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This technical note addresses some key reproducibility issues in the dynamic causal
modelling of group studies of event related potentials. Specifically, we address the
reproducibility of Bayesian model comparison (and inferences about model parameters)
from three important perspectives namely: (i) reproducibility with independent data
(obtained by averaging over odd and even trials); (ii) reproducibility over formally distinct
models (namely, classic ERP and canonical microcircuit or CMC models); and (iii)
reproducibility over inversion schemes (inversion of the grand average and estimation
of group effects using empirical Bayes). Our hope was to illustrate the degree of
reproducibility one can expect from DCM when analysing different data, under different
models with different analyses.
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INTRODUCTION

Reproducibility is a key issue in cognitive science. It is also an important consideration in
the challenging field of dynamic causal modelling (DCM). DCM refers to the inversion and
Bayesian model comparison of state space models generating measured timeseries (Friston et al.,
2003; Stephan and Roebroeck, 2012). An important and increasingly prevalent application of
DCM is to electrophysiological signals, particularly event related potentials as measured with
electroencephalographic (EEG; David et al., 2006; Garrido et al., 2007b). Dynamic causal modelling
of these data enables experimenters to test hypotheses about causal interactions (or ‘‘effective
connectivity’’) between brain regions, but this is challenging because the underlying generative or
forward models are universally ill-posed and nonlinear. Currently, DCMs are inverted by fitting
each model individually, using a gradient ascent on variational free energy, which approximates the
log model evidence (Friston et al., 2007). This variational Laplace scheme is efficient when the free
energy function is well-behaved and has a single (global) maximum (Frässle et al., 2015; Lomakina
et al., 2015). However, for more complex DCMs (of the sort used for electrophysiological data)
the free energy landscape can be more complicated, with the potential for multiple local extrema.
Furthermore, models with different numbers of free parameters differ in the flexibility they afford
the inversion scheme, when invading local maxima. The resulting behavior of the inversion scheme
might therefore be capricious, leading to poor reproducibility. This is particularly problematic for
model comparisons, where the value of the free energy at a maximum plays a crucial role as a proxy
for model evidence.

Post hoc inference (Friston and Penny, 2011) or Bayesian Model Reduction (BMR) is a
promising framework for finessing some of these problems. In this framework, only one model per
dataset is fitted using a conventional (e.g., variational Laplace) scheme. This is the full model, from
which any other (reduced) model can be derived by removing a subset of its parameters with precise
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shrinkage priors (i.e., by fixing these parameters to have a prior
mean of zero with high precision). The free energy and parameter
estimates for these reduced models can be approximated from
those of the full model analytically, given the prior of the reduced
model. This approximation is exact in the case of linear models.
Intuitively, the information that enables BMR comes from the
curvature of the free energy function of all parameters at the
maximum of the full model. In the linear case, there is only one
maximum that, when combined with its curvature, fully specifies
the quadratic free energy functions of all reduced models. For
functional magnetic resonance imaging (fMRI), BMR has been
shown to give results that are similar to the conventional
approach, at a fraction of computational cost (Rosa et al., 2012).
Recently BMR has been extended to electrophysiological models
(Friston et al., 2015a,b) and initial results on synthetic data
suggest that it recovers the known ground truth better than
the conventional approach of inverting each model separately
(Friston et al., 2015a). This counterintuitive improvement, when
using BMR, is thought to be due to an increased robustness to
local minima and associated convergence problems.

The computational efficiency of BMR makes it possible
to implement a hierarchical or empirical Bayesian model for
dynamic causal modelling of group studies—and thereby limit
the effect of outliers using empirical priors. One application of
this hierarchical modelling—or empirical Bayes—is to finesse
local maxima problems by replacing the full priors over
parameters with empirical shrinkage priors from the between-
subject level. Effectively, the empirical shrinkage priors pull the
within-subject estimates towards the global mean (Friston et al.,
2015b). This entails optimizing the parameter estimates for each
subject iteratively using priors that are informed by all subjects.
In other words, the empirical (between-subject) priors replace
the original priors and single-subject inversions are repeated
until convergence. This scheme ensures that the local maximum
closest to the group posterior mean are obtained for each subject,
rendering model inversion more robust to local maxima (and
related convergence issues). This is the inversion scheme used
in the current report to assess reproducibility over different data
and models. We also asked how the scheme will perform in
the absence of experimental effects; i.e., when modelling null
data.

In what follows, we address some elementary but key
reproducibility issues using BMR and empirical Bayes; asking
whether one would reach the same inferences or conclusions
if one analyzed different data (acquired at the same time from
the same subjects), used a formally different model of neuronal
dynamics or, indeed, elected to use different inversion schemes
that would be otherwise identical under linear models.

In brief, we used empirical data from multiple participants in
an auditory mismatch negativity study (Garrido et al., 2007b).
To generate two independent but equivalent data partitions,
we averaged odd-numbered trials and separately averaged even-
numbered trials. Within each of these we produced event
related potentials for two experimental conditions: standard
and deviant. An additional ‘‘null’’ data partition was generated
by combining the standard trials from the odd data partition
with standard trials from the even data partition. In these

data, any differences between evoked responses are solely due
to random between-trial effects. In short, we created two
equivalent data partitions of deviant and standard event-related
potentials (ERPs) from the same subjects and a null data
partition. We then modelled these data using two variants of
DCM for electrophysiological responses; namely, the classic
ERP model (David et al., 2006), based upon three coupled
neuronal masses per source and a more recent CMC model
(Bastos et al., 2012, 2015), based upon a CMC that is equipped
with four populations. The CMC model is becoming popular
because it allows people to differentiate between superficial
and deep pyramidal cells that are the sources of forward
and backward connections, respectively. Finally, we compare
and contrast analysis strategies that have been adopted in the
previous literature (analysis of the grand average response over
subjects) with the current empirical Bayes approach. These
alternatives produced 12 analysis streams (i.e., three data sets,
times two neuronal models, times two inversion schemes),
enabling us to examine reproducibility over data, models and
inversions—and any interactions among these factors. For each
of the 12 analyses, we used BMR to evaluate the evidence for 16
connectivity models, i.e., alternative combinations of condition-
specific changes in connectivity—and then report the posterior
estimates under the best model, or in terms of their Bayesian
model average.

This article comprises three sections. The first section briefly
reviews the data used to assess reproducibility and the issues
inherent in the dynamic causal modelling of such data; with a
special focus on group studies and the various choices people
have to contend with. The second section describes the data and
model inversion procedures used to address reproducibility. The
final section presents the results of these analyses and provides
an evaluation of reproducibility in terms of Bayesian model
comparison (at the level of connectivity models) and Bayesian
model averaging (at the level of model parameters).

MATERIALS AND METHODS

EEG Data
The data used in the present study were originally acquired and
described by Garrido et al. (2007b). Eleven subjects’ data were
used (three female, ages 24–35), as in the original study. Each
subject gave signed informed consent before the study, which
proceeded under local ethical committee guidelines. EEG activity
was measured during an auditory ‘‘oddball’’ paradigm, in which
subjects heard ‘‘standard’’ (1000 Hz) and ‘‘deviant’’ tones (2000
Hz), occurring 80% (480 trials) and 20% (120 trials) of the time,
respectively, in a pseudo-random sequence. The stimuli were
presented binaurally via headphones for 15 min every 2 s. The
duration of each tone was 70ms with 5ms rise and fall times. The
subjects were instructed not to move, to keep their eyes closed
and to count the deviant tones.

EEG data were recorded with a Biosemi system with 128
scalp electrodes (BioSemi B.V., Amsterdam, NL, USA). Data
were sampled at 512 Hz. The data pre-processing was done anew
in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
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using the same pipeline as in the original study: the data were
referenced to the average of all channels, high-pass filtered
above 0.5 Hz (Butterworth fifth order filter), downsampled
to 200 Hz, low-pass filtered below 40 Hz (Butterworth fifth
order filter) and epoched between −100 and 400 ms relative to
the tone presentation. Trials containing artifacts were rejected
by thresholding the absolute amplitude at 100 µV. Channels
with more than 20% bad trials were flagged and precluded
from further analysis. At this stage, the remaining trials were
split into two partitions, with odd and even trials averaged
separately, ensuring that both experimental conditions were
equally represented. The trial numbers were, by construction,
the same for both odd and even data partitions: 195–232 trials
for the standard condition (mean: 211) and 48–59 trials for the
deviant condition (mean: 54). Averaging was performed using
robust averaging (Wager et al., 2005) and the resulting ERPs were
low-pass filtered, again at 40 Hz, to remove any high frequency
content introduced by the averaging procedure. This resulted in
two group data partitions of 11 subjects, one for odd and one
for even trials. For each data partition the grand average was
computed by averaging over subjects.

An additional null data partition was generated in a similar
way. In the null data partition, standard trials were the same as
in the odd data partition and ‘‘deviant’’ trials were drawn from
the standard condition of the even data partition. Hence, all trials
contained responses to standard tones and should therefore not
show any condition-specific effects. The number of trials per
condition was matched across the three data partitions.

Dynamic Causal Modelling
Previous studies have established a network of five cortical
sources that are sufficient to explain the form of the auditory
evoked responses, where differences between standard and
deviant stimuli can be accounted for by differences in
connectivity both within (intrinsic) and between (extrinsic)
sources (Garrido et al., 2007a,b). This network consists
of bilateral primary auditory cortex (A1), bilateral superior
temporal gyrus (ST) and a prefrontal source at the right inferior
frontal gyrus (PF). These three sets of sources comprise three
hierarchical processing levels linked by forward connections
from A1 to ipsilateral ST and from right ST to right PF and
backward connections reciprocating the forward connections.
In addition, we also included lateral connections between the
superior temporal regions (for the ERP model which allows
modelling of lateral connections). This rendered the ERP model
identical to that used in the original article (Garrido et al., 2007b).
See the upper panels in Figure 1 for a full description.

All of the connectivity models had the same basic architecture
and differed only with respect to which connections were allowed
to vary to explain the difference between standard and deviant
responses. We divided the connectivity model connections into
four groups: (i) intrinsic connections of A1 sources (sensory);
(ii) intrinsic connections of ST sources (higher); (iii) all forward
connections; and (iv) all backward connections. The model
space was defined as all possible combinations of these four
subsets resulting in 16 (2 × 2 × 2 × 2) connectivity models.

The full model allowed for all four subsets of connections to
change between standard and oddball conditions. The lower
panel of Figure 1 depicts the resulting model space in terms
of model parameters that, a priori, were allowed to change
between conditions. In these DCMs, the synaptic connectivity
among neuronal subpopulations is encoded by an A (or weighted
adjacency) matrix, while their condition-specific changes are
encoded by a matrix termed ‘‘B’’ (see equation 4 in Kiebel
et al., 2008). Note that only the B parameters differ among
models—it is these parameters that model condition-specific
effects; here, the difference between standard and deviant
responses.

The analyses were repeated with two types of neuronal model
available in the SPM software: the ERP model (Jansen and Rit,
1995; David and Friston, 2003; David et al., 2006) and the
Canonical Microcircuit (CMC) model (Bastos et al., 2012, 2015;
Moran et al., 2013). In the CMC case, the lateral connections
between STs were omitted because they are not supported in
this model. The key differences between the ERP and CMC
models include a different number of neuronal populations per
sources (three vs. four), which effectively splits the pyramidal cell
population of the ERPmodel into superficial and deep pyramidal
cell populations in the CMCmodel. Crucially, condition-specific
changes in intrinsic (within-source) connectivity are modelled in
a qualitatively different fashion: in the ERP model, the sensitivity
of pyramidal cells is modelled directly in terms of postsynaptic
excitability or gain (Kiebel et al., 2007). Conversely, in the CMC
model (Bastos et al., 2012) condition-specific effects are modelled
through changes in self-inhibition of superficial pyramidal cells,
such that a decrease in self-inhibition produces an increase in
excitability or postsynaptic gain. We, therefore, anticipated that
condition-specific or mismatch effects would produce opposite
changes in intrinsic connectivity in the ERP and CMCmodels.

Model Inversion
Model inversion was performed in two ways. First, we
fitted the full DCM to each of the group data using the
(parametric) empirical Bayesian inversion scheme with empirical
(between-subject) shrinkage priors described above (using
spm_dcm_peb_fit.m). Second, we fitted the full model to
the grand averages, as in the conventional approach (using
spm_dcm_fit.m). The group inversion provided posterior
expectations over all model parameters for each subject, while
the grand mean inversion estimated the equivalent posterior
densities over the parameters of a model generating grand mean
responses.

Having inverted the full model using both procedures, BMR
was used to estimate the posteriors and model evidence for
all reduced models (using spm_dcm_bmr.m). For the grand
mean analysis this furnished posterior distributions over the
16 models and Bayesian model averages of the connectivity
parameters (and condition-specific effects) for the grand mean
responses. For the group inversion, group means were estimated
(using spm_dcm_peb.m) by treating connectivity parameters
(and their condition-specific changes) as random effects,
while treating all other parameters as subject-specific fixed
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FIGURE 1 | This figure shows the basic model or network of five (equivalent current dipole) sources used to explain the ERP data. These constitute
primary auditory (A1) sources, higher superior temporal (ST) and prefrontal (PF) sources (on the right). The interesting parameters of this model are the intrinsic and
extrinsic coupling or effective connectivity parameters corresponding to the dashed and solid lines, respectively. These are the (random effects) model parameters
and are divided into connections that are common to both conditions (A parameters in blue) and those that show condition-specific (i.e., mismatch negativity) effects
(B parameters, extrinsic modulatory connections in pink, intrinsic—in red). The green lateral connection between the ST sources was only included in the ERP model.
The lower panel shows the model space using a matrix of indicator variables, where white indicates a parameter that is enabled. These variables indicate which
parameters constitute each of the 16 models considered, where the parameters are listed as connections among numbered sources (included in the upper right
panel). The 16 models correspond to all combinations of models with and without changes in: intrinsic sensory (A1), intrinsic higher (ST), forward and backward
connectivity.

effects (i.e., parameters pertaining to the stimulus input and
spatial parameters such as dipole location and orientation).
Subsequent Bayesian model comparison and averaging (using
spm_dcm_peb_bmr.m) returned posterior distributions over
models and densities over group mean parameters. These two
inversion (group and grand mean inversion) schemes were
repeated for all three (odd, even and null) data partitions under
the two (ERP and CMC) neuronal models. For technical and
mathematical details please see Friston et al. (2015a,b) and the
annotated Matlab routines above (available in the SPM academic
software).

RESULTS

Our objective was to examine reproducibility in terms of
inference about condition-specific effects, based upon Bayesian
model comparison and averaging. Note that this is not a
quantitative test of reproducibility in terms of parameter
estimates but a test of reproducibility in terms of models
and architectures. In other words, we wanted to assess the
reproducibility of inferences about models (to identify functional
architectures) and the parameters (synaptic connection strengths
and their condition-specific effects) that constitute those
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architectures. In what follows, we describe the results of Bayesian
model comparison and model averaging for the analyses of the
grand mean and group data, using odd and even trials.

Figure 2 shows the responses of each subject projected
onto the first principal component of the predictive prior
sensor covariance matrix. This is the method of dimensionality
reduction used in DCM code and is similar to principal
component analysis, but based on sensor covariance predicted
by the model rather than computed from the data. The standard
(full lines—individuals, blue line—mean) and deviant (dotted
lines—individuals, red line—mean) conditions are on the left and
their differences are on the right. The black lines illustrate the
degree of intersubject variability, while the red and blue lines
represent the group means. It can be seen that the mismatch
negativity (at around 180 ms) is evident in the difference
waveforms in both odd and even trials, although possibly more
marked in the odd data partition. There is also a hint of an
enhanced positivity at around 100 ms. These data show the
intersubject variability even in the trial averages—that propagates
through to the group means in a nontrivial way. The null data
show smaller differences between conditions but when visually
inspecting the data the discrepancies between null data and data
with real effects are not striking. This indicates that the effects
in this dataset are relatively weak and noisy making it especially
challenging for DCM (note that splitting the data into odd and
even trials reduces the number of trials by a factor of two).

Figure 3 shows the results of model inversion in terms of
the maximum a posteriori (MAP) estimates of connectivity.
These results are shown in the same format for even trials
(left panels) and odd trials (right panels) and for the ERP
(top row) and CMC (bottom row) models. The dark blue dots
correspond to the condition-specific effects, while the cyan
dots report the underlying connection strengths. The upper
left panel shows the results following group inversion with
empirical (between-subject) shrinkage priors after convergence
(four inversions), plotted against the equivalent estimates after
the first inversion (which is equivalent to the standard individual
inversion). The key thing to note here is that if the Laplace
assumption was correct (e.g., as in linear models), these estimates
should be identical. In other words, repeating model inversion
should not change the estimates. However, it can be seen that
there are marked differences due to violations of the Laplace
assumption that induce local maxima. This suggests that the
initial estimates were, in part, confounded by local maxima. The
right panels show the groupmean parameter estimates, following
group inversion with empirical shrinkage priors, plotted against
the equivalent standard individual estimates based on the
grand mean data. Although the correlations range between
0.23 and 0.76, it is reassuring to note the same connectivity
parameter change (red circles) has been identified as the largest
in all four analyses (odd and even in both ERP and CMC
models).

Under the CMCmodel, the correlations between the estimates
of the group mean parameters, following empirical Bayes, and
the parameter estimates for the grand mean are remarkably
similar, and higher than under the ERP model. Interestingly, the
subject-specific parameter estimates in the absence of empirical

FIGURE 2 | This figure shows the responses of each subject projected
onto the first principal component of the predictive prior covariance
matrix, for the standard (full lines—individuals, blue line—mean) and
deviant (dotted lines—individuals, red line—mean) conditions on the
left—and their differences on the right. The black lines illustrate the
intersubject variability, while the red and blue lines represent the group means.

shrinkage priors (after the first inversion) show a rather sparse
(heavy tailed) distribution, with a large number of parameters
showing very small values and a small number with large values.
This sparsity is resolved when using empirical shrinkage priors
(after the fourth inversion). One explanation for this is that the
prior expectations (of zero) may be a local maximum for many
parameters.

Figure 4 presents the Bayesian model comparison and
averaging results obtained under the ERP model, following an
analysis of the grand average and empirical Bayesian analysis
of the group data, for even (left) and odd (right) trials. The
upper row reports the results of Bayesian model comparison
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FIGURE 3 | This figure reports the results of model inversion in terms of the maximum a posteriori (MAP) estimates of connectivity. These results are
shown in the same format for even trials (left panels) and odd trials (right panels) and for the ERP (top row) and CMC (bottom row) models. The dark blue dots
correspond to the condition-specific effects (B parameters), while the cyan dots report the common connections (A parameters). The left panels for each data
partition show the results following group inversion with empirical (between-subject) shrinkage priors, plotted against the equivalent estimates before repeated
application of shrinkage priors, i.e., standard estimation. The right panels show the group mean parameter estimates, following group inversion with empirical
shrinkage priors, plotted against the estimates based on the grand mean data. Note that left panels show values for all subjects combined whereas the right
panels—for the group mean. In DCM for electrophysiological data, connectivity parameters are log scale parameters. In other words, a parameter of zero
corresponds to scaling of log(0) = 100%. For connectivity parameters, the scaling is applied to prior expectations (usually of a weak connectivity). For
condition-specific effects, a parameter of zero corresponds to no change. The red circles emphasise a condition-specific effect that was identified as the largest in all
analyses. This was an increase in the strength of the forward connection to prefrontal source. Pearson correlation coefficients are shown for the B parameters where
relevant.

and averaging of the grand mean data. The lower row shows
the equivalent results following empirical Bayesian analysis.
The model evidences following inversion of the odd and even
trials are similar but not consistent. For the grandmean inversion
in the even trials, there is clear evidence for increases in intrinsic
sensory and forward connectivity, while, for the odd trials, the
mismatch negativity related increases have been attributed to
the higher intrinsic and forward connectivity. The key thing
to note here is that the profile of model evidences becomes
more consistent between odd and even trials following empirical
Bayesian inversion; suggesting that models with increases in
intrinsic sensory and forward connectivity have the highest
evidence (see also Figure 7). In terms of parameters, the
Bayesian model averages are consistent between the odd and
even analyses—and with the analysis of the grand mean: in all
four analyses, the most marked effect is seen in the forward
connection to the prefrontal source. Careful inspection of the
Bayesian confidence intervals shows that, with the exception of

two connections in both analyses, the posterior densities over
individual connections are internally consistent between odd and
even trials. Crucially, in every analysis, the intrinsic connectivity
(red confidence intervals) has increased for deviant trials in all
four sources. Furthermore, in all four analyses, the increase of
intrinsic connectivity in the fourth source is much less marked
than the remaining sources.

Figure 5 shows the same analyses as in Figure 4 for the
CMC model. In terms of the changes in connectivity, there is a
remarkably consistent profile, in relation to the equivalent results
under the ERP model. Again, we see the largest experimental
effect is an increase in the forward connection from the superior
temporal source to the inferior frontal source—in all four
analyses (circled in the figure). Furthermore, in all four sources
the intrinsic connectivity shows a disinhibition, in line with the
differences in the way intrinsic connectivity is mediated in the
two neuronal models. In terms of model comparison, we again
see that the empirical Bayesian analysis is more conservative
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FIGURE 4 | This figure compares the Bayesian model comparison and averaging results obtained following an analysis of the grand average and
empirical Bayesian analysis of the group data, for even (left) and odd (right) trials, using the ERP model. The key thing to note here is that the profile of
model evidences is more consistent following empirical Bayesian inversion; suggesting that models with increases in intrinsic sensory and forward connectivity have
the highest evidence. Furthermore, the Bayesian model averages are consistent between the odd and even analyses—and with the analysis of the grand mean. The
gray bars correspond to posterior estimates, while the colored bars represent 90% Bayesian confidence intervals: average (A parameters) connections are shown in
blue, while connectivity changes (B parameters) are shown in red for intrinsic connections and pink for extrinsic connections. In all four analyses, the largest effect is
seen in the forward connection to the prefrontal source (circled). With the exception of two connections in both analyses, the posterior densities over individual
connections are internally consistent between odd and even trials.

than the Bayesian model comparison based upon the grand
averages. In this example, grand average analysis appears to
be overconfident and prefers the full model (model 1) for the
two data partitions. In contrast, the empirical Bayesian model
comparison is much more agnostic about the best model. This
is particularly marked for the even trial data partition, where all
models have a relatively low probability. For the odd trial data,
the preferred model is the same as the (full model) selected using
the ERP model.

Figure 6 compares the parameter estimates for the odd and
even partitions directly for the two neural models and two
inversion procedures. The Pearson correlations coefficients that
we present here quantify reproducibility and ranged between 0.24
for the ERP model and grand mean combination and 0.79 for
CMC grand mean, with empirical Bayes showing similar values
for both ERP and CMC: 0.65 and 0.69 respectively. In summary,

the parameter estimates are fairly consistent when using the two
neuronal models, the two data partitions, and the two inversion
schemes. In terms of model comparison, the empirical Bayesian
estimates of model evidence are less subject to overconfidence.
For the ERP model they were consistent over independent data;
however, for the CMC model the model evidences were less
informative.

Figure 7 uses the same format as Figures 4, 5 to show the
results of a null analysis (with standard trials drawn from the
odd and even partitions of data). As one would expect, we
found highest evidence for a null model (model 16—with no
changes in connectivity) for the analysis of the grand mean (top
row) and a nearly null model (model 15), for the empirical
Bayesian analysis (bottom row) of the ERP model. Furthermore,
Bayesian model averaging in both cases shows that the Bayesian
credible intervals for parameters showing condition-specific
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FIGURE 5 | This figure presents the results of the same analyses presented in Figure 4 but for the CMC model.

effects include the prior mean of zero. In other words, there
is no connection that could be inferred to change with 90%
confidence or more. The only exception is a reduction in the
last (backward) connection that nearly reaches 90% confidence
for the CMC case—and explains why the backward family (see
Figure 8) attains 90% confidence. This is not unexpected given
the large number of parameters across all the analysis streams
and the probabilistic nature of Bayesian inference. The clear
difference between the null case and the two partitions with
real experimental effects is a pleasing result, which suggests that
Bayesian inference precludes experimental effects that are not
present, even when the data are suggestive of condition-specific
effects on visual inspection (see Figure 2).

Figure 8 summarizes the Bayesian model comparison of the
previous figures by grouping the models into four independent
‘‘families’’, according to whether they include changes in sensory
intrinsic, higher intrinsic, forward or backward connectivity.
The posterior probabilities of these families are shown as a bar
graph, where each bar pertains to a separate hypothesis test
(whether a change in the respective connection type is present).
The red lines correspond to a 90% posterior probability of each
family of models. For the ERP model, this form of family-wise
Bayesian model comparison highlights the consistency following
empirical Bayesian group inversion (right panels), that is less

complete under the analysis of the grand mean (left panels).
However, the only inconsistent result (for ERP models) is
seen with analysis of the grand mean data from odd trials, in
which the changes in intrinsic sensory connectivity have been
replaced by changes in intrinsic higher connectivity. Otherwise,
we would reach the same conclusion for all analyses of data
with real experimental effects. The results for the CMC model
are less compelling, showing the overconfident preference for
all connectivity changes when inverting the grand average—and
uninformative model comparison when using empirical Bayes.
Having said this, the ordinal profile of model evidences for the
even trials under the CMC model is exactly the same as that
obtained under the ERP model, for both the grand mean average
and empirical Bayesian analyses. Furthermore, in all analyses the
evidence for changes in backward connectivity suggests we can
dismiss this as a plausible explanation for oddball responses.

The lower rows report the same results using a null analysis
comparing odd and even standard trials. With one exception, all
16model comparisons suggest negative or weak evidence in favor
of any experimental effect. Indeed, the majority of comparisons
suggest there is evidence against an experimental effect, with a
posterior probability of connectivity changes of less than 50%.
With 16 comparisons, one might expect one comparison to
exceed a 95% confidence threshold, which is what we observe
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FIGURE 6 | To quantify the reproducibility of MAP estimates of
connectivity shown in Figures 4, 5 these estimates are compared
directly as in Figure 3. Each plot shows the reproducibility of MAP estimates
for the odd and even partition under a particular neural model and inversion
procedure combination. The dark blue dots correspond to the
condition-specific effects (B parameters), while the cyan dots report the
common connections (A parameters). Pearson correlation coefficients were
computed by pooling both sets of parameters.

here. However, note that model comparison is a probabilistic
statement. In other words, there is no notion of a false positive
because there is still a 5% probability that the null model is the
best explanation for the data.

To see whether increasing the amount of data would boost
the efficiency of empirical Bayesian inversion, we applied this
procedure to the full dataset with odd and even trials combined.
In this case, the effect of sensory intrinsic connections reached a
posterior probability close to unity—with the other effects staying
uninformative.

DISCUSSION

In this technical note, we have compared conventional
(grand mean averaging) analyses of group DCM studies
with hierarchical or empirical Bayesian model averaging.
Our particular focus was on reproducibility when analysing
independent data, under formally distinct models. The main
conclusions of this comparative evaluation are as follows: first,
the parameter estimates based upon grand mean data are
similar to the Bayesian model averages following an empirical
(hierarchical) Bayesian analysis—in which condition-specific
effects (changes in connectivity) are treated as random effects
at the second (between subject) level. Second, Bayesian model
comparison based upon the variational free energy as a proxy
for log model evidence is more consistent following empirical
Bayesian analysis, relative to analysis of the grand mean. Third,
empirical Bayesian parameter estimates are consistent over
different data partitions and neuronal models.

The sort of reproducibility we have focused on pertains to
inferences about functional architectures and condition-specific

effects. For the ERP model, a standard way of reporting these
results could be something like the following:

‘‘Using Bayesian model comparison, we assessed the evidence
for changes in intrinsic sensory, intrinsic higher, forward
and backward connectivity, induced by the deviant condition
(and underlying the mismatch negativity). The evidence for
models with and without each of these changes was assessed
using Bayesian family comparison—based upon the posterior
density over changes in connectivity at the group level.
These model comparisons provided clear (greater than 90%
confidence) evidence for increases in intrinsic sensory and
forward connections, with relatively little evidence for changes
in backwards connectivity. The evidence for changes in intrinsic
connectivity at the higher level was positive but not strong
(between 80–90%). These conclusions were consistent with the
Bayesian model averages of each parameter (accounting for
uncertainty over models), with the largest effect (greater than 20%
increase) in the forward connection to the prefrontal source. This
increase was accompanied by smaller but bilateral increases in the
intrinsic connectivity or excitability of the sensory sources, and
unilaterally on the right superior temporal source.’’

One would then discuss these results in relation to their
implications for particular theories of cognitive processing; for
example, predictive coding:

‘‘These results are consistent with a predictive coding formulation
of the mismatch negativity in terms of oddball or violation
responses. In brief, one can associate the increase in forward
connectivity in terms of an increase in bottom-up prediction
error signalling, when stimuli elude top-down prediction.
Conversely, increases in sensory intrinsic connectivity may reflect
the exogenous attentional effects of an unpredicted stimulus,
which—in predictive coding—correspond to an increase in
the precision or gain of superficial pyramidal cells reporting
prediction errors.’’

Crucially, these conclusions would be exactly the same for
the empirical Bayesian analyses of the group data, irrespective of
whether we had analyzed the odd or even data partition (or the
grandmean of even trials). Furthermore, we would not have been
able to articulate these conclusions had we analyzed the null data
(where experimental effects were deliberately destroyed).

For the CMC model the Bayesian model comparison (based
on the empirical Bayesian analysis) was less informative and
would not justify the above conclusions even though the profile
of parameter estimates was very similar. This probably reflects
the fact that the CMC model has a greater complexity (i.e.,
has more parameters) and a more biologically realistic form
of intrinsic connectivity gain control. This means we would
probably require more data to reach the same conclusions.
Indeed, if we pooled the odd and even trials, the Bayesian model
comparison would then partially support the above conclusion
with regards to modulation of sensory intrinsic connections.

Although these results are reassuring, they should only be
taken as proof of principle that empirical Bayesian modelling,
with dynamic causal models, can yield reproducible results.
Clearly, a better sense of the reproducibility of DCM will rest

Frontiers in Human Neuroscience | www.frontiersin.org 9 December 2015 | Volume 9 | Article 670

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Litvak et al. Empirical Bayes for DCM

FIGURE 7 | This figure uses the same format as Figures 4, 5 to report the results of a null model (with no changes in connectivity between odd and
even standard trials) for the ERP (left) and CMC (right) neuronal models. As one would expect, the evidence for a null model (model 16) is clearly non-zero for
both the analysis of the grand mean (top row) and empirical Bayesian analysis (bottom row). Furthermore, Bayesian model averaging in both cases shows that the
Bayesian credible intervals for parameters showing condition-specific effects include the prior mean of zero. In other words, there is no connection that could be
inferred to change with 90% confidence or more. The only exception is a reduction in the last backward connection that nearly reaches 90%.

upon future studies, using different models and data features.
The example used here was deliberately challenging for DCM.
We chose to use data that will be made available as an exemplar
(multisubject) EEG dataset (and that have been previously
reported). However, these data were acquired from a relatively
small number of subjects. Furthermore, the number of trials per
condition was small after splitting the trials into odd and even
subsets. The ensuing lack of statistical efficiency may explain
why the analysis of the null data did not point clearly to a null
model (with no condition-specific effects). In this context, there
is a fundamental difference between a failure to identify a model
that is more likely than any competing models and a confident
assertion that the null model is the most likely. The profile of
model evidences in Figure 7 speaks to a persistent uncertainty
about the most likely model—and would normally suggest more
(or better) data are required to clearly establish the null (or any
other) model as the most likely.

It is pleasing to note that similar parameter estimates could
be obtained following the use of a standard (ERP) model and
a CMC model. This is a non-trivial result because the forms of
the two models are qualitatively distinct; especially in terms of
how changes in intrinsic connectivity or gain are modelled. The
CMC model is (arguably) more biologically plausible, because

it explicitly models changes in excitability through changes in
inhibitory self-connectivity. This necessarily involves (implicit)
inhibitory interneurons, which are thought to be crucial in
establishing (synchronous) gain and nuancing cortical gain
control in terms of excitation-inhibition balance.

Finally, we reiterate that our examination of reproducibility
is restricted, in the sense that we have only considered a small
number of random effects in a specific dataset and paradigm.
By analysing odd and even trials, we have effectively precluded
session-to-session sources of variability, which could be an
important determinant of reproducibility. From the perspective
of models, both the ERP and CMC models are based upon
the same mathematical form (they are both weakly nonlinear
synaptic convolution models). We anticipate that there will be
many more studies along these lines; expanding the repertoire
of models that are applied to data and indeed, the nature of the
data themselves. Indeed, there are current initiatives in which
similar analyses are being applied to multisubject fMRI data. The
analysis presented in the present article was based on evoked
responses, but a similar procedure can be applied to resting data,
which are usually epoched into arbitrary fixed-length segments
prior to spectral analysis. These segments can be partitioned
into odd and even subsets and subjected to the same analyses
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FIGURE 8 | This figure summarizes the Bayesian model comparisons of Figures 4, 5, 7 in terms of four independent Bayesian family comparisons that
assess the evidence for changes in intrinsic sensory and higher (within A1 and ST, respectively) and extrinsic (forward and backward) connectivity.
The posterior probability of the models that include these effects are shown as a bar graph. Note that each bar pertains to a separate hypothesis and therefore the
probabilities do not sum to 1. This form of family-wise Bayesian model comparison highlights the consistency following empirical Bayesian group inversion (right
panels), that is less complete under the analysis of the grand mean (left panels). However, the only inconsistent result is seen with analysis of the grand mean data
from odd trials, in which the changes in intrinsic sensory connectivity have been replaced by changes in intrinsic higher connectivity. The lower row reports the same
results using a null analysis comparing odd and even standard trials. The red lines correspond to a 90% posterior probability of each family of models.

described in this article. Assessing the reproducibility of dynamic
causal modelling may become increasingly important when the
(connectivity for synaptic) parameters of these models are used
for diagnosis and prognosis in a clinical setting.
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