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A Commentary on

Refractoriness about adaptation

by O’Shea, R. P. (2015). Front. Hum. Neurosci. 9:38. doi: 10.3389/fnhum.2015.00038

Our recent paper (Stefanics et al., 2014) provided a comprehensive review of the visual MMN
literature from a predictive coding perspective. We argued the MMN reflects a phenomenon
consisting of multiple neural processes underlying the initial response to rare, unpredicted stimuli
and the attenuation of this response over subsequent stimulus repetitions. We think repetition
suppression (RS) is an important process of the compound mismatch phenomenon. In our review
we often referred to the contribution of the repetition effect to the MMN as “refractoriness” and
highlighted that predictive coding offers a unified framework to explain the multiple mismatch
processes.

O’Shea (2015) argued that a “better term for refractoriness is ‘adaptation’ [and that] adaptation
ought to be harmonized into any complete MMN explanation.” O’Shea concluded that “replacing
‘refractoriness’ in the MMN vocabulary with adaptation terms and searching for a rapprochement
between adaptation and MMN could bring considerable explanatory benefits.”

The term “refractoriness” was originally used in the MMN field to describe response attenuation
for repeated events, linked to sensory memory formation (Näätänen and Picton, 1987). The
deviant-minus-standard difference caused by repetition was attributed to neuronal fatigue, as
opposed to the difference caused by genuine mismatch-related responses. The MMN community
considered the standard-related effects irrelevant to deviance detection. In other fields which
focus on stimulus-specific adaptation (SSA) instead of deviance detection (psychophysics, cellular
electrophysiology, and neuroimaging) RS is attributed to active memory processes. Thus, there are

important differences in where the emphasis of RS-related research lies in the MMN and other
fields.

We agree with O’Shea (2015) that harmonizing adaptation into any theoretical treatment of the
MMN is necessary and beneficial. In fact, we aimed to contribute to the harmonization process
by discussing not only MMN but also adaptation in our review. Replacing refractoriness in the
MMN vocabulary with adaptation terms would help the field acknowledge that deviance detection
is intricately linked to the process of regularity extraction, which in turn is linked to adaptation or
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RS. Nevertheless, each of these terms is used to describe several
related concepts and phenomena, and it is hard to pin one
concept on one term.

In the 1980s it was common to refer to repetition effects for
ERPs as refractoriness. Using this term to describe changes in
scalp-recorded ERPs was perhaps not the best choice for the
MMN field, because it emphasizes the passive nature of the
response attenuation at the single neuron level whereas several
line of evidence suggests that RS in not the result of refractory-
like fatigue. However, simply replacing refractoriness in the
MMN vocabulary with adaptation terms might create the false
impression that network mechanisms underlying RS (Ibbotson,
2005; Grill-Spector et al., 2006) are well understood. This should
be avoided, therefore harmonizing adaptation and MMN should
be done with caution.

RS is a ubiquitous phenomenon, observed in countless
experiments in several distinct fields. However, integrating
results from different fields using disparate methodologies is
not straightforward. For example, several attempts have been
made to identify the single-cell correlates of scalp-recorded
MMN. Auditory SSA is associated with midlatency potentials
and is the closest known single-neuron phenomenon of MMN
(Escera and Malmierca, 2014; Nelken, 2014). The magnitudes
of SSA and MMN are both negatively correlated with the
probability of the deviant but positively correlated with the
difference between standard and deviant. However, an important
difference is the earlier timing of SSA relative to MMN, which led
Nelken and Ulanovsky (2007) to suggest that SSA is a correlate
of change detection in the primary auditory cortex upstream
of MMN, and that MMN itself is a compound response of
primary and higher-level cortical areas with longer response
latencies.

SSA is present at nearly all stages in visual processing
(Solomon and Kohn, 2014) and involves at least three
mechanisms, including (1) somatic afterhyperpolarization, (2)
synaptic depression due to the depletion of vesicles from the
presynaptic terminal, and (3) synaptic (network) mechanisms
(Kohn, 2007). Because the refractory state of a neuron after
spiking is too short to be responsible for the ERP amplitude
decrease after repeated stimulation and synaptic depletion
also occurs only at higher stimulation rates than in MMN
experiments, RS in MMN experiments likely results from
network mechanisms which are not fully understood yet in the
visual system.

Results of visual ERP studies of adaptation have been variable.
Several studies reported attenuation of some ERP components
(Schweinberger et al., 2004; Fiebach et al., 2005; Kovács et al.,
2006; Harris and Nakayama, 2007; Huber et al., 2008; Caharel

et al., 2009; Vizioli et al., 2010; Vakli et al., 2014). However,
some of the above and other studies (Puce et al., 1999; Andrade
et al., 2015) also observed repetition enhancement, or no change.
Thus, ERP correlates of visual adaptation warrants further
investigation.

