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A bad reputation can persistently affect judgments of an individual even when it turns
out to be invalid and ought to be disregarded. Such indelible distrust may reflect that
the negative evaluation elicited by a bad reputation transfers to a person. Consequently,
the person him/herself may come to activate this negative evaluation irrespective of the
accuracy of the reputation. If this theoretical model is correct, an evaluation-related brain
region will be activated when witnessing a person whose bad reputation one has learned
about, regardless of whether the reputation is deemed valid or not. Here, we tested
this neural hypothesis with functional magnetic resonance imaging (fMRI). Participants
memorized faces paired with either a good or a bad reputation. Next, they viewed
the faces alone and inferred whether each person was likely to cooperate, first while
retrieving the reputations, and then while trying to disregard them as false. A region
of the left ventrolateral prefrontal cortex (vlPFC), which may be involved in negative
evaluation, was activated by faces previously paired with bad reputations, irrespective of
whether participants attempted to retrieve or disregard these reputations. Furthermore,
participants showing greater activity of the left ventrolateral prefrontal region in response
to the faces with bad reputations were more likely to infer that these individuals would not
cooperate. Thus, once associated with a bad reputation, a person may elicit evaluation-
related brain responses on their own, thereby evoking distrust independently of their
reputation.
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INTRODUCTION

Reputations, information that signals the potential cooperativeness of others (Tennie et al.,
2010), are known to facilitate cooperation (Milinski et al., 2002; Feinberg et al., 2014).
Due to their impact, however, reputations are subject to distortion (e.g., spreading lies or
gossip) by others seeking to flatter allies and tarnish rivals (Mayzlin, 2006). Although this
fact underscores the importance of disregarding unfounded reputations, this ability appears
limited. Bad reputations are difficult to ignore and can continue to affect one’s judgment even
after they are shown to be false (Suzuki et al., 2013). The persistent effects of bad reputations
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are problematic given their power to cause avoidance (Chevalier
and Mayzlin, 2006) and ostracism (Feinberg et al., 2014)
of the target individuals. Elucidating the neural mechanisms
underlying this persistence is therefore of theoretical and
practical interest.

There has been growing interest in the neural basis of
reputation processing (Frith and Frith, 2012; Izuma, 2012), and
a few studies have investigated brain mechanisms underlying
the difficulty of ‘‘unlearning’’ reputations through reinforcement
learning based on social interactions. For example, Delgado
et al. (2005) measured brain activity while participants
were playing an iterated trust game and examined how
it was modulated by the presence or absence of prior
reputation about trading partners. When no reputation was
available, the striatum showed greater responses to the partner’s
cooperation than to cheating; when good or bad reputation
was provided in advance, however, such differential striatal
activity depending on the partner’s behavior diminished. These
findings have been elaborated by Fouragnan et al. (2013)
who conducted a similar experiment and analyzed the data
using a computational model of reinforcement learning. They
demonstrated that prior reputation about partners attenuated
striatal activity in response to the trial-by-trial prediction
error—the difference between the expected value of trusting
a partner and the actual outcome from having trusted
(i.e., cooperation [reward] or cheating [loss])—during a trust
game.

In contrast, the neural underpinnings of the failure to
intentionally disregard false reputations after being given verbal
instructions that undermine their credibility (Suzuki et al.,
2013) remain poorly studied. The present study approached this
issue from the perspective of evaluation transfer in evaluative
conditioning (Martin and Levey, 1978; Jones et al., 2009;
Gawronski and Bodenhausen, 2011; but see also Hofmann et al.,
2010). This refers to the transfer of the evaluation from an
unconditioned stimulus (US) to a conditioned stimulus (CS).1

For instance, suppose you are told that Ken, a bank employee,
embezzled money from client accounts. A subsequent encounter
with Ken will remind you of his embezzlement, and you are
likely to conclude that Ken is untrustworthy because of his
cheating behavior. In addition, reputation learning may also
cause the transfer of the evaluation from the reputation (US)
to the target individual (CS) such that the person acquires an
ability to activate a positive or negative evaluation on their
own. That is, the negative evaluation made about embezzlement
becomes associated with Ken himself and consequently Ken
alone generates a negative evaluation.

