STG, f-Op, subinsular white 
matter, and putamen, whereas the control group had no lesions in 
these areas. These areas are perfectly congruent with the activated 
cortices in the present study.

It is now generally accepted that visual, vestibular, and soma-
tosensory inputs are dynamically reweighted to maintain upright 
stance as environmental or nervous system conditions change, a 
phenomenon referred to as sensory reweighting (Assländer and 
Peterka, 2014; Logan et  al., 2014). Human functional imaging 
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FigUre 9 | comparison of functional connectivities among the six sensory organization test (sOT) conditions in the p-Op and v-PMc (p-Op_v-PMc) 
(a), p-Op and sTg (p-Op_sTg) (B), and f-Op and sTg (f-Op_sTg) (c) pairs. These three pairs indicated significant main effects of the SOT conditions in 
subsidiary statistical analyses after two-factorial ANOVA with repeated-measures (SOT × pair of regions). ***, **, *Significant difference between different SOT 
conditions in post hoc tests at P < 0.001, P < 0.01, and P < 0.05, respectively.
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studies suggest that there is a reciprocally inhibitory interaction 
between the vestibular and visual areas during self-motion per-
ception and that this mechanism allows a shift of the dominant 
sensorial weight from one sensory modality (vestibular or visual) 
to the other during self-motion perception (Brandt et al., 1998; 
Deutschländer et al., 2002; Bense et al., 2005). In balance control 
during perturbation, sensory information is delivered to the 
CNS as feedback, and the sensory inputs must be integrated. 
A few motor command signals from the CNS are generated to 
coordinate multiple spatial patterns of muscle activations, which 
is called “muscle synergy” (Lockhart and Ting, 2007; Ting, 2007). 
A recent study suggests that a group of weighted sensory inputs, 
called “sensory synergy,” are integrated and recruited to the CNS 
to simplify the construction of muscle synergy (Alnajjar et  al., 
2015). Thus, the process of sensory reweighting might have an 
essential role in maintaining postural balance in sensory conflict.

Under SOT2, 4, 5, and 6, vestibular inputs were normal, whereas 
either somatosensory or visual inputs or both were unusual for the 
participants. The participants presumably suppressed inaccurate 

sensory information during sensory conflicts by online recognition 
of spatial orientation and perception of self-motion from correct 
sensory information. They might set a high value on vestibular 
inputs as the correct sensorial inputs under SOT2, 4, 5, and 6, and 
therefore vestibular cortices would be activated. However, neural 
mechanisms for dynamic selection of appropriate sensory infor-
mation during sensory conflict remain unclear. Further studies are 
required to clarify neural mechanisms of visual–vestibular–soma-
tosensory interaction on posture during sensory conflict.

Frontal and Posterior Parietal cortices
The group statistical analyses with NIRS-SPM also indicated 
significant activation in the SMA under SOT5 and 6. Previous 
studies suggested that the SMA is involved in establishing 
motor programs (Picard and Strick, 1996), preparation for foot 
movement (Sahyoun et  al., 2004), human locomotion (Miyai 
et  al., 2001), and human balance control (Mihara et  al., 2008). 
Hardwick et al. (2013) performed a meta-analysis to identify con-
sistent activations across 70 motor learning experiments using 
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activation likelihood estimation. Their results indicated that the 
area homologous to the SMA in the present study was activated 
in all motor learning tasks.

Under SOT5 and 6, vestibular inputs were normal, whereas 
somatosensory and visual inputs were unusual or absent. The 
combination of these three inconsistent sensory inputs under 
SOT5 and 6 might induce unpredictable perturbations in postural 
equilibrium. In such situations, the subjects might not move their 
body automatically and might not use the previously acquired 
motor programs to maintain postural balance. Therefore, they 
might have to execute volitional action and establish new motor 
programs to maintain postural balance. The SMA might be acti-
vated under SOT5 and 6 for these purposes.