Attempts to disentangle different processes underlying RS
and change detection has led the MMN field to come up with
smart experimental paradigms, such as the equiprobable control,
which allows studying effects of stimulus repetition and change

separately (Schröger and Wolff, 1996; Ruhnau et al., 2012).
Although experimental manipulations indeed help disentangle
compound processes, a principled approach might be using
computational models (May and Tiitinen, 2010; Garagnani and
Pulvermüller, 2011; Wacongne et al., 2012). Dynamic causal
modeling (DCM) has been successfully used to compare large-
scale network models of MMN (Kiebel et al., 2007; Garrido et al.,
2008, 2009) which incorporate hypotheses of both adaptation and
change detection. Further recent modeling studies demonstrate
the potential of predictive coding to provide a comprehensive
explanation of MMN phenomenology (Lieder et al., 2013a).
Results of Lieder et al. (2013b) suggest that the MMN reflects
approximate Bayesian learning, and that the MMN-generating
process adjusts a probabilistic model of the environment using
prediction errors.

CONCLUSION

Using neurobiologically informed modeling frameworks
which rely on Bayesian probability theory might provide
rapprochement between adaptation and MMN. By focusing
on computational mechanisms (Marr, 1982) instead of
phenomenological description of neural responses, such an
approach might lead to the emergence of a vocabulary that
is abstract enough to support communication across diverse
research fields which nevertheless study similar phenomena.

AUTHOR CONTRIBUTIONS

GS, JK, and IC wrote the paper.

ACKNOWLEDGMENTS

We are grateful toMarta Isabel Garrido, AdamKohn, Falk Lieder,
Israel Nelken, and Robert O’Shea for their helpful comments. IC
received support from the Hungarian Research Fund (OTKA),
Grant No. 1044462. JK was supported by the P37/07 (PRVOUK)
program.

REFERENCES

Andrade, G. N., Butler, J. S., Mercier, M. R., Molholm, S., and Foxe, J. J.

(2015). Spatio-temporal dynamics of adaptation in the human visual system:

a high-density electrical mapping study. Eur. J. Neurosci. 41, 925–939. doi:

10.1111/ejn.12849

Caharel, S., d’Arripe, O., Ramon, M., Jacques, C., and Rossion, B. (2009). Early

adaptation to repeated unfamiliar faces across viewpoint changes in the right

hemisphere: evidence from the N170 ERP component. Neuropsychologia 47,

639–643. doi: 10.1016/j.neuropsychologia.2008.11.016

Escera, C., and Malmierca, M. S. (2014). The auditory

novelty system: an attempt to integrate human and animal

Frontiers in Human Neuroscience | www.frontiersin.org 2 January 2016 | Volume 10 | Article 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Stefanics et al. Mismatch Negativity and Neural Adaptation

research. Psychophysiology 51, 111–123. doi: 10.1111/psyp.

12156

Fiebach, C. J., Gruber, T., and Supp, G. G. (2005). Neuronal mechanisms

of repetition priming in occipitotemporal cortex: spatiotemporal evidence

from functional magnetic resonance imaging and electroencephalography.

J. Neurosci. 25, 3414–3422. doi: 10.1523/JNEUROSCI.4107-04.2005

Garagnani, M., and Pulvermüller, F. (2011). From sounds to words: a

neurocomputational model of adaptation, inhibition and memory

processes in auditory change detection. Neuroimage 54, 170–181. doi:

10.1016/j.neuroimage.2010.08.031

Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., and

Kilner, J. M. (2008). The functional anatomy of the MMN: a DCM study of

the roving paradigm.Neuroimage 42, 936–944. doi: 10.1016/j.neuroimage.2008.

05.018

Garrido, M. I., Kilner, J. M., Stephan, K. E., and Friston, K. J. (2009). The

mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol.

120, 453–463. doi: 10.1016/j.clinph.2008.11.029

Grill-Spector, K., Henson, R., and Martin, A. (2006). Repetition and the brain:

neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23. doi:

10.1016/j.tics.2005.11.006

Harris, A., and Nakayama, K. (2007). Rapid face-selective adaptation of

an early extrastriate component in MEG. Cereb. Cortex 17, 63–70. doi:

10.1093/cercor/bhj124

Huber, D. E., Tian, X., Curran, T., O’Reilly, R. C., and Woroch, B. (2008). The

dynamics of integration and separation: ERP, MEG, and neural network studies

of immediate repetition effects. J. Exp. Psychol. Hum. Percept. Perform. 34,

1389–1416. doi: 10.1037/a0013625

Ibbotson, M. R. (2005). “Physiological mechanisms of adaptation in the visual

system,” in Fitting the Mind to the World: Adaptation and After-Effects in High-

Level Vision, eds C. W. G. Clifford and G. Rhodes (New York, NY: Oxford

University Press), 17–45.