In neural terms, evaluation transfer would be operationalized
as the CS alone activating evaluation-related brain structures.
In general, item evaluation is considered to be an essential

1This does not mean that the US becomes detached and free from
the evaluation. Thus, although the term ‘‘transfer’’ is commonly used,
‘‘generalization’’ or ‘‘contagion’’ of evaluation might be less confusing
wording. Jones et al. (2009) have argued that the transfer arises without
awareness and so coined the term ‘‘implicit misattribution.’’ The current
study did not disentangle conscious and unconscious learning, and so we use
the more general term ‘‘evaluation transfer.’’

component of emotional processing (Russell, 2003). Thus, many
cortical and subcortical structures linked with emotions are
assumed to be involved in the evaluation of stimuli, including
ventral portions of the prefrontal cortex (Kringelbach and Rolls,
2004), anterior parts of the insular (Singer et al., 2009) and
cingulate cortices (Rushworth and Behrens, 2008), the amygdala
(Morrison and Salzman, 2010), and the striatum (O’Doherty,
2004). Of particular relevance to reputation learning, these
neural structures have been implicated in the evaluation of
others’ behavior in previous studies (Sanfey et al., 2003;
Delgado et al., 2005; Buckholtz et al., 2008; Rilling et al.,
2008; Schiller et al., 2009; Mende-Siedlecki et al., 2013). Thus,
after learning one’s reputation, the target individual may
activate the evaluation-related brain region on his/her own,
constituting a neural correlate of evaluation transfer. More
specifically, with regard to bad reputations, the involvement
of the lateral and ventral portions of the prefrontal cortex
and the anterior insula might be expected since these regions
have been implicated in anger and disgust (Murphy et al.,
2003; Vytal and Hamann, 2010; but see also Lindquist and
Barrett, 2012), which are negative emotions closely related to
appraisals of harmfulness and immorality (Hutcherson and
Gross, 2011).

A hallmark of evaluation transfer is the difficulty with
which one can intentionally negate its effects (Gawronski and
Bodenhausen, 2011). Suppose that Ken’s reputation as an
embezzler is later found to be invalid. Then, you will not
reason that Ken is untrustworthy from the inaccurate reputation
that he embezzled money. However, if evaluation transfer has
occurred, Ken will still elicit negative evaluations independently
of the validity of his reputation, and therefore, will continue
to be distrusted. It has indeed been reported that the effect of
evaluation transfer cannot be neutralized voluntarily (Sweldens
et al., 2010; Balas and Gawronski, 2012), and that negative
evaluations are especially transferable (Rydell and Jones, 2009;
Bell et al., 2012; Campbell and Warren, 2012). It can therefore
be hypothesized that the persisting effects of a bad reputation
are related to a transfer of the negative evaluation about the bad
reputation to the target person. Here, we report a functional
magnetic resonance imaging (fMRI) experiment testing this
hypothesis.

In this fMRI study, participants memorized faces paired with
either a good or a bad reputation. Next, they viewed the faces
alone and inferred whether each person would be likely to
cooperate, first while retrieving the memorized reputations and
then while trying to disregard them as false. If reputation learning
transfers the negative evaluation of bad reputations to target
persons, and if the transfer is related to the persisting distrust,
the following two predictions would be made. Prediction 1: Face
stimuli that are paired with bad reputations during a learning
task will activate an evaluation-related brain region during an
inference task, irrespective of whether participants attempt to
retrieve or disregard the reputations. Prediction 2: Participants
showing higher activity of the region described in Prediction 1
will infer that the persons with bad reputations are less likely to
cooperate, irrespective of whether participants attempt to retrieve
or disregard the reputations.
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MATERIALS AND METHODS

