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In chronic pain, a number of brain regions involved in emotion (e.g., amygdala,
hippocampus, nucleus accumbens, insula, anterior cingulate, and prefrontal cortex)
show significant functional and morphometric changes. One phenotypic manifestation
of these changes is pain-related fear (PRF). PRF is associated with profoundly altered
behavioral adaptations to chronic pain. For example, patients with a neuropathic pain
condition known as complex regional pain syndrome (CRPS) often avoid use of and
may even neglect the affected body area(s), thus maintaining and likely enhancing PRF.
These changes form part of an overall maladaptation to chronic pain. To examine fear-
related brain circuit alterations in humans, 20 pediatric patients with CRPS and 20 sex-
and age-matched healthy controls underwent functional magnetic resonance imaging
(fMRI) in response to a well-established fearful faces paradigm. Despite no significant
differences on self-reported emotional valence and arousal between the two groups,
CRPS patients displayed a diminished response to fearful faces in regions associated
with emotional processing compared to healthy controls. Additionally, increased PRF
levels were associated with decreased activity in a number of brain regions including the
right amygdala, insula, putamen, and caudate. Blunted activation in patients suggests
that (a) individuals with chronic pain may have deficits in cognitive-affective brain circuits
that may represent an underlying vulnerability or consequence to the chronic pain state;
and (b) fear of pain may contribute and/or maintain these brain alterations. Our results
shed new light on altered affective circuits in patients with chronic pain and identify PRF
as a potentially important treatment target.

Keywords: chronic pain, neuropathic pain, children, putamen, functional imaging, anterior cingulate, fMRI,
amygdala

INTRODUCTION

Fear of pain is considered to be a significant process in pain exacerbation and persistence (Wiech
and Tracey, 2009, 2013; Flor, 2012; Simons et al., 2014a). Normally, fear occurs as a protective
response to a present or potential threat. In the healthy state, fear is elicited by the sense of
a threat (Canteras et al., 2008; Cezario et al., 2008), which activates cognitive (Gilmartin et al.,
2014), affective (Fernando et al., 2013), and motor brain circuits (Kincheski et al., 2012). As such,
these processes activate an individual’s defense system, which, in turn, induces anti-nociception
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through descending pain modulation. In chronic pain, a number
of brain circuits are known to be altered (Bushnell et al., 2013),
including those known to be involved in fear (Yu et al,, 2014).
Fear avoidance stems from individual perception as well as
ongoing symptomatic feedback from their clinical condition that
may contribute to the chronification of pain (Asmundson et al.,
1999; Vlaeyen and Linton, 2000).

A fear circuit has been defined that includes a number of
brain regions in the subcortical (e.g., amygdala, hippocampus,
thalamus), cortical [e.g., prefrontal cortex (PFC), sensory
cortex], and brainstem regions (e.g., locus coeruleus; Tovote
et al, 2015). Among these brain areas, the amygdala plays
a pivotal role in fear processing (Sears et al., 2014). Human
imaging studies examining common pathways implicated
in both fear and pain processing implicate affective brain
circuits that include the PFC, insula, anterior cingulate
cortex (ACC), hippocampus, nucleus accumbens, and amygdala
(Bushnell et al., 2013; Mansour et al., 2014). In an effort
to integrate clinical phenotypes of altered cognitive-affective
states with underlying brain mechanisms, recent studies have
focused on pain catastrophizing and pain-related fear (PRF) in
chronic pain patients. Among the reported findings, enhanced
medial PFC-default mode network functional connectivity
has been associated with higher levels of pain rumination
in chronic pain patients (Kucyi et al, 2014). Additionally,
increased pain-evoked activity in the mPFC, cerebellum,
ACC, dorsolateral PFC (dIPFC), and claustrum has been
associated with heightened pain catastrophizing (Gracely et al.,
2004). Another study showed that greater dIPFC volume
has been linked to decreased pain catastrophizing after
cognitive-behavioral treatment (Seminowicz et al, 2013). In
the context of PRE our group has observed increased resting-
state functional connectivity between the amygdala and PFC,
middle temporal lobe, ACC, and hippocampus that was
associated with higher PRF scores in pediatric CRPS (Simons
et al,, 2014b). One recent study evaluating the influence of
PRF on evoked brain activity to viewing aversive movements
reported no differences in fear level between patients and
healthy controls (Barke et al., 2012), which may be explained
by the method used to elicit fear (Salomons and Davis,
2012).

The aim of the current study was to examine fear perception
circuit alterations in pediatric patients with complex regional
pain syndrome (CRPS) using a well-established fearful faces
paradigm (Shin et al., 2005; Etkin and Wager, 2007) to examine
whole-brain evoked responses compared to healthy controls and
by PRF level. We hypothesized that patients with CRPS would
show altered activation patterns in the amygdala and related
fear-circuitry areas (i.e., ACC, insula, PFC, hippocampus) in
response to fearful stimuli and that these differences would
be enhanced among high-fear patients. To our knowledge,
this is the first study to evaluate fear perception circuits in
pediatric patients suffering with chronic pain. Given that both
hypoactivation (in Panic Disorder; Pielech et al., 2014) and
hyperactivation (in Post-Traumatic Stress Disorder; Shin et al.,
2005) have been observed, we did not hypothesize directionality
of response.