Kiebel, S. J., Garrido, M. I., and Friston, K. J. (2007). Dynamic causal modelling of

evoked responses: the role of intrinsic connections. Neuroimage 36, 332–345.

doi: 10.1016/j.neuroimage.2007.02.046

Kohn, A. (2007). Visual adaptation: physiology, mechanisms, and

functional benefits. J. Neurophysiol. 97, 3155–3164. doi: 10.1152/jn.000

86.2007

Kovács, G., Zimmer, M., Bankó, E., Harza, I., Antal, A., and Vidnyánszky,

Z. (2006). Electrophysiological correlates of visual adaptation to faces and

body parts in humans. Cereb. Cortex, 16, 742–753. doi: 10.1093/cercor/

bhj020

Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J., and Stephan, K. E. (2013b).

Modelling trial-by-trial changes in the mismatch negativity. PLoS Comput. Biol.

9:e1002911. doi: 10.1371/journal.pcbi.1002911

Lieder, F., Stephan, K. E., Daunizeau, J., Garrido, M. I., and Friston, K. J. (2013a).

A neurocomputational model of the mismatch negativity. PLoS Comput. Biol.

9:e1003288. doi: 10.1371/journal.pcbi.1003288

Marr, D. (1982). Vision. San Francisco, CA: Freeman.

May, P. J. C., and Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-

elicited auditory deflection, explained. Psychophysiology 47, 66–122. doi:

10.1111/j.1469-8986.2009.00856.x

Näätänen, R., and Picton, T. (1987). The N1 wave of the human electric

and magnetic response to sound: a review and an analysis of the

component structure. Psychophysiology 24, 375–425. doi: 10.1111/j.1469-

8986.1987.tb00311.x

Nelken, I. (2014). Stimulus-specific adaptation and deviance detection in the

auditory system: experiments and models. Biol. Cybern. 108, 655–663. doi:

10.1007/s00422-014-0585-7

Nelken, I., and Ulanovsky, N. (2007). Mismatch negativity and stimulus-specific

adaptation in animal models. J. Psychophysiol. 21, 214–223. doi: 10.1027/0269-

8803.21.34.214

O’Shea, R. P. (2015). Refractoriness about adaptation. Front. Hum. Neurosci. 9:38.

doi: 10.3389/fnhum.2015.00038

Puce, A., Allison, T., and McCarthy, G. (1999). Electrophysiological studies of

human face perception. III: effects of top-down processing on face-specific

potentials. Cereb. Cortex 9, 445–458. doi: 10.1093/cercor/9.5.445

Ruhnau, P., Herrmann, B., and Schröger, E. (2012). Finding the right control: the

mismatch negativity under investigation. Clin. Neurophysiol. 123, 507–512. doi:

10.1016/j.clinph.2011.07.035

Schröger, E., and Wolff, C. (1996). Mismatch response of the human brain to

changes in sound location. Neuroreport 7, 3005–3008. doi: 10.1097/00001756-

199611250-00041

Schweinberger, S. R., Huddy, V., and Burton, A. M. (2004). 250r: a face-

selective brain response to stimulus repetitions. Neuroreport 15, 1501–1505.

doi: 10.1097/01.wnr.0000131675.00319.42

Solomon, S. G., and Kohn, A. (2014). Moving sensory adaptation beyond

suppressive effects in single neurons. Curr. Biol. 24, R1012–R1022. doi:

10.1016/j.cub.2014.09.001

Stefanics, G., Kremláèek, J., and Czigler, I. (2014). Visual mismatch

negativity: a predictive coding view. Front. Hum. Neurosci. 8:666. doi:

10.3389/fnhum.2014.00666

Vakli, P., Németh, K., Zimmer, M., Schweinberger, S. R., and Kovács, G. (2014).

Altering second-order configurations reduces the adaptation effects on early

face-sensitive event-related potential components. Front. Hum. Neurosci. 8:426.

doi: 10.3389/fnhum.2014.00426

Vizioli, L., Rousselet, G. A., and Caldara, R. (2010). Neural repetition suppression

to identity is abolished by other-race faces. Proc. Natl. Acad. Sci. U.S.A. 107,

20081–20086. doi: 10.1073/pnas.1005751107

Wacongne, C., Changeux, J. P., and Dehaene, S. (2012). A neuronal model of

predictive coding accounting for the mismatch negativity. J. Neurosci. 32,

3665–3678. doi: 10.1523/JNEUROSCI.5003-11.2012

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
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