In the present study, the PPC, including the SPL, SMG, and 
ventral/dorsal PMC, was activated under SOT3 and 6. In pri-
mates and humans, the PPC consists of the SPL and the inferior 
parietal lobule (IPL). The human SPL consists of Brodmann 
areas 5 and 7, whereas the IPL consists of the SMG and AG. 
Previous studies suggest that the PPC is involved in spatial 
cognition (Sack, 2009) and particular visuomotor actions such 
as reaching, grasping, and eye movements (Culham and Valyear, 
2006). In addition, the human PPC is recruited during the pro-
cessing and perception of action-related information (Culham 
and Valyear, 2006).

The PPC is suggested to have strong connections with the 
PMC (Rizzolatti and Matelli, 2003; Averbeck et al., 2009; Sack, 
2009). The dorsal and ventral PMC are involved in selecting 
and planning motor behaviors and in preparing and executing 
movements (Hoshi and Tanji, 2007). The PPC receives visual and 
somatosensory inputs and sends afferents to the PMC. The SPL 
projects to the primary motor cortex and dorsal PMC, whereas the 
IPL projects to the ventral PMC and prefrontal cortex (Rizzolatti 
and Matelli, 2003). Sack et al. (2008) indicated a dynamic interac-
tion between the PMC and PPC during spatial imagery. Previous 
studies implicate the PPC and PMC in spatial coding, updating 
of spatial information (Zaehle et al., 2007), and the computation 
of spatial reference frames (Fink et al., 2003).

Humans represent behaviorally relevant information in dif-
ferent spatial reference frames (e.g., eye-centered for saccades, 
body-centered for limb movements, object-centered for certain 
cognitive manipulations, and world-centered for navigation) 
to interact effectively with the environment (Szczepanski and 
Saalmann, 2013). The connection between the PPC and PMC 
is vital for performing transformations between these different 
coordinate systems (Szczepanski and Saalmann, 2013). Under 
SOT3 and 6, both vision and proprioception were compromised, 
leaving the vestibular system as the only reliable source of 
information. Sensory conflict between the vestibular and visual 
information might cause sensorial reweighting to vestibular 
inputs, resulting in flexible transformation of the spatial refer-
ence frame from allocentric (e.g., world-centered) to egocentric 
(body-centered). Thus, the PPC and PMC were activated under 
SOT3 and 6.

Recently, the association between multisensory bodily stimuli 
and conscious aspects of the self has been investigated, and 
different components of bodily self-consciousness have been 
identified during multisensory conflicts (Ionta et  al., 2014). In 

particular, visuo-tactile conflict has been used to manipulate the 
sense of body ownership (Blanke, 2012). It has been accepted that 
there are three important aspects of bodily self-consciousness: 
self-identification with body (the experience of owning a body), 
self-location (the experience of where I am in space), and first-
person perspective (the experience from where I perceive the 
world) (Blanke, 2012). Self-location and first-person perspective 
are induced by visuo-tactile conflict and depend on visuo-tactile 
signals and their integration with vestibular signals (Blanke, 
2012). Functional imaging studies have indicated that illusory 
self-identification with the virtual body is associated with activ-
ity in the bilateral v-PMC, left intraparietal sulcus (i.e., a part of 
the PPC), and the left putamen and that illusory self-location 
and first-person perspective are associated with the bilateral 
posterior STG, right temporoparietal junctions (TPJ), primary 
somatosensory cortex and medial PMC, and the adjacent pre-
frontal cortex (Blanke, 2012). Most activated cortical regions in 
the Blanke (2012) study overlap with those in our studies (i.e., 
TPJ close to the p-Op, STG, PMC, and PPC). Thus, the brain 
activation pattern in the situation of bodily self-consciousness in 
the Blanke (2012) study is very similar to that in the SOT task. 
In the SOT task, participants had to consciously perceive their 
body images in space during the maintenance of postural balance 
in sensory conflict. The activations in the p-Op, STG, PMC, and 
PPC in the present study might reflect cognitive processes of 
bodily self-consciousness.

Functional connectivities Between Frontal 
cortex, PPc, and cortical regions around 
the sylvian Fissure
We also found strong functional connectivities between the 
peri-Sylvian regions (i.e., the p-Op, f-Op, and STG), suggesting 
that this network around the Sylvian fissure processes vestibular 
information during the maintenance of postural balance. A 
meta-analysis of fMRI and PET studies using vestibular stimulus 
and functional connectivity analysis indicated that the right 
hemispheric parietal area OP2 (p-Op 2), which is homologous 
to the PIVC in animal studies, is implicated as a core region for 
vestibular processing and that the OP2 has a direct connection 
with temporoparietal regions, the PMC, and the midcingulate 
gyrus (zu Eulenburg et al., 2012). The authors suggest that the 
functional connectivity networks between the OP2, temporo-
parietal regions, and midcingulate gyrus are analogous to the 
network previously identified in animal studies (Guldin and 
Grüsser, 1998), termed the inner vestibular circle. Another study 
with resting-state functional connectivity analysis in patients 
with chronic bilateral vestibular failure revealed stronger con-
nectivity from the right posterior insula (i.e., close to the p-Op 
in the present study) to the anterior insula (i.e., close to the f-Op 
in the present study), ACC, precuneus, and middle frontal gyrus 
(Göttlich et al., 2014).

A recent study investigated network activities associated with 
self-location and first-person perspective and revealed that bilat-
eral TPJ, close to the p-Op, are bilaterally connected to the SMA, 
v-PMC, insula, intraparietal sulcus, and occipitotemporal cortex 
(Ionta et  al., 2014). The v-PMC is associated with illusionary 
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body ownership due to multisensory conflicts, especially between 
visual and somatosensory inputs (Petkova et  al., 2011). The 
authors suggest that processing of self-related multisensory 
bodily information recruits a bilateral network centered at the 
TPJ that includes the premotor, intraparietal, and occipitotem-
poral cortices (Petkova et al., 2011). Another study on conflict 
between vision and proprioception using fMRI indicated that the 
bilateral PMC and right TPJ were activated during monitoring of 
incongruent compared with congruent movements, suggesting 
an interaction between vision and proprioception in orienting to 
special locations (Balslev et al., 2005).

The present study on functional connectivity indicated higher 
connectivity (r > 0.7) among the cortices around the Sylvian fis-
sure (i.e., p-Op, f-Op, and STG) and v-PMC in SOT1-6 (Figure 8). 
The present SOT task also induced multisensory conflicts among 
vestibular, visual, and somatosensory inputs as in the previous 
studies on bodily self-consciousness (see above). The connectiv-
ity network between the peri-Sylvian regions and v-PMC in the 
present study might be involved in the monitoring and detection 
of multiple sensory conflicts and sensory reweighting. In addi-
tion, these cortical network activities may be variable depending 
on the cognitive demands in sensory conflict because connec-
tivities among the p-Op, f-Op, and v-PMC were significantly 
different under different SOT conditions (Figure 9). In particular, 
functional connectivity between the p-Op and v-PMC may be 
crucial to the detection of vestibulo-visual conflict in the present 
study because the z scores under SOT2 and 5 with the eyes closed 
(i.e., visual inputs were absent) were significantly smaller than 
those under SOT3 and 6 (i.e., the vestibular and visual inputs 
were incongruent) (Figure 9A).

In the connectivity analysis, we found higher connectivity 
between the PPC (SMG and SPL) and the frontal cortical regions 
(SMA, d-PMC, and v-PMC) (Figure 8). Furthermore, the SMG 
had significant connectivity with peri-Sylvian regions (p-Op and 
STG) (Figure 9). The present results suggest that the SMG is a hub 
connecting these regions. The statistical analyses did not indicate 
significant differences in the magnitudes of these connectivities 
among the SOT conditions, suggesting that the network between 
the PPC and frontal cortical regions is constitutively active during 
postural balance regardless of sensory conflict.

The PPC is known to be a site of sensorimotor integration. 
In the macaque, the ventral intraparietal area (VIP), located in 
the fundus of the intraparietal sulcus, receives vestibular inputs 
from the PIVC (i.e., the core region of the inner vestibular 
circle), somatosensory, and vestibular inputs from the neck and 
vestibular subregions of areas 3a and 2 (Guldin et al., 1992; Lewis 
and Van Essen, 2000), visual inputs from the medial temporal 
area and the medial-superior temporal complex (Lewis and Van 
Essen, 2000), and somatosensory inputs from the primary soma-
tosensory cortex (Lewis and Van Essen, 2000). Thus, multimodal 
sensory inputs converge on the PPC and are used for the analysis 
and encoding of self-motion (Bremmer et al., 2002). A human 
fMRI study indicated the existence of the human equivalent of 
the macaque VIP area in the depth of the intraparietal sulcus 
(Bremmer et al., 2001). As mentioned in the preceding section, 
the PPC has a strong connection with the PMC (Rizzolatti and 
Matelli, 2003; Averbeck et al., 2009; Sack, 2009). Multiple pathways 

exist in the human brain, each of which connects areas in the 
PPC to either motor, premotor, or SMAs in the frontal cortex to 
facilitate special guided action (Szczepanski and Saalmann, 2013). 
The strong connectivities between the PPC and frontal regions 
may indicate a network for integrative roles in polymodal motor 
processing in sensory conflict. Convergence of connectivity to the 
SMG may indicate that the function of the SMG is to integrate the 
multimodal reweighted sensory information and recruit it to the 
motor systems.

From the above results, we suggest that two cortical networks, 
one among the peri-Sylvian cortices and v-PMC (peri-Sylvian 
network) and one between the PPC and frontal cortex (parieto-
frontal network), are involved in postural balance in a situation of 
sensory conflict. These two networks converge on the SMG. The 
peri-Sylvian network may function to detect sensory conflict and 
sensory reweighting and send the reweighted sensory informa-
tion to the SMG. The parieto-frontal network may function for 
integration based on reweighted sensory information, spatial 
reorientation, and the selection and planning of motor behaviors.

cOnclUsiOn

Hemodynamic activity was significantly increased in the f-Op, 
right p-Op, and right STG under SOT2, 4, 5, and 6. These 
activated cortical regions have been reported as the vestibular 
cortices in previous studies. These findings suggest that the 
dominant sensorial weight was shifted to the correct sensory 
inputs (i.e., vestibular inputs) during sensory conflict under 
SOT2, 4, 5, and 6 and that the cortical areas related to the 
recognition of spatial orientation and the perception of self-
motion were activated to maintain postural balance during 
unpredictable perturbations.

Furthermore, the hemodynamic activity in the SMA was sig-
nificantly increased under SOT5 and 6, suggesting that the SMA 
might be activated for volitional action control and establishment 
of new motor programs to maintain postural balance. In addition, 
the hemodynamic activity in the PPC and PMC was significantly 
increased under SOT3 and 6. These results suggest the involve-
ment of these areas in the updating and computation of spatial 
reference frames during instances of sensory conflict between 
vestibular and visual information.

Alnajjar et  al. (2015) proposed a conceptual model of a 
neural sensorimotor synergy system in balance control during 
perturbation, which includes sensory synergy, neural command 
processing, and muscle synergy. Based on the present results, 
it is possible that the peri-Sylvian network is responsible for 
sensory synergy, and the parieto-frontal network is responsible 
for neural command processing and muscle synergy. Further 
studies are required to clarify the neural mechanisms respon-
sible for the dynamic shift of brain activation during sensory 
conflict.
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