Participants
Thirty-two undergraduate and graduate students (18 males and
14 females; age 20–31 years) gave informed consent to participate
in this study, which was approved by the Ethics Committees
of the National Center for Geriatrics and Gerontology, Japan,
and the Graduate School of Environmental Studies, Nagoya
University, Japan. Four participants (2 males and 2 females) were
excluded from analyses because one withdrew due to fatigue,
two expressed suspicion about a cover story for the experiment,
and one showed perfect performance in the good-reputation
condition of the baseline session of action inference.2,3

Stimuli
Twenty-four neutral faces of Japanese individuals (12 males
and 12 females) from the Facial Information Norm Database
(Watanabe et al., 2007) were used as stimuli. They were divided
into three groups and each was assigned to one of the three
conditions: good-, bad-, and no-reputation. The assignment of
reputations to faces was counterbalanced across participants. The
three groups of faces were matched for number of males and
females and mean trustworthiness rating (1, very untrustworthy,
to 5, very trustworthy) assessed in a preliminary survey with 102
participants (M = 2.96, 2.96, 2.97; unpublished data). All face
stimuli were presented in gray scale andwere cropped into square
shapes (270 × 270 pixels) so that only the central facial features
(eyes, eyebrows, nose, and mouth) were visible.

Experimental Procedure
The experiment consisted of four tasks in the following order:
baseline session of action inference, reputation learning, retrieval,
and disregard sessions of action inference (Figure 1). The
baseline session of action inference was performed on a laptop
computer (HP ProBook 4740s, Hewlett-Packard Japan, Ltd.,
Tokyo, Japan) outside an MRI scanner. The other tasks were
administered inside the scanner, with a short rest outside of
the scanner after completion of the reputation-learning task.4

Inside the scanner, stimuli were presented with VisuaStim
digital goggles (Resonance Technology, Inc., Northridge, CA,
USA), and responses were collected via bimanual response pads
(Current Designs, Inc., Philadelphia, PA, USA). Throughout
the experiment, E-Prime 2.0 (Psychology Software Tools, Inc.,
Pittsburgh, PA, USA) was used to run the task. The display
resolution was set to 800× 600 pixels.

2Perfect performance in the baseline session of action inference precluded
parametric modulation analysis of the fMRI data described later (see ‘‘fMRI
Data Analysis’’ Section).
3The remaining 28 participants did not suffer from mental health problems
(self-report). Six of them majored in psychology, and may have had some
insight into the experimental procedure involving deception. However,
exclusion of their data did not change the main results.
4The rest was included to minimize fatigue during the long experiment. In
order to assist the alignment of head positions before and after the rest, three
colored marks were placed on the face of the participant (between the eyes,
the left temple, and the middle of the forehead), and the locations of these
marks relative to the head coil were kept as consistent as possible.

FIGURE 1 | Overview of the experimental procedure.

Baseline Session of Action Inference
Participants were presented with a cover story about the
experiment. They were instructed that they would see the
faces of unfamiliar people who had taken part in a two-
player ‘‘investment game’’ in a previous (fictitious) study. It
was explained that in this game, one player (‘‘lender’’) is
provided with 500 yen (about 5 USD) and decides whether
to invest the money in the other player (‘‘borrower’’). When
500 yen is invested, the money is quadrupled to 2000 yen,
and the borrower decides whether to return a 1000 yen
dividend to the lender or to embezzle the whole amount.
Participants in the current study were informed that the persons
whose faces they would see during the present experiment
had played the investment game as a borrower previously,
and had received a 500 yen investment from their partners.
The participants’ task was to infer intuitively, based on their
impressions of the faces, whether each person had returned
the dividend (pressing the ‘‘F’’ key with their left index finger)
or embezzled the investment (pressing the ‘‘J’’ key with their
right index finger). The faces were presented until participants
responded with no time limit. The task was repeated in two
blocks, and each of the 24 faces was presented once per
block.

Reputation Learning
The time course of this task is schematized in Figure 2A. In
each trial, a face was presented for 5 s along with one of
the following labels: ‘‘Returned,’’ ‘‘Embezzled,’’ and ‘‘# # # #.’’
The words ‘‘Returned’’ and ‘‘Embezzled’’ ostensibly indicated
that the person had returned (good-reputation condition) and
embezzled (bad-reputation condition) the investment in the
previous experiment. The symbolic label of ‘‘# # # #’’ indicated
that whether the person had returned or embezzled was being
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kept confidential (no-reputation condition). Below each face were
also displayed the words ‘‘Male’’ and ‘‘Female.’’ Participants
were instructed to memorize whether the displayed person had
returned or embezzled the money, while concurrently indicating
whether they weremale (pressing a left-hand pad with their index
finger) or female (pressing a right-hand pad with their index
finger) as soon as possible. Sex identification was imposed in
order to maintain participant attention.

The task was comprised of three fMRI runs that lasted for
305 s each. Each run started and ended with fixation periods
that lasted for 20 and 15 s, respectively, and included 24 trials
in between. Each of the 24 faces appeared once per run, and their
presentation order was randomized. Between any two trials was a
fixation interval the duration of which was randomly set to either
5 or 10 s, with a mean of 6.25 s.

Retrieval Session of Action Inference
The time course of this task is schematized in Figure 2B. In each
trial, a face was presented for 5 s along with the abbreviated labels
for ‘‘Returned’’ and ‘‘Embezzled’’ at the bottom. The participants’
task was to answer as quickly and as accurately as possible
whether the person had returned (pressing a left-hand pad with
their index finger) or embezzled (pressing a right-hand pad
with their index finger) the money by recalling the reputations
memorized during the previous task. For individuals with no
reputation, participants were asked to make intuitive, face-based
judgments, just as during the baseline session.

The task was comprised of two fMRI runs that lasted for
305 s each. Each of the 24 faces appeared once per run, and their

FIGURE 2 | Time courses of (A) the reputation-learning task and (B) the
action-inference task. Labels were written in Japanese during the
experiments: Returned = ; Embezzled = ; Male = ;
Female = ; Ret = ; Emb = .

presentation order was randomized. The durations of the fixation
periods at the start and end of each run and between trials were
the same as those in the reputation-learning task.

Disregard Session of Action Inference
The time course of this task was the same as that of the retrieval
session of action inference. Prior to the task, an apology was
given to participants, explaining that although the stimulus
persons had previously taken part in the investment game as a
borrower, the previously presented reputations about them were
completely unrelated to their actions. Then, participants were
told to disregard these invalid reputations and perform the action
inference task again on the basis of their impressions of the faces.
The task was comprised of two fMRI runs, and the timeline of
each run was the same as that of the retrieval session.

After the completion of this task, participants were asked if
they had any doubts regarding the experimental procedure. Two
participants spontaneously mentioned their suspicions about the
cover story that the stimulus individuals had previously taken
part in the investment game, and thus their data were excluded
from analyses.

Imaging Protocol
MR images were acquired on a 3T scanner (Siemens
MAGNETOMTrio, Erlangen, Germany) with a 12-channel head
coil. Functional images were acquired using a T2∗-weighted
gradient echo planar imaging sequence with the following
parameters: repetition time (TR) = 2500 ms, echo time
(TE) = 30 ms, flip angle (FA) = 90◦, matrix 64 × 64, field
of view (FOV) = 192 mm, 39 slices, slice thickness = 3 mm,
distance factor = 17%, and slice acquisition order = ascending.
Following the completion of the disregard session of action
inference, a high-resolution, magnetization-prepared, rapid-
acquisition gradient echo (MPRAGE) image was also acquired
for anatomical details (TR = 2500 ms, TE = 2.63 ms, FA = 7◦,
matrix 256 × 256, FOV = 256 mm, 208 slices per slab, slice
thickness = 1 mm, and distance factor = 50%).

Image Preprocessing
Reputation learning, retrieval, and disregard sessions of action
inference involved three, two, and two functional runs,
respectively. In each run, 122 functional images were acquired,
of which the first two images were discarded to allow for T1
equilibrium. The remaining functional images were preprocessed
with Statistical Parametric Mapping 8 (SPM8, Wellcome Trust
Centre for Neuroimaging, London, UK) implemented in
MATLAB R2013a (The Mathworks, Inc., Natick, MA, USA).
For each participant, the images from all tasks and runs were
realigned and resliced to the mean image to correct for head
movement. Slice-timing correction was also performed using
the twentieth slice as a reference. All functional images and
the MPRAGE anatomical image were then co-registered to the
mean image of the retrieval session of action inference. The
co-registered anatomical image was normalized to a standard
T1 template image (ICBM 152), which defined the Montréal
Neurological Institute (MNI) space. The parameters from this
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normalization process were then applied to all functional
images. Finally, the normalized functional images were spatially
smoothed with an isotopic Gaussian kernel of 6 mm full-width at
half-maximum.

fMRI Data Analysis
Data from the fMRI were analyzed using SPM8. To depict
the neural substrates of the tasks, we employed a summary
statistics approach. In the individual-level analysis, a voxel-by-
voxel general linear model (GLM) was applied to preprocessed
functional images for each of the three in-scanner tasks
separately. The design matrix of the model contained three
regressors of interest (good-, bad-, and no-reputation conditions)
to obtain parameter estimates for each reputation condition.
The regressors of interest were created by convolving a delta
function (0 s duration), representing trial onset times of each
reputation condition, with a canonical hemodynamic response
function (Friston et al., 1994). Moreover, when analyzing
the reputation-learning data, parametric modulation regressors
were included in the good- and bad-reputation conditions to
remove the effect of the unexpectedness of the reputation.
For example, for each reputation-learning trial of the good-
reputation condition, the unexpectedness of the good reputation
was computed as follows: Unexpectedness = Number of
‘‘Embezzled’’ responses for the displayed person in the baseline
session of action inference (i.e., 0, 1, or 2) × 0.5Run number −1.
That is, we assumed a decrease of the unexpectedness across
runs.5 The vector of the computed values was entered as
parametric modulation regressors for the good-reputation
condition. The unexpectedness of the bad reputation was
computed in the same way by using the number of ‘‘Returned’’
responses.

In the group-level analyses, we first explored brain
regions that were activated in response to good and bad
reputations during the reputation-learning task. The individual-
level analysis of the reputation-learning data produced the
contrast images from each of the good- and bad-reputation
conditions, where the effect of the unexpectedness of the
reputation was controlled for, as well as the contrast images from
the no-reputation condition. These individual-level contrast
images for each reputation condition during reputation learning
were submitted to random-effects GLM analysis. The design
matrix contained three regressors of interest (good-, bad-, and
no-reputation conditions) to obtain parameter estimates for each
reputation condition, as well as each participant’s mean response
times (RTs) in each condition as covariates to accommodate

5It would be reasonable to assume that the unexpectedness decreases as face-
reputation pairs are repeated. In this study, however, the unexpectedness did
not seem to reach zero even in the last (third) run, given that participants’
performance on the retrieval session of the action inference task was not
perfect (accuracy: M ± SD = 0.771 ± 0.125). We thus chose the specific
functional form described above to model the decrease of unexpectedness
(i.e., it was assumed to decrease by 75% from the first to the last run). This
assumption may appear arbitrary, but the following results were essentially
unchanged even when analyzing the data assuming that the unexpectedness
was constant across runs or when removing the parametric modulation
regressors. Thus, our findings were not affected by the specific assumption.

RT differences between conditions (see ‘‘Behavioral Data’’
Section).

Then, clusters of voxels that were significantly active in
the contrast images of good vs. no reputation and bad vs. no
reputation were identified as the regions of interest (ROIs) likely
related to positive and negative evaluation, respectively. The
statistical threshold was set at p< 0.05 (family-wise error [FWE]
corrected) at the voxel level with no less than 20 contiguous
voxels.

In order to test Prediction 1, we examined whether the
negative-evaluation-related ROIs were significantly activated by
the faces with bad reputations during the retrieval and disregard
inference sessions.6 For this, ROI analysis was performed on the
data from each session using MarsBaR toolbox for SPM (Brett
et al., 2002). Specifically, parameter estimates were extracted and
averaged across voxels in each ROI. The design matrix was the
same as the one used in the analysis of the reputation-learning
data. We tested whether each ROI activity, defined as the mean
of the voxel values within it, was significantly greater in the
bad-reputation cases as compared to the no-reputation cases.
Similar analyses were also conducted for positive-evaluation-
related ROIs.

In order to test Prediction 2, we examined the relationship
between the activity of each negative-evaluation-related ROI and
behavioral inferences during the retrieval and disregard sessions.
Linear mixed-model analysis (West et al., 2007) was performed
to achieve this goal. We examined whether post-learning distrust
toward the people with bad reputations (DISTRUST_POST) was
statistically explained by pre-learning distrust (DISTRUST_PRE)
and the activation of the ROI toward those people (ROI_ACT).
To allow for different effects of pre-learning distrust and ROI
activity across sessions, we fit two models, one without and the
other with interaction terms involving the session, and then
selected the best-fit model. Specifically, the following two nested
models were compared:
Model 1 (without interaction terms):

DISTRUST_POSTsi

= γ00 + γ01 × SESSs + γ10 × DISTRUST_PREi
+ γ20 × ROI_ACTsi + ui + εsi.

Model 2 (with interaction terms):

DISTRUST_POSTsi

= γ00 + γ01 × SESSs + γ10 × DISTRUST_PREi
+ γ20 × ROI_ACTsi

+ γ11 × SESSs × DISTRUST_PREi
+ γ21 × SESSs × ROI_ACTsi + ui + εsi.

The subscript s refers to the session of action inference (s = 1:
retrieval session, s = 2: disregard session), and the subscript i

6Thus, ROI selection and analysis were performed using different datasets
of different tasks, mitigating problems caused by non-independent data
(Kriegeskorte et al., 2009). It is still possible, however, the two datasets
have some dependency due to, e.g., common between-participant variance
(Poldrack and Mumford, 2009).
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denotes the i-th participant (i = 1, ..., 28). The dependent
variable DISTRUST_POSTsi indicates each participant’s post-
learning distrust toward the people that had been paired with
a bad reputation, calculated as the difference in rate of judging
that people had returned the investment between the no-
reputation and bad-reputation conditions. A positive value of
DISTRUST_POSTsi means that the people with bad reputations
were judged as unlikely to have returned the money. The
same difference in the baseline session of action inference,
labeled as DISTRUST_PREi, was entered as a regressor to
account for pre-learning distrust toward the people with bad
reputation. ROI_ACTsi was the main regressor, representing
each participant’s activation of the ROI in response to the
people with bad reputations (i.e., contrast estimate of bad- vs.
no-reputation conditions) in each session. The other regressor,
SESSs, was a dummy variable indicating the session of action
inference, with 0 and 1 for the retrieval and disregard sessions,
respectively (i.e., SESS1 = 0 and SESS2 = 1). γ ’s were fixed-
effect parameters to be estimated. ui and εsi indicate random
effects associated with each participant and each observation,
respectively. They were assumed to be independently and
normally distributed with a mean of 0 and variance of σ 2

u or
σ 2. The random effects of ui were included to account for the
dependency between sessions due to repeated measurements of
the same participants (Aarts et al., 2014).

With regard to the differences between the two models,
Model 1 assumes that while the intercept of the regression
model may vary between sessions (i.e., γ 00 + γ 01 × SESSs),7

the fixed effects of pre-learning distrust (γ 10) and ROI activity
(γ 20) on post-learning distrust are common across sessions.
On the other hand, Model 2 allows for different fixed effects
of pre-learning distrust and ROI activity across sessions (γ 11
and γ 21, respectively) by including interaction terms, SESS ×
DISTRUST_PRE and SESS× ROI_ACT.

The fits of the two models to the data were compared
using Akaike and Bayesian information criteria (AIC and BIC,
respectively) as well as a deviance test (West et al., 2007; Snijders
and Bosker, 2012). AIC and BIC are measures of the fit of data
to a model (smaller values indicate a better fit) with a penalty for
increased model complexity. Deviance is also a goodness-of-fit
index but without a penalty for complexity; therefore, its value is
always smaller (indicating a better fit) for a more complex model.
The difference between the deviance scores of two nested models
can be statistically tested because it is distributed asymptotically
as chi-squared under the null hypothesis of no difference.
A significant difference supports the more complex model, while
nonsignificance favors the simpler, more parsimonious model.
Thus the information criteria and deviance tests compensate
for each other’s weaknesses (i.e., lack of a statistical test and
insensitivity to model complexity).

Model estimation was conducted using the lme4 (Bates
et al., 2014) and lmerTest (Kuznetsova et al., 2014)
R packages (R version 3.0.2). All continuous variables

7Session-specific intercepts were assumed for both models because
DISTRUST_POST was expectedly smaller in the disregard than retrieval
sessions (Suzuki et al., 2013).

(i.e., DISTRUST_POST, DISTRUST_PRE, ROI_ACT) were
centered and scaled before analysis so that standardized fixed-
effect parameters were obtained.

RESULTS

Behavioral Data
Sex Identification During Reputation Learning
The accuracy of sex identification during the reputation learning
task (M ± SD = 0.894 ± 0.048) did not significantly differ
between the reputation trials, F(2,54) = 0.003, MSE = 0.013,
p = 0.997, est η2p < 0.001. The RT of sex identification
significantly varied based on reputation, F(2,54) = 9.573,
MSE = 0.115, p = 0.003, est η2p = 0.262, and was shorter in the
no-reputation trials,M ± SD = 1.245 ± 0.346 s, than in both the
good-, M ± SD = 1.518 ± 0.621 s, t(27) = 3.213, p = 0.003, and
bad-reputation trials, M ± SD = 1.495 ± 0.616 s, t(27) = 3.136,
p = 0.004.

Action Inference
Figure 3A shows the mean rate of ‘‘return’’ response, the rate at
which the stimulus individuals were judged as having returned
the investment, as a function of reputation condition and task
session. The Reputation × Session interaction was significant,
F(4,108) = 42.470,MSE = 0.016, p< 0.001, est η2p = 0.611. Post hoc
analyses showed that the main effect of Reputation was not
significant in the baseline session, F(2,54) = 0.248, MSE = 0.013,
p = 0.777, est η2p = 0.009, whereas it was significant in the
retrieval session, F(2,54) = 94.539, MSE = 0.026, p < 0.001,
est η2p = 0.778, and in the disregard session, F(2,54) = 3.855,
MSE = 0.024, p = 0.027, est η2p = 0.125. In the retrieval
session, the positive difference of rate of ‘‘return’’ response in
the good-reputation minus no-reputation trials was significant,
t(27) = 6.211, p < 0.001, as well as the negative difference in
the bad- minus no-reputation trials, t(27) = 9.221, p < 0.001,
indicating the overall success of reputation learning. In the
disregard session, the negative difference in the bad- minus no-
reputation trials remained marginally significant, t(27) = 2.013,
p = 0.054, whereas the positive difference in the good-reputation
minus no-reputation trials did not, t(27) = 0.606, p = 0.549,
replicating the persisting effect of bad reputations (Suzuki et al.,
2013).

Figure 3B shows the mean RT in the action-inference task as
a function of reputation condition and task session. A Reputation
× Session interaction was significant, F(4,108) = 5.380,
MSE = 0.047, p = 0.002, est η2p = 0.166. Post hoc analyses
showed that the main effect of Reputation was not significant in
either the baseline, F(2,54) = 1.708, MSE = 0.037, p = 0.192, est
η2p = 0.060, or disregard sessions, F(2,54) = 1.560, MSE = 0.027,
p = 0.220, est η2p = 0.055, whereas it was significant in the retrieval
session, F(2,54) = 8.075, MSE = 0.047, p = 0.001, est η2p = 0.230.
In the retrieval session, RT was significantly longer in the no-
reputation trials than in both the good-reputation, t(27) = 3.422,
p = 0.002, and the bad-reputation trials, t(27) = 3.248, p = 0.003.
In addition, across reputation conditions the retrieval-session
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FIGURE 3 | Mean (A) rate of “return” response and (B) RT in the
action-inference tasks as a function of reputation condition and task
session. Error bars indicate standard errors of the means.

RT was longer than the baseline- and disregard-session RTs
(all p’s< 0.10).

fMRI Data
Reputation Learning
Brain regions showing significantly greater activation in the bad-
as compared to the no-reputation conditions during reputation
learning (p < 0.05, FWE corrected at the voxel level; minimum
cluster size 20 voxels) were the left ventrolateral prefrontal cortex
(vlPFC; cluster size = 47 voxels, peak coordinates = [−48, 24,
4], Z = 5.258) and the left thalamus (cluster size = 31 voxels,

peak coordinates = [−4, −16, 8], Z = 5.445). As described in
the ‘‘Introduction’’ Section, ventral portions of the prefrontal
cortex are implicated in the evaluation of stimuli, and, especially,
the lateral regions are responsive to negative stimuli (Murphy
et al., 2003; Kringelbach and Rolls, 2004; Elliott et al., 2010;
Vytal and Hamann, 2010). Thus, the vlPFC activity likely reflects
the negative evaluation of bad reputations. In contrast, the
activity in the thalamus might reflect enhancement of perceptual
processing by negative stimuli (Vuilleumier, 2005). We thus
defined the left vlPFC region as the negative-evaluation-related
ROI (Figure 4). With regard to the good-reputation trials, no
brain region showed significantly greater activation as compared
to the no-reputation trials. In addition, no brain region showed
significantly greater activation for bad than for good reputations
or vice versa.

Contrary to our expectation, the anterior insula did not
show greater activity in response to bad as compared to no
reputation. Instead, this region was activated across reputation
trials (Figure 5). The anterior insular activity in the no-
reputation trials might make sense considering that participants
were not told whether the stimulus individuals had returned
or embezzled the money in this condition. Thus, although
speculative, participants might have perceived these trials as risky
(e.g., the odds of having returned or embezzled were 50/50) or
ambiguous (i.e., the odds were completely unknown), thereby
activating the anterior insula (Singer et al., 2009).

We also explored brain regions whose activity increased with
the degree of unexpectedness of the reputation. Although with a
less stringent threshold compared to the analysis above (p = 0.001
at the voxel level, uncorrected; minimum cluster size = 20 voxels),
such a trend was detected in the bilateral middle cingulate
cortices (left: cluster size = 20 voxels, peak coordinates = [−10,
8, 46], Z = 3.920; right: 21 voxels, [14, 4, 48], Z = 4.154) and right
middle temporal region (71 voxels, [56, −34, −2], Z = 3.963),
which were shown to be sensitive to the need for performance
adjustment (Ridderinkhof et al., 2004) and the error in predicting
others’ behaviors (Behