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Face perception is mediated by a distributed brain network comprised of the core
system at occipito-temporal areas and the extended system at other relevant brain areas
involving bilateral hemispheres. In this study we explored how the brain connectivity
changes over the time for face-sensitive processing. We investigated the dynamic
functional connectivity in face perception by analyzing time-dependent EEG phase
synchronization in four different frequency bands: theta (4–7 Hz), alpha (8–14 Hz), beta
(15–24 Hz), and gamma (25–45 Hz) bands in the early stages of face processing from
30 to 300 ms. High-density EEG were recorded from subjects who were passively
viewing faces, buildings, and chairs. The dynamic connectivity within the core system
and between the extended system were investigated. Significant differences between
faces and non-faces mainly appear in theta band connectivity: (1) at the time segment
of 90–120 ms between parietal area and occipito-temporal area in the right hemisphere,
and (2) at the time segment of 150–180 ms between bilateral occipito-temporal areas.
These results indicate (1) the importance of theta-band connectivity in the face-sensitive
processing, and (2) that different parts of network are involved for the initial stage of face
categorization and the stage of face structural encoding.
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INTRODUCTION

When looking around, humans can spot faces almost instantaneously. Face perception is one
of the highly developed visual recognition skills in primates and human beings. Despite the
quick and effortless recognition of faces, face perception involves complex neuronal mechanisms
for face-sensitive processing (Ellis, 1986; Rolls et al., 1992; Bentin and Deouell, 2000). Evidence
for face-sensitive processing has been shown in many studies (Puce et al., 1995; Nelson, 2001;
Halit et al., 2003). Measuring dynamic brain responses while briefly presenting the stimulus
(an image of a face), i.e., event-related potentials (ERPs), have been widely used to investigate
face perception (Bentin and Deouell, 2000). The excellent temporal resolution of ERPs allows
to precisely determine the time courses of face processing. The most well-known face-sensitive
ERP component is N170, a negative potential measured over the bilateral occipito-temporal
areas at around 170 ms after stimulus onset. Typically, face stimuli will evoke N170 with larger
amplitude and shorter latency than non-face stimuli (Jeffreys, 1983, 1989; Jeffreys and Tukmachi,
1992). According to the model proposed by Bruce and Young (1986), N170 is considered to be
associated with a key stage of face processing, namely the ‘structural encoding’ (Sagiv and Bentin,
2001). Besides N170, many studies have also found a positive potential sensitive to face stimuli
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occurring between 100 and 150 ms (P1) after stimulus onset at
the bilateral occipito-temporal areas (Linkenkaer-Hansen et al.,
1998; Itier and Taylor, 2004b; Herrmann et al., 2005; Latinus and
Taylor, 2006; Kuefner et al., 2009). Some researchers suggested
that P1 might reflect a preliminary processing stage prior to the
face structural encoding (Herrmann et al., 2005; Latinus and
Taylor, 2006). N170 is typically followed by a later component
P2, which is a positive potential within the same region (Caharel
et al., 2002; Itier and Taylor, 2002; Latinus and Taylor, 2006).
Together, these three components (P1, N170, and P2) compose
an ERP complex, which may reflect the sequential neural
activities of face processing at the bilateral occipito-temporal
areas (Latinus and Taylor, 2006; Yang et al., 2011; Guo et al.,
2013).

Face perception is mediated by a distributed neural network
that is comprised of multiple brain regions including the
occipito-temporal areas (Haxby et al., 2000). The occipito-
temporal areas contain several face-responsive regions, such as
fusiform gyrus (FG), inferior occipital gyrus (IOG), and superior
temporal sulcus (STS), which play an important role in face
perception (Rossion et al., 2003; Schiltz and Rossion, 2006).
A few clinical studies found that some brain lesions outside the
occipito-temporal areas also affect face perception (Marinkovic
et al., 2000; Vuilleumier et al., 2004; Steeves et al., 2006). Single-
cell recording in monkeys revealed that face-selective cells exist
not only in visual cortex (Desimone, 1991) but also in other
non-visual cortices, such as amygdala (Leonard et al., 1985)
and prefrontal cortex (Scalaidhe et al., 1997; Tsao et al., 2008).
Functional brain imaging studies (e.g., fMRI, PET) with healthy
subjects demonstrated that multiple brain regions are involved to
process the information from faces to access knowledge of their
viewing condition and facial configuration (Sergent et al., 1992;
Haxby et al., 1994; Ishai et al., 2005; Fairhall and Ishai, 2007).
According to the model proposed by Haxby et al. (2000), the
face processing system is divided into two subsystems: a core
system and an extended system. The core system, comprised of
FG, IOG, and STS in the visual cortex, mainly contributes to
the face encoding, where the extended system involves several
non-visual cortices, which are recruited to cooperate with the
face-responsive regions in the core system for facilitating face
processing and extracting the additional meaning from the face
stimulus (Haxby et al., 2002).

The topography and latency of face-sensitive ERP reflect the
functional mapping and time courses of face processing, in
particular for the core system. Single-cell recording and fMRI
studies revealed the organization of distributed neural system for
face perception. To the best of our knowledge, it has never been
explored how the different brain areas dynamically communicate
with each other on a milliseconds scale during face perception.
To fill this gap, this paper investigates the dynamic functional
connectivity between brain areas in early stages (30–330 ms)
of face processing. This work focuses on the brain connectivity
passively viewing normal upright faces, since these are the most
common face stimuli during daily life.

Dynamic functional connectivity can be investigated using
either functional imaging (Rajna et al., 2015; Thompson and
Fransson, 2015) or neurophysiological techniques (Sakkalis,

2011). Functional imaging approaches such as fMRI have a low
temporal resolution due to hemodynamics of the BOLD signal; as
a result, fMRI is unable to capture the fast (transient) dynamics
in the neural communication of face perception. Although
neurophysiological measurements such as EEG and MEG have
a high temporal resolution, traditional functional connectivity
methods such as coherence and cross-correlation usually have
a high risk of false positive when applied to neurophysiological
data (Nolte et al., 2004; Stam et al., 2007). Due to the volume
conduction effect, recorded EEG/MEG from nearby channels
are very likely to pick up similar neural activities from the
common sources, which can lead to spurious correlation between
these channels. Another unique problem for EEG is that an
active reference electrode will contribute similar components
to different electrodes and therefore disturbs the estimations of
functional connectivity. To overcome these problems, Stam et al.
(2007) introduced an alternative measure, namely phase lag index
(PLI), to estimate functional connectivity. PLI is based on the idea
that volume conduction from a single active source can never
generate a consistent, non-zero phase lag (time delay) between
two signals; thus, the true connectivity can be quantified by
checking the distribution of the phase lag.

In this paper, we used PLI to estimate dynamical functional
connectivity in face perception. The EEG data were recorded
from healthy subjects when they were passively viewing face
and non-face stimuli. The connectivity between the bilateral
occipito-temporal areas was analyzed to investigate the inter-
hemisphere communication in the core system for face
processing. Furthermore, we also examined the connectivity
between the occipito-temporal areas and other brain areas to
explore the dynamical interaction between the core system and
the extended system in face perception.

MATERIALS AND METHODS

Subjects
Ten healthy right-handed volunteers (age: 18–25, five women)
with normal or corrected-to-normal vision participated in
the experiment. All subjects were naïve to the experiment
and without any neurological disorders. They gave written
informed consent before the experiment and received a financial
reimbursement for participation. The study complied with the
Declaration of Helsinki and was conducted in Shanghai Jiao
Tong University. The experimental protocol was approved by
the Ethics Committee of the School of Biomedical Engineering,
Shanghai Jiao Tong University.

Experimental Protocol
The experiments were conducted in a dark sound-radio-
frequency shielding room (produced by Union-Brother
Soundproof, China). Three categories of photographs
(224 pixels × 189 pixels) including 10 human faces (5 women),
10 buildings and 10 chairs were used in this study for comparing
the responses to face and non-face stimuli. The face photographs
were taken from “the database of faces” from AT&T Laboratories
Cambridge (Samaria and Harter, 1994) and the facial hair
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was removed. Additionally, three photographs of butterflies
were used as target stimuli to help subjects concentrate on the
experiment. The background of all stimuli was tuned to an 8-bit
uniform gray level to uniform the luminance (see Figure 1).

Each type of stimuli were presented 12 times with other
types of stimulus randomly shown in between. Since all stimuli
have the same number of repetitions, that should not affect the
comparison between faces and non-faces. Although repeating
stimuli may result in the transient working memory effect (old-
new effect), this effect will be largely reduced when there are
some intervening pictures between repetitions (Itier and Taylor,
2004a). By repeating the stimuli, there were 120 trials per category
for faces, buildings and chairs each, and 36 trials for target stimuli
(butterflies); giving 396 trials in total. The whole experiment was
divided into two blocks; each block consisted of 198 trials and
a 2 min break in between. The first block contained 17 target
trials, while the second block had 19 target trials. In each trial,
the stimulus was displayed for 500 ms in the center of screen
(resolution: 800 pixels × 600 pixels/inch, refresh rate 60 Hz) with
view angle 6.39◦ × 5.22◦. The inter-stimulus interval (ISI) was
random between 800 and 1300 ms. A central cross with view
angle 2◦× 2◦ appeared in the ISI to help subjects keep fixation
of their eyes on the center of screen. Participants were seated
comfortably, and requested to minimize eye blinks and body
movements during the experiment. To keep attention, they were
required to count the number of target stimuli in mind and to
report the result at the end of each block. In the experiment,
we did not give them the instruction that face perception will
be investigated. As the target stimuli randomly appeared among
face and non-face stimuli, the subjects have to view all stimuli for
identifying the target stimuli. This paradigm is commonly used to
eliminate the effect of selective attention on different non-target
stimuli (Hillyard et al., 1998). The participants who did not count
correctly would be excluded from the analysis.

EEG Recordings
Scalp EEG were recorded with a NeuroScan v4.3 system using
a 62-channel Quik-Cap (NeuroScan, Herndon, VA, USA). Two

ocular channels monitored the vertical and horizontal eye
movements/blinks from the outer canthi and left infraorbital
ridges. Electrode impedances were kept below 5 k�. The signals
were amplified and digitized at 1 kHz by a SynAmps RT amplifier
(Synamps amplifiers, NeuroScan). EEG were first referenced to
the common average.

Data Analysis
ERP Analysis
The continuous EEG signals were filtered by a 0.1–50 Hz zero-
phase shift band-pass filter using EEGLAB (Delorme andMakeig,
2004). Afterwards, EEG were segmented into 550 ms epochs
with 200 ms pre-stimulus baseline plus 350 ms post-stimulus
recording. The epochs contaminated by the artifacts (e.g., eye
blinks) were removed by using the information from the two
ocular channels. The mean baseline value was subtracted from
each epoch. ERPs were derived by grand averaging the epochs
for each category (faces/buildings/chairs). ERP components, P1,
N170, and P2 were measured at occipito-temporal electrodes
TP7/8, P7/8, PO7/8, and O1/2. For each subject, the latencies
of ERP components were taken at the electrode where the
amplitude was maximal over each hemisphere, and the amplitude
was measured at each electrode over the ipsilateral hemisphere
at that latency. Analysis of variance (ANOVA) with repeated
measures was performed to check the statistical significance
of ERP results, using stimulus category (faces vs. buildings vs.
chairs) and hemisphere (left vs. right) as main factors for both
latencies and amplitudes of P1, N170, and P2. Electrode (TP7/8
vs. P7/8 vs. PO7/8 vs. O1/2) was an additional factor only for
amplitudes of P1, N170, and P2. Greenhouse-Geisser corrections
were made when it is needed in ANOVA. Two-tailed paired
sample t-tests were used for two-class comparison.

Dynamical Functional Connectivity Analysis: Phase
Lag Index
The continuous EEG signals were digitally band-pass filtered into
four frequency bands, theta (4–7 Hz), alpha (8–14 Hz), beta (15–
24Hz), and gamma (25–45 Hz), with zero-phase shift filters using

FIGURE 1 | Examples of the visual stimuli. Three categories of photographs (224 pixels × 189 pixels) including 10 human faces (5 women), 10 buildings, 10
chairs were used for visual perception. The face photographs were taken from “the database of faces” from AT&T Laboratories Cambridge (Samaria and Harter,
1994) and the facial hair was removed. Additionally, three photographs of butterflies were introduced as target stimuli to help subjects concentrate on the experiment
and to eliminate the effect of selective attention on the stimuli. The background of all stimuli was tuned to an 8-bit uniform gray level to uniform the luminance.
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EEGLAB (Delorme and Makeig, 2004). We computed Hilbert
transformed time series of the filtered EEG:

xH(t) = 1
π
p.v.

∫ +∞

−∞
x(τ)
t − τ

dτ

The Hilbert transformed series is related to the original signal
by π/2 phase shift with same amplitude and frequency contents.
Afterwards, the analytical signal is obtained by:

xA(t) = x(t) + jxH(t) = A(t)ejφ(t)

to extract instantaneous phase φ(t) of the original signal x(t):

φ(t) = arctan(xH(t)/x(t))

We segmented the analytical signal into 300 ms epochs with
the period between 30 and 330 ms post-stimulus for PLI analysis.
The epochs contaminated by the artifacts were removed by using
the information from the two ocular channels as we did for
ERP analysis. PLI between all 62-electrode pairs was calculated
over epochs at the four frequency bands. PLI is a measure of
the asymmetry of distribution of instantaneous phase differences
between two signals:

PLI =
∣∣∣∣∣∣
1
k

k∑
k=1

sign [� φ(tk)]

∣∣∣∣∣∣
where � φ(tk) is instantaneous phase differences between two
signals for k-epoch, k = 1, ....,K, and K is the total number of
epochs.

Since the zero-lag synchronization was removed by sign
function, PLI is less affected by the volume conduction effect
compared to traditional functional connectivity measures (e.g.,
coherence and cross-correlation). The value of PLI ranges
between 0 and 1: a zero value means no non-zero phase locking
at all, while a PLI value of 1 indicates perfect non-zero phase
coupling. Further details on the PLI computation can be found
in Stam et al. (2007).

After the computation, PLI values were smoothed over time in
10 non-overlapping 30-ms time windows (30–60 ms, 60–90 ms,
. . ., 300–330 ms) to reduce its fluctuations (Cohen, 2015). We
used a 95% confidence threshold (α = 0.05) to determine the
significance of PLI. Bonferroni correction was applied to the
group analysis. ANOVA was performed to check the significant
difference between faces and non-faces, using stimulus category
(faces vs. buildings vs. chairs) as the main factor. Greenhouse-
Geisser corrections were made when it was needed.

RESULTS

All subjects reported correct number of target stimuli in the
experiment and therefor all subjects were included in the analysis.

Event-related Potentials (ERP)
Face stimuli elicited the largest P1 (F2,18 = 25.417, P < 0.001)
and N170 (F2,18 = 55.011, P < 0.001) among all categories (see
Figure 2). The latency of N170 was shorter for faces than that
for non-faces (F2,18 = 15.925, P < 0.001). Significant electrode
effect was shown in the amplitudes of P1 (F1.498,13.478 = 4.912,
P = 0.033) and N170 (F1.604,14.432 = 23.740, P < 0.001). For
faces, P1 (F1,9 = 6.589, P = 0.030) and N170 (F1,9 = 7.800,
P = 0.021) were larger in the right hemisphere than those in the
left hemisphere. No significant difference was detected in P2 for
the different categories.

Dynamic Functional Connectivity in Face
Perception
Figure 3 shows the dynamical functional connectivity between
electrodes for different time segments and different frequency
bands. The theta band shows stronger functional connectivity
than other frequency bands. By computing the difference between
neighboring time segments, the dynamic changes of functional
connectivity are detected.

FIGURE 2 | Event-related potentials (ERPs) at the P7/8 following the presentation of face and non-face stimuli. The solid lines are the grand averages of
10 subjects. The dashed lines indicate the standard error of the mean. The ERP components P1 and N170 are larger in response to faces (red lines) than non-faces
(buildings: blue lines, chairs: green lines) in both hemispheres, with larger amplitudes in the right hemisphere (P8).
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FIGURE 3 | Dynamic functional connectivity matrices in face perception and the difference between time segments for one representative subject.
The electrodes in the matrices are listed in the ascending order of electrode numbers from top to bottom, and from left to right. For clarity, non-significant phase lag
index (PLI) values are set to zero in the maps.
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To investigate the dynamic interactions between occipito-
temporal areas and other brain areas, the topographies of
functional connectivity between right/left occipito-temporal
electrodes (P8/PO7) and other electrodes (see Figures 4 and 5)
are provided for faces in different time segments and frequency
bands. We focused on the investigating the dynamic connectivity
of face perception. The topography of connectivity was used
to serve as a guideline to find the interest areas having
significant connectivity with occipito-temporal area, which is
known as the ‘core’ system of face perception. The interaction
between bilateral occiptio-temporal areas was shown for all
time segments and frequency bands. The interaction also exists
between right parietal area and bilateral occipito-temporal areas.
Further analysis between occipito-temporal electrodes P8 and
PO7 indicates the frequency-dependent dynamics, showing
different latencies of local peaks for different frequency bands
(see Figure 6). The local peak values occurred around the ERP
latencies of P1 (90–120 ms), N170 (150–180 ms), and P2 (200–
230 ms) in the theta band. Statistically significant differences
between stimulus classes at the interesting electrode pairs are
given in Figure 6 and indicated by stars. The difference between
faces and non-faces was significant in the time segment of
150–180 ms (around the latency of N170) in the theta band
(F2,18 = 6.878, P = 0.006), with the largest PLI for faces. The
analysis between parietal (CP4) and occipto-temporal area (P8)
in the right hemisphere further indicates the interest of theta
band (see Figure 6). The difference between face and non-face
was significant in the time segment of 90–120 ms (around the
latency of P1), with the largest PLI for faces (F2,18 = 11.302,
P < 0.001). Analysis between the right parietal (CP4) and the
left occipto-temporal area (PO7) shows a significant difference
between face and non-face stimuli in the time segment of 120–
150 ms in the theta band (F2,18 = 5.299, P = 0.016), with lowest
PLI for faces (see Figure 6). The difference between face and non-
face was significant in the gamma band in the time segment of
60–90 ms (F2,18 = 6.469, P = 0.008), with largest PLI for faces.

Additionally, we also found interactions between prefrontal
and occipital areas for all frequency bands for faces (see Figure 7).
The difference between faces and non-faces are significant in wide
time ranges in the theta (30–270 ms) and alpha (30–300 ms)
bands (see Figure 6).

DISCUSSION

The main focus of this study is to investigate the dynamic
functional connectivity between different brain areas during face
perception using high-density EEG. To allow for comparison
with previous studies we also reported the ERP results in
the occipito-temporal electrodes. Face stimuli evoked larger P1
and N170 than non-face stimuli. Although face stimuli evoked
ERP responses in both hemispheres, stronger responses were
measured in the right hemisphere. These results are in line with
previous ERP findings (Bentin et al., 1996; Linkenkaer-Hansen
et al., 1998; Latinus and Taylor, 2006; Yang et al., 2011).

Previously, the distributed cortical network for face perception
has been revealed using fMRI, showing the static functional

FIGURE 4 | Grand average of topography of dynamical functional
connectivity between the right occipito-temporal electrode P8
(marked out by arrow) and other electrodes over subjects.
Non-significant PLI values are set to zero in the topographies.
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FIGURE 5 | Grand average of topography of dynamical functional
connectivity between the left occipito-temporal electrode PO7
(marked out by arrow) and other electrodes over subjects.
Non-significant PLI values are set to zero in the topographies.

connectivity within face-responsive regions, namely the ‘core’
system and between other brain areas, known as the “extended”
system (Ishai et al., 2005; Fairhall and Ishai, 2007). Due to the

poor temporal resolution of hemodynamic response, the neural
dynamics in this network cannot be explored with fMRI. In this
study, we used high-density EEG and the PLI to explore the
dynamic function connectivity during face perception. EEG is
typically very sensitive for volume conduction. However, PLI has
been shown to be suitable to assess true functional connectivity
from multi-channel EEG, since it is not sensitive to zero phase
lag synchronization resulted from the volume conduction effect
(Stam et al., 2007). Although a few studies pointed out that
zero-lag synchronization can also come from a true but indirect
connection (Fischer et al., 2006), e.g., two cortical areas are
indirectly connected through the hippocampal relay, this zero-
lag connection is thought to be related to cognitive demands and
motor acts of lower mammals (Gollo et al., 2011). To best of
our knowledge, no such evidence was found in the human brain
related to the high-level cognitive process such as face perception.
Furthermore, although a few alternative methods, such as phase
locking value (Lachaux et al., 1999), can be used to detect zero-lag
synchronization (Ioannou et al., 2015), they cannot distinguish
the true connectivity from the volume conduction effect (Cohen,
2015). Thus, to best of our knowledge, the advantage of PLI
cannot be achieved by using any alternative methods and its
potential limitations might not really affect our results.

The changes in the PLI matrices over the time indicate
that face perception is mediated by a dynamic network in the
human brain. The difference between frequency bands shows the
frequency dependence in the network. In general, low frequencies
(theta and alpha bands) show stronger phase synchronization
than higher frequencies (beta and gamma bands). This is in
agreement with previous findings from time-frequency analyses
on face perception, where strong EEG spectral modulations and
inter-trial phase coherence were detected in the low frequencies
(Klopp et al., 1999; Rousselet et al., 2007; Gu et al., 2010).

The connectivity between electrodes in bilateral occipito-
temporal areas reflect the inter-hemisphere communication in
the “core” system, which has been reported in previous fMRI
studies (Minnebusch et al., 2009). The interaction between
bilateral occipito-temporal area is continuously shown in the
period of 30–330 after stimulus on-set, with local peaks around
the latencies of different face processing stages (which is
typically reflected by ERP components P1, N170, and P250).
Our previous study using independent source analysis and EEG
source localization has shown the sequential neural activities of
face processing in this period originated from bilateral occipito-
temporal area (Yang et al., 2011). Similar evidences can be found
in (Deffke et al., 2007a,b). The interactions between the “core”
system and the “extended” system are also detected in our study,
showing the connectivity between electrodes in parietal and
occipito-temporal areas and the connectivity between electrodes
in prefrontal and occipital areas.

The topography of functional connectivity between right/left
occipito-temporal electrodes and other electrodes showed that
only the parietal area in the right hemisphere was involved in
the interactions with occipito-temporal areas, which indicate
the lateralization of face processing in the human brain.
Hemisphere difference in face perception has been reported
by both ERP (Bentin et al., 1996; Linkenkaer-Hansen et al.,
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FIGURE 6 | Grand average of functional connectivity between electrode pairs. PO7-P8 (between electrodes in bilateral occipito-temporal areas), CP4-P8
(between electrodes in right parietal and occipito-temporal areas), CP4-P7 (between electrodes in right parietal and occipito-temporal areas), and Fz-Oz (between
electrodes in prefrontal and occipital areas). The time segment with significant differences between face and non-face stimuli in PLI value are indicated by the vertical
lines and stars, where a ‘∗ ’ indicates 0.01 ≤ P < 0.05, ‘∗∗’ 0.001 ≤ P < 0.01, and ‘∗∗∗ ’P < 0.001.

1998) and functional imaging techniques (Haxby et al., 1995;
Fairhall and Ishai, 2007). The right hemisphere is thought to be
important in face perception (Ellis and Young, 1983) and may be
involved in with ‘deep’ cognitive processing of faces (Hillger and
Koenig, 1991; Meng et al., 2012), where the functional role from
“extended” system could be highly appreciated.

By comparing the results between faces and non-faces, the
significant differences are mainly found in the theta band. The
theta oscillations are known to reflect the intrinsic dynamics of
thalamo-cortical networks, and are associated with a top-down
process for predicting the forthcoming stimulus (Klimesch, 1999;
Engel et al., 2001; Osipova et al., 2006; Sauseng et al., 2010).
Different from passively viewing an object, face perception is
supposed to be mainly driven by a top-down, template-based
mechanism instead of a bottom-up, feature analysis (Bentin and
Deouell, 2000; Schiltz and Rossion, 2006). This top-down process
is likely to be originated in parietal and frontal regions (Mechelli
et al., 2004). In this work, we present the evidence from the
dynamic function connectivity, where the difference between face
and non-face was first shown in the theta band between parietal
area and occipito-temporal area in the right hemisphere at the
time segment of 90–120 ms, which is around the latency of P1.
This difference may link to an initial stage of face categorization
(Liu et al., 2002; Herrmann et al., 2005), which occurs before
the well-investigated face structural encoding stage (Bruce and
Young, 1986). Our previous study indicated that a coarse analysis
of face configuration might occur in this initial stage of face
categorization (Guo et al., 2013). This coarse analysis simply
integrates eyes, nose and mouth into a gestalt, independent of
the detailed information of face. After this stage, a decrease of

phase synchronization is shown between the right parietal and
occipito-temporal areas for faces at the time segment of 120–
150 ms, while an increase of phase synchronization between the
right parietal and left occipito-temporal areas was present for
non-faces. These results indicate that the initial stage of object
categorization occurs later than that of face categorization.

We also detected a significant difference in the theta band in
the time segment of 150–180 ms (around the latency of N170)
for the connectivity between bilateral occipito-temporal areas,
showing largest PLI for faces. This timing is known to be the
stage of structural encoding (commonly reflected by the N170)
of face. Thus, this result suggests an enhanced inter-hemisphere
communication in the core system in the stage of face structural
encoding, which might be associated with the face-sensitive N170
in the occipito-temporal areas.

The significant difference between face and non-face in the
theta band connectivity is also shown between prefrontal and
occipital area during the whole early face processing period from
30 to 270 ms, showing largest PLI for faces. Since subjects were
naïve to the experiment and irrelevant stimuli (butterflies) was
introduced to eliminates the effect of selective attention, the
difference of connectivity between Fz and Oz is less likely related
to task difficulty or selective attention. Figure 8 summarize a
scheme of the dynamic network between different brain areas in
the theta band for face-sensitive processing. The face-sensitive
prefronto-occipital interaction is also detected in the alpha
band. Similar to theta oscillations, the alpha oscillations are
also known to be related to top-down mechanism of visual
processing (Sauseng et al., 2005, 2006; Jokisch and Jensen,
2007). Both patient and transcranial magnetic stimulation (TMS)
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FIGURE 7 | Grand average of topography of dynamical functional
connectivity between the occipito-temporal electrode Oz (marked out
by arrow) and other electrodes over subjects. Non-significant PLI values
are set to zero in the topographies.

studies have provided evidences of activation of prefrontal and
occipital areas in face perception (Haxby et al., 1996; Marinkovic
et al., 2000; van Honk et al., 2002; Steeves et al., 2006; Pitcher
et al., 2007, 2011). Prefronto–occipital interactions may link to
a stimulus category-specific top-down modulation during visual
perception (Gazzaley et al., 2007), and typically reported in the
emotional face perception (Wright et al., 2001; Sergerie et al.,

FIGURE 8 | The dynamic functional network in theta band for different
stages of face processing. PF, prefrontal area; RP, right parietal area; ROT,
right occipito-temporal area; LOT, left occipito-temporal area; O, occipital
area. Red lines indicate significant stronger connectivity for faces than
non-faces, while green lines represent comparable or weaker connectivity for
faces.

2005; Monk et al., 2008). Our results provide the evidence that
the face-sensitive prefronto-occipital interaction also occur in the
normal face perception. The continuous strong communication
between prefrontal and occipital area in the low frequencies
(theta and alpha bands) may greatly facilitate the processing of
face information in the human brain.

Besides, the significant difference between face and non-face
was shown in the gamma band at time segment of 60–90 ms
for the interaction between the right parietal and left occipito-
temporal areas. The coherent gamma oscillations are commonly
known to associate with the bottom-up, feature-based processing
(Busch et al., 2004). Thus, this result possibly reflects the
difference between faces and non-faces in the low-level feature
processing (likely the context of stimulus, since luminance of
stimulus has been uniformed), which typically happens before
the initial stage of face categorization (Liu et al., 2002; Guo et al.,
2013).

CONCLUSION

This study reveals the dynamic functional connectivity between
brain areas during passively viewing upright faces. Where
previous studies using fMRI focused on a detailed map of the
(static) network, our study focuses on the dynamics of brain
connectivity using high-density EEG. The results are obtained by
using normal faces as stimuli and amodel-free approach for brain
connectivity. Our results indicate the importance of theta-band
connectivity in the face-sensitive processing, which likely links
to a top-down, template-based mechanism of face processing.
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Furthermore our results suggest that the initial stage of face
categorization and the stage of face structural encoding are
medicated in different parts of the network. This work could be
useful to provide a neurophysiological reference for clinic studies
related to deficits in face perception.
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