MATERIALS AND METHODS

Participants

Of the 53 patients who were contacted and potentially eligible, 20
patients with CRPS (ages 8-20) were recruited from the Chronic
Pain Clinic in the Pain Treatment Service at Boston Children’s
Hospital (BCH) for this BCH institutional review board approved
study. Written informed consent was obtained from all recruited
subjects in accordance with the Declaration of Helsinki. Of the
33 patients not enrolled, 17 declined participation [32% decline
rate; reasons included: not interested (Bushnell et al., 2013),
overwhelmed/can’t make time commitment (Buhle et al., 2014),
did not want an MRI (Becerra et al, 2014), claustrophobic
(Asmundson et al, 1999)] and 16 were ineligible [reasons
included: mental health or medical comorbidity (Bushnell et al.,
2013), permanent metal implants (Buhle et al., 2014), left handed
(Barke et al., 2012), no pain (Asmundson et al, 1999)]. Both
the patient and parent were consented for the study. Parents
were present during the study visit, but not in the scanner
room. Patients were included in the study if (1) they refrained
from using analgesic medication >4 h prior to the study
session, (2) they experienced lower extremity CRPS [based on
Budapest criteria; (Harden et al., 2010)] and (3) their average
pain intensity was >5 on a 1l-point numerical rating scale
(NRS). They were excluded if they had (1) claustrophobia,
(2) significant medical problems [e.g., uncontrollable asthma
and seizures, cardiac diseases, severe psychiatric disorders (e.g.,
suicidal ideation, PTSD), and neurological disorders other than
CRPS], (3) pregnancy, (4) medical implants and/or devices,
(5) were taking opioid medication, and (5) weight > 285
pounds which corresponded to the weight limit of the magnetic
resonance imaging (MRI) table. Twenty sex- and age-matched
healthy controls were recruited in the greater Boston area
through advertisements. Each study session consisted of a
neurological exam with a study physician, questionnaires, and an
MRI scan.

Measures and Stimuli

Emotional Faces Paradigm

Participants standardized gray-scale face stimuli
consisting of female and male individuals depicting affective
expressions (Ekman and Friesen, 1976), using six happy (H),
six fear (F), six neutral (N) stimuli. All faces were matched
for overall luminosity and size, and were equally aligned on
a black background template. Each face was presented for
200 ms, with a 300-ms interstimulus interval in a pseudorandom
order such that facial expressions of a single identity are
never presented in succession. Each block of faces was 16 s
in duration (e.g., 32 fearful faces were presented in each fear
block). Interspersed eye fixation blocks (4) between faces stimuli
blocks were jittered lasting approximately 10-17 s each. There
were two runs. The first run consisted of the following series
of blocks: +N+H+F+H+F+N+F+H+N+ and the second
run was +N+F+H+F+H+N+H+F+N+ (see Figure 1). This
paradigm was modeled after those used in previous studies to
evoke fear circuitry (Shin et al., 2005). The facial stimuli were

viewed
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Facial expression blocks of fear, happy, and neutral were 16 sec each and presented for 200ms on/ 300ms off.

L | | | | |
N

+ + H+ F + H+ F + N+ F + H + N +
-

Eye fixation blocks were jittered lasting approximately 10-17 sec each.

>

FIGURE 1 | Facial expression paradigm. All neutral, happy, and fearful blocks are 16 s in duration with interspersed eye fixation blocks jittered lasting
approximately 10-17 s each. Male and female faces in each block were presented in a pseudorandom order such that facial expressions of a single identity are
never presented in succession for a total of 32 faces presented in each block. There were two runs. The first run consisted of the following series:
+N-+H-+F+H+F+N+F+H+N+ (as depicted above) and the second run was +N-+F+H+F+H+N+H+F+N+. +, eye fixation; N, neutral faces; H, happy faces; F,

fearful faces.

displayed using standardized software (MacStim 3.0; WhiteAnt
Occasional Publishing, West Melbourne, Australia). Each run
was approximately 5; 10 min for the entire evoked paradigm.
Immediately after each scanning session, participants were asked
to rate the facial expressions on scales of valence (negative to
positive, -3 to +3) and arousal (low to high, 0-6).

Fear of Pain

The Fear of Pain Questionnaire (FOPQ-C; (Simons et al., 2011))
is a self-report inventory to assess PRF. Each item is rated
on a 5-point Likert-type scale from 0 = ‘strongly disagree’ to
4 = ‘strongly agree” The FOPQ-C consists of 24 items with
strong internal consistency (¢ = 0.92). The FOPQ-C has two
subscales: Fear of Pain (0 = 0.89) and Avoidance of Activities
(a0 = 0.86). Construct validity for this measure is supported
with significant relations found for the FOPQ-C with child
somatization, anxiety, and catastrophizing. Criterion-related
validity is also supported with significant relations between
higher FOPQ-C scores and greater functional disability and more
frequent doctor visits in the previous 3 months. Stability of the
FOPQ-C total scale score is adequate (o = 0.74) with decreases
in FOPQ-C scores associated with concomitant decreases in
functional disability (r = 0.45) at 1-month follow-up, suggesting
sensitivity to treatment response (Simons et al., 2011). High-
fear patients (FOPQ > 50) in this study were defined from
the highest tertile in the validation sample (Simons et al,
2011).

MRI Acquisition

Subjects underwent MRI on a 3 T (Siemens Medical Solutions,
Erlangen, Germany) scanner using a 12-channel head coil. For
each participant, we collected a 3D T1-weighted anatomical scan

using a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence (128 slices; TR = 2100 ms; TE = 2.74 ms;
TI = 1100 ms; 256 x 256 matrix; FOV = 200 mm;
133 mm x 1.0 mm x 1.0 mm voxels). Two 5-min
evoked fMRI scans were acquired using a T2*-weighted echo-
planar pulse imaging (EPI) sequence (41 interleaved slices;
TR = 2500 ms; TE = 30 ms; 64 x 64 matrix; FOV = 1680 mm;
3 mm X 3 mm X 3 mm voxels; 120 volumes). Subjects were
instructed to look carefully at the pictures and were told that they
would be asked questions about them after the MRI.

MRI Preprocessing and Data Analysis
Evoked Response to Fearful Faces

All preprocessing, first-level, second-level, and third-level group
analyses were performed using FMRIB Software Library (FSL).

MPRAGE preprocessing
For each subject, MPRAGE images were skull-stripped using the
brain extraction tool (BET).

fMRI preprocessing and first-level analysis

The following steps were taken within FEAT for each run of
the evoked data set: (i) EPI images were skull-stripped using
BET (Smith, 2002); (ii) motion correction using FMRIB’s Linear
Motion Correction (MCFLIRT); (iii) spatial smoothing at 5 mm
full-width at half maximum (FWHM); (iv) affine registration
of the fMRI dataset to the Montreal Neurological Institute
(MNI)-152 2 mm template brain using FMRIB’s Linear Image
Registration Tool (Jenkinson and Smith, 2001; Jenkinson et al.,
2002); (v) highpass filtering; and (vi) six standard motion
parameters (i.e., three rotational and three translational) and
a motion artifact confound matrix (created using FSL Motion
Outliers for motion <3 mm) was added as variables of no interest.
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The fearful faces explanatory variable (EV) was constructed
based on the temporal presentation of the images. The EV
was convolved with standard gamma functions to produce a
hemodynamic response model. We examined signal change
relative to inter-interval fixation.

Second-level analysis

Once individual GLM FEAT analyses were completed, a fixed
effects analysis was conducted combining both runs of the fearful
faces paradigm to generate a mean image across runs.

Third-level analysis

The mean cope image for each individual was entered into
an unpaired mixed-effects group analysis between patients and
controls. For statistical thresholding, all whole-brain images were
thresholded at z = 1.96 and cluster-wise corrected at p < 0.05 for
multiple comparisons. These steps were replicated for the each
facial expression condition (i.e., happy, fear, neutral).

ROI Analysis

To disentangle evoked brain response within patients by PRF
level, we conducted region-of-interest (ROI) analysis using
FSL Featquery for the ACC, dIPFC, amygdala (basolateral,
centromedial regions), hippocampus, thalamus, putamen,
caudate, and insula (anterior, posterior regions). Selection of
these regions was based on results from recent work identifying
these regions as having stronger synchronicity in activity with
the amygdala at rest in pediatric CRPS (Simons et al., 2014b),
as well as their known roles in fear learning (Linnman et al,
2012; Feng et al., 2014) and the emotional dimensions of pain
(Neugebauer et al., 2009). Masks for the ROI analyses were
created in FSL using Harvard-Oxford Cortical and Subcortical
Atlas and Juelich Histological Atlas, and transformed into
standard space, and thresholded at 50%. The insula from the
Harvard-Oxford Cortical Atlas was subdivided into anterior
and posterior regions at y = 1 (Brooks et al., 2005). Talairach
Daemon Labels were also used to identify and create a dIPFC
mask based on all voxels including Brodmann 9 and 46
regions within the middle frontal gyrus (MFG; Potkin et al.,
2009). Percent signal change values represent mean values
for the entire extracted ROIL Using one-way ANOVAs, we
examined group differences between high-fear individuals
(n = 8), non-elevated fear individuals (n = 8), and healthy
controls (n = 19). Pearson Product Moment correlations were
used to examine association between percent signal change
and PRF level. All ROI analyses were a priori thresholded at
p < 0.05.

Age-Related Activation

Given that age-related changes in activation have been observed
for amygdala-PFC connectivity (Gee et al., 2013) and that
the patient and healthy control sample were age-matched,
we examined whether the linear relationship between evoked
activation and age differed between the two groups using a
continuous covariate interaction where mean centered age is
entered into two EVs (one for patients, one for controls).

RESULTS

Participants

A total of 20 patients and 20 age- and sex-matched healthy
controls completed the emotional faces paradigm. All study
participants were right-handed. Four study participants (three
patients, one control) displayed excessive motion (>3 mm) and
one did not have a visual cortex response across emotional stimuli
(one patient) resulting in a final group of 16 patients and 19
controls. All subsequent descriptive numbers reflect this group
of patients and healthy controls. Among patients, 75% were
female with an average age £ SD of 13.7 £ 3.2 years, and as
expected, not significantly with the matched healthy controls
(79% female; mean age = 14.1 £ 3.1 years). Within patients,
44% were right-side afflicted, 44% left-side afflicted, and 12%
presented with bilateral lower extremity CRPS diagnosis. With
regards to current medications, 38% (n = 6) were prescribed
antiepileptic medication (e.g., gabapentin), 12% (n = 2) was
prescribed an antiepileptic medication and a tricyclic, 6% (n = 1)
was prescribed a muscle relaxant, while all other patients (n = 8)
were not currently prescribed any pain medications. Three
patients met criteria for an Axis I psychiatric diagnosis (n = 2
had generalized anxiety and n = 1 had generalized anxiety and
major depression).

Pain and PRF

Among the 16 patients, 81.3% of patients self-reported
moderate to severe average pain levels (average pain
intensity &= SE = 6.17 £ 0.61). Median duration of pain
was 7 months (average pain duration = 13.25 £ 3.87). For PRE,
50% (n = 8) reported high PRF (average PRF = 48.06 £ 3.77).
PRF and pain intensity were not statistically significantly
associated with one another (r = -0.20; p = 0.45).

Facial Expression Ratings

Ratings of valence and arousal were submitted to separate 2x3
(group [patient vs. healthy control] x expression [neutral, happy,
fear]) analyses of variance. For valence, there was a significant
main effect for expression (F3 102 = 189.7, p < 0.01), but not for
group (see Figure 2). Post hoc testing showed significant valence
rating differences among all three types of facial expressions;
fearful (—1.34 £ 0.16) vs. happy (2.31 %+ 0.12), t(33) = -16.7,
p < 0.01; fearful vs. neutral (-0.47 £ 0.12), #(33) = -6.00,
p < 0.01, and neutral vs. happy, #(33) = -15.3, p < 0.0l
Analysis of the arousal ratings revealed a significant main effect
for expression (F; 102 = 8.69, p < 0.01), but not for group.
Post hoc testing showed significantly lower arousal ratings for
neutral faces (1.70 £ 1.27) vs. fearful (2.90 + 1.33), #(33) = -
5.76, p < 0.01, and happy (2.87 & 1.29), #(33) = -5.72, p < 0.01.
Arousal ratings between happy and fearful did not significantly
differ.

fMRI Results

Fearful Faces

The whole brain analysis revealed six significant clusters with
less evoked activation for patients compared to healthy controls
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FIGURE 2 | Valence and arousal ratings across facial expressions.
Patients and healthy peers did not differ on valence or arousal ratings for
neutral, happy, and fearful faces. As expected, there were significant
differences across emotions for valence, with fearful faces rated more
negatively and happy faces rated more positively. For arousal, both fearful and
happy faces were rated as significantly more arousing than neutral faces.

in response to fearful faces (see Figure 3 and Table 1).
The first cluster was in the right hemisphere consisting of
1518 voxels including the frontal operculum cortex (FOC),
insula cortex (Ins), and striatum (Caudate [Cd], Pallidum [Pd],
Putamen [Pt]). The second cluster was in the left hemisphere
consisting of 1375 voxels including the FOC, Ins, dIPFC, MFG,
thalamus (thal), and striatum (Cd, Pt). The third cluster was
in the left hemisphere consisting of 1236 voxels including the
lateral occipital cortex (LOC), superior parietal lobule (SPL),
supramarginal gyrus (SMG), and postcentral gyrus (PoCG).
The fourth cluster was in the right hemisphere consisting of
976 voxels including the superior frontal gyrus (SFG), MFG,
and precentral gyrus (PrCG). The fifth cluster was in the right
hemisphere consisting of 975 voxels including the SPL and LOC.
The sixth cluster was in the right hemisphere consisting of

858 voxels including the PrCG, inferior frontal gyrus (IFG), SMG,
PoCG. No areas were observed to have greater activation in
patients compared to controls.

Happy Faces

The whole brain analysis resulted in two significant clusters with
less evoked activation for patients compared to healthy controls
in response to happy faces (see Table 2 and Figure 4 activation
noted in pink). The first cluster was in the right hemisphere
consisting of 1265 voxels including the SFG, PrCG, and MFG.
The second cluster was also in the right hemisphere consisting of
1002 voxels spanning over the angular gyrus, inferior temporal
gyrus, SMG, and middle temporal gyrus. No areas were observed
to have greater activation in patients compared to controls.

Neutral Faces

In the whole brain analysis, two significant clusters emerged with
less evoked activation for patients compared to healthy controls
in response to neutral faces (see Table 3 and Figure 4 activation
noted in green). The first cluster was in the left hemisphere
consisting of 1064 voxels including the PrCG, SFG, and MFG.
The second cluster was also in the left hemisphere consisting of
907 voxels including the PoCG and SPL. No areas were observed
to have greater activation in patients compared to controls.

Female Only Results

When limiting the analyses to only female patients (n = 12), the
majority of results were replicated. For fearful faces, differences
in the left dIPFC, left MFG, and left parietal and occipital cortex
were no longer significant. All other differences were replicated.
For happy faces, the cluster in the right frontal/motor region was
no longer significant, while the cluster in the temporal region
remained significant. For neutral faces, no clusters emerged as
significant. Consistent with the whole sample analysis, there
were no areas where greater activation was observed in female

R

2.0

Patients < Controls

z-statistic

FIGURE 3 | Dampened response to fearful expressions in pediatric CRPS patients compared to healthy peers. The attenuated response among patients
to fearful expressions was observed in key limbic and prefrontal circuits. No areas were observed to have greater activation in patients compared to controls. Key:
Amygdala (Amy), caudate (Cd), dorsolateral prefrontal cortex (dIPFC), frontal operculum cortex (FOC), insula (Ins), putamen (Pt), middle frontal gyrus (MFG).

y=0

L
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TABLE 1 | Evoked response to overt fearful faces: Patients < Healthy Controls.

Brain Region MNI Coordinates z-stat
Voxels X y z
Cluster 1 1518
Cortical: Right Insula
Frontal Operculum Cortex 42 16 4 3.38
Insular Cortex 30 16 10 3.24
Subcortical: Right Striatum
Caudate 18 -2 22 3.29
Pallidum 28 -16 -2 3.14
Putamen 24 2 2 3.04
32 -16 -2 3.02
Cluster 2 1375
Cortical: Left Frontal, Left Insula
Frontal Operculum Cortex/Insula -36 18 6 3.63
Dorsolateral Prefrontal Cortex (dIPFC) —42 48 28 3.23
Middle Frontal Gyrus -40 36 26 3.01
Subcortical: Left Thalamus, Left Striatum
Thalamus -14 -8 12 3.28
Putamen -20 4 8 3.25
Caudate -16 -2 20 3.15
Cluster 3 1236
Cortical: Left Parietal/Occipital
Lateral Occipital Cortex —20 -58 48 3.46
-20 -64 52 3.42
Superior Parietal Lobule —24 -46 38 3.31
Supramarginal Gyrus -58 -32 50 3.06
-50 -30 44 2.93
Postcentral Gyrus/S1 -44 -34 48 3.00
Cluster 4 976
Cortical: Right Frontal/Motor Cortex
Superior Frontal Gyrus 28 2 60 4.01
24 4 52 3.31
Middle Frontal Gyrus 30 8 56 3.78
30 -4 54 3.48
40 0 52 3.25
Precentral Gyrus 28 -6 44 3.27
Cluster 5 975
Cortical: Right Parietal/Occipital
Superior Parietal Lobule 28 -56 50 4.19
30 -56 58 3.80
Lateral Occipital Cortex 30 -58 62 3.46
32 —64 62 3.40
26 -60 58 3.27
30 -60 58 3.26
Cluster 6 858
Right Frontal/Parietal/Motor Cortex
Precentral Gyrus 54 10 30 3.33
50 6 32 3.12
34 10 28 2.95
Inferior Frontal Gyrus 56 14 30 3.10
Supramarginal Gyrus 66 -32 28 2.88
Postcentral Gyrus 66 -16 24 2.79

MNI coordinates and z-values are from the peak. Images were cluster-wise corrected at p < 0.05.
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TABLE 2 | Evoked response to overt happy faces: Patients < Healthy Controls.

Brain Region MNI Coordinates z-stat
Voxels X y z
Cluster 1 1265
Cortical: Right Frontal/Motor Cortex
Superior Frontal Gyrus 28 -4 54 2.93
Precentral Gyrus 54 10 30 3.36
28 -6 44 3.06
Middle Frontal Gyrus 46 20 32 2.84
44 2 62 2.83
Cluster 2 1002
Cortical: Right Temporal/Parietal
Angular Gyrus 60 -58 14 3.63
Inferior Temporal Gyrus 50 -52 -14 3.47
46 -56 -8 3.12
Supramarginal Gyrus 44 -38 20 3.20
Middle Temporal Gyrus 48 -50 8 3.16
48 —44 8 3.14

MNI coordinates and z-values are from the peak. Images were cluster-wise corrected at p < 0.05.

Patients < Controls

Ha,
Ne!

2.0 >4.0
z-statistic

FIGURE 4 | Dampened response to fearful, happy, and neutral expressions in pediatric CRPS patients compared to healthy peers. As depicted in the
figure, there was overlap in differences between patients and healthy controls in response to happy faces in the left middle frontal and precentral gyrus, while overlap
between fear and neutral faces was in the parietal lobe. Notably, differences in activation in striatal and insular regions were unique to the fearful facial expressions.

patients compared to female controls across all emotional
contexts.

Habituation Results

We combined both runs of the fearful, happy, and neutral
face paradigms to generate a mean image across runs to
increase our statistical power and reliability of results. As
affective responding could have potentially differentially
attenuated between patients and controls, we examined these
differences. We found that patients had less habituation
in brainstem regions to fearful faces compared to healthy
peers (cluster max: z = 333, x = -8, y = -58, z = -46.
No differences in habituation emerged for happy or neutral
faces.

High-Fear vs. Non-Elevated Fear vs. Healthy Control

To disentangle evoked brain response within patients by PRF
level, we conducted ROI analysis using FSL Featquery. We
observed that high-fear patients (n = 8) had less activation in
the bilateral Pt and right Cd, right centromedial amygdala, and
right anterior Ins (see Figure 5) compared to non-elevated fear
(n = 8) and healthy controls (n = 19). When examining the
correlation between fear of pain level and percent signal change
(n = 16), higher PRF scores were associated with attenuated
responses in the right Cd (r = -0.50, p = 0.05), right Pt (r = -
0.53, p = 0.04), and right Ins (r = -0.44, p = 0.10; see Figure 6).
Although high fear patients had less activation in the left putamen
and right centromedial amygdala compared to healthy controls,
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TABLE 3 | Evoked response to overt neutral faces: Patients < Healthy Controls.

Brain Region MNI Coordinates z-stat
Voxels X y z
Cluster 1 1064
Cortical: Left Frontal/Motor Cortex
Precentral Gyrus -34 0 30 3.20
—44 0 36 3.18
-34 -4 34 3.01
Superior Frontal Gyrus —24 4 50 3.14
Middle Frontal Gyrus —26 -3 48 3.14
Cluster 2 907
Cortical: Left Parietal Lobe
Postcentral Gyrus 22 -44 54 3.25
Superior Parietal Lobule/S1 —26 -40 52 3.19
-26 -48 52 3.12
-36 -42 42 3.02
48 -50 8 3.16

MNI coordinates and z-values are from the peak. Images were cluster-wise corrected at p < 0.05.

the correlation between PRF and percent signal change within
patients was not significant; suggesting that the differences in
these brain areas was likely most driven by high fear status. The
magnitude of the correlations did not change when pain level and
pain duration were included as covariates. These results suggest
that beyond differences between healthy individuals and patients
with chronic pain, the level of PRF is associated with altered
cognitive-affective brain circuit responses to emotionally relevant
stimuli.

Age-Related Activation

A continuous covariate interaction across patients and healthy
controls was examined in relation to age, given the potential
influence of age and development on evoked brain responses to
fearful faces. The interaction was significant for the ACC and
paracingulate gyrus (PAC) with patient slope greater than healthy
controls (see Figure 7A); in other words, for patients, evoked
ACC responses significantly increased across age while responses
in healthy control showed a non-significant decrease across age
(see Figure 7B). This decreasing response in healthy participants
is consistent with prior work looking at developmental changes
in response to fearful stimuli in the ACC (Monk et al., 2003).
Given the potential confound of pain duration on patients’ age,
we found that pain duration was significantly associated with
ACC activation (see Figure 7C). In a partial correlation analysis
controlling for pain duration, increased activation was no longer
statistically associated with older age, with the magnitude of the
association medium in size (r = 0.38; p = 0.08), thus persistent
disease state appears to be partially driving increased activation
within the ACC across age.

DISCUSSION

Here we report the first data among pediatric CRPS patients
examining brain responses to an experimental paradigm

designed to engage emotional circuits and produce an affective
state. We observed decreased evoked responses to fearful stimuli
in patients with CRPS compared to healthy sex- and age-matched
controls in prefrontal and limbic regions, with salient differences
in the striatum, amygdala, Ins, and dIPFC. In addition, we
found that the blunted response to fearful expressions in the
Cd, Pt, centromedial amygdala, and anterior Ins was associated
with PRF levels. These results corroborate accumulating research
that has demonstrated alterations in cognitive-affective brain
regions in the chronic pain state (Lebel et al, 2008) and
may reflect allostatic over-load, thus dampening an important
adaptive response to threatening (fearful) stimuli (McEwen
and Kalia, 2010; Karatsoreos and McEwen, 2011). Self-reported
emotional arousal and valence to happy, fearful, and neutral
faces were in the expected direction with both happy and fearful
faces more emotionally arousing than the neutral faces and
the fearful faces rated more negatively than the neutral and
happy faces. These ratings did not differ between patients and
healthy controls, suggesting that the differences observed here
are implicit, rather than explicitly reported. Overall our findings
provide novel evidence that pediatric patients with chronic pain
show altered processing of negative affective information, which
may either serve as a vulnerability factor or contribute to pain
persistence.

CNS Processing of Fear in CRPS

Previous studies have demonstrated an increased response
in limbic areas during fear processing in patients with
PTSD (Shin et al, 2005), social anxiety (Demenescu et al.,
2013), and specific phobia (Etkin and Wager, 2007), with
decreased response observed in panic (Pielech et al, 2014),
thus we anticipated an altered evoked response in the
amygdala among chronic pain patients compared to healthy
peers, with this result amplified among high-fear patients
compared to patients with non-elevated fear. We found that
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FIGURE 5 | Response to fearful faces most attenuated among high-fear patients. Across the four figures: (A) depicts a significant difference in percent signal
change in the left and right putamen between high-fear patients and healthy controls (HC); (B) depicts a significant difference in the right caudate across all three
groups; (C) displays a significant difference in the right centromedial amygdala between high-fear patients and HCs; and (D) displays a significant difference in the
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FIGURE 6 | Correlation between fear of pain level and evoked response to fearful faces. Among patients, higher fear of pain scores were associated with
less activation or deactivation in the right caudate (A), putamen (B), and insula (C). Percent signal change values represent mean values for the entire extracted ROI.

high PRF patients had a reduced response in the amygdala, for these results. First, other factors that contribute to pain
potentially suggesting that as a result of ongoing aversive such as the aversive nature of pain itself, as well as salience
sensory processes, fear-related emotional circuits in chronic and reward processes, and stress may elicit alterations in
pain patients may be altered. Several processes may account multiple brain circuits. Additionally, patients may be so
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distressed by their own pain state that they are limited in
their ability to empathize or connect with another’s emotional
state due to the self-focused state driven by persistent
pain signaling (Ochsner et al., 2006), therefore potentially
resulting in a blunted response in fear-related emotional
circuits.

Among the specific findings, we observed significant
differences between patients and controls in the centromedial
amygdala. This area has been implicated in generating behavioral
responses to fearful stimuli through projections to the brainstem,
as well as cortical and striatal regions, like the Cd (LeDoux, 2007).
The amygdala has an important role and is significantly altered
morphologically and structurally in chronic pain (Rodriguez-
Raecke et al., 2009). Amygdala volume has been observed to be
decreased in chronic pain (Rodriguez-Raecke et al., 2009), with
our prior work in CRPS patients showing increased amygdala
volume following treatment with reversal of pain symptoms
(Erpelding et al., 2014), suggesting a role in both aversive
behaviors (chronic pain) and rewarding effects (pain relief; Janak
and Tye, 2015). As a key brain region for fear circuitry (Herry
and Johansen, 2014), the amygdala may contribute to functional
changes through connections that are altered in chronic pain
including pediatric patients (Becerra et al, 2014; Erpelding
et al,, 2014; Simons et al., 2014b) and in the context of ongoing
stress (Ressler, 2010). Dampened activity in the amygdala in
patients compared to healthy matched controls may arise from
emotional processing deficits, as having an evoked response to
fearful stimuli in this region is adaptive. Additionally, persistent
pain may hinder proper functioning activity in the centromedial
amygdala and may modulate pain behavior through signals sent
to descending pain control centers in the brain (Neugebauer
et al., 2009).

Furthermore, prominent differences between patients and
healthy controls were observed in the striatum and anterior
Ins. Striatal regions are significantly involved in pain processing
(Borsook et al., 2010; Maleki et al., 2011), and specifically, thought
to integrate sensory, emotional, and cognitive processing. The Cd
is also known to participate in learning and memory (Chase et al.,
2015) and goal-directed behavior (Yanike and Ferrera, 2014). For
example, fibromyalgia patients exhibit reduced activation in the
Cd and hippocampus in response to the Stroop task (Martinsen
et al., 2014). A recent study examined learning PRF and found
that successful aversive learning was associated with activation in
the Pt, Ins, and secondary somatosensory cortex (S2) (Gramsch
etal,, 2014). Additionally, less activation to pain in the Cd and Pt
has been observed in high-frequency migraine compared to low-
frequency migraine patients (Maleki et al.,, 2011). Our finding
of differences in the bilateral anterior Ins, a region involved in
the salience network (Uddin, 2015) and autonomic function, is
tied to multiple fear-related adaptations. It is conceivable that
altered salience in chronic pain reflects diminished awareness and
responses to external stimuli unrelated to pain, which may be
due to a perceived alteration in the body’s integrity (e.g., hemi-
inattention; Forderreuther et al., 2004). A number of observations
suggest that chronic pain patients exhibit abnormal salience
processing (Seeley et al., 2007; Cauda et al., 2010; De Ridder
et al., 2011; Weissman-Fogel et al., 2011). Beyond differences in

key subcortical regions and the Ins, less response in the dIPFC
was observed among patients compared to healthy controls. The
dIPFC has a prominent role in top-down cognitive control in
the context of emotion (Buhle et al., 2014) and pain (Erpelding
and Davis, 2013) modulation. In addition to the well-established
link between the amygdala and the dIPFC, it is structurally and
functionally connected to the striatum (Jarbo and Verstynen,
2015). Taken together, the blunted response observed in patients
appears to be present across learning and reward circuits.

When examining these findings in relation to imaging work
conducted among adults with CRPS, the majority of brain
imaging research among adults with CRPS has focused on
somatosensory and motor cortex alterations (e.g., Di Pietro et al.,
2013), although one recent study did find altered gray matter
structure in the dIPFC (Pleger et al., 2014). Research comparing
pediatric and adult patients with CRPS is needed.

Influence of Age in Response to Fearful
Faces

Age and its interaction with brain activity has not been previously
examined in pediatric pain, but given that fear-related neural
activity has been observed in the PFC (Yurgelun-Todd and
Killgore, 2006), we conducted a covariate interaction analysis
by age. We found that the functional response in the ACC was
greater with increased patient age, and was partially explained
by pain duration. The ACC has an instrumental role in pain
unpleasantness and PRF memory (Tang et al., 2005). It appears
that a persistent pain state does relate to an increased evoked ACC
response to fearful affective stimuli in contrast to healthy controls
who demonstrate a general decrease in response across age.
Importantly, no other brain regions emerged as differing between
patients and controls by age, suggesting that the primary findings
are not influenced by the child’s age. Accordingly, our findings
suggest that altered fear circuits observed among pediatric CRPS
can be attributed to disease state versus development.

Caveats

Our study has a number of caveats: (1) Loss of patients due
to eligibility, decline, and motion — Imaging in pediatrics has
significant challenges. The majority of patients recruited for this
study were being evaluated for our intensive pain rehabilitation
program, thus multiple patients had medical or mental health
comorbidities or were feeling overwhelmed with the upcoming
treatment program, thus declined involvement in the study.
Additionally, we faced challenges associated with scanning
youth (metal dental work, motion). Despite these challenges,
understanding brain alterations in youth with chronic pain is
important and conclusions based on research among adults
cannot serve as a replacement. (2) Sex — Although our patient sex
distribution is reflective of the literature (de Mos et al., 2007), the
preponderance of females were included in the study. Although
females suffer more frequently from CRPS (Low et al., 2007),
our sample limits generalizability of our results to young males
suffering from CRPS and did not allow us to examine potential
sex differences. (3) Medication — Half of the patients in the
study were not currently taking any prescribed medication, while
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FIGURE 7 | Significant interaction for age by group for fearful faces in the ACC. As depicted in (A) patient slope was significantly greater than healthy control
slope for age in the ACC and PAC (peak activation MNIy , > = 4, 24, 20; z-score = 3.51; p < 0.05, corrected; 948 mm?3). When plotting out individual values as seen
in (B), controls showed a general decrease in ACC response across age, whereas patients had a significant increase in ACC response. As displayed in (C), ACC
activation was significantly associated with pain duration among patients. Those who had experienced pain for 6 months or less had ACC deactivation in response
to fearful faces whereas patients with greater than 1 year of pain having greater ACC activation.
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half of the patients were taking a pain medication (the majority
being an anti-epileptic taken at bedtime), this split pattern was
consistent for the patients classified as having high PRF. We do
not have strong evidence of the impact of these medications on
brain activity, but importantly none of the patients were taking
narcotics, which we do know has a significant impact on the
brain.

CONCLUSION

Chronic pain is multifaceted with clear physiological, cognitive,
and affective dimensions. This study provides novel evidence that
pediatric patients with CRPS demonstrate altered corticolimbic
circuit response in fear perception that appears to be driven
or maintained by PRF levels for the striatum, centromedial
amygdala, and anterior Ins. Our results suggest that the
dampened response could reflect altered learning, memory, and
attention in the context of a persistent and debilitating pain
state. Clinically elevated PRF may reflect maladaptive aversive
learning that is resistant to extinction. The dampened response
observed in brain regions such as the Ins and Pt in this study may
constitute important neural markers for deficit learning that leads
to a pathological PRF level. Accordingly, these brain function

alterations may either serve as a vulnerability factor or contribute
to the persistent pain state and warrant further study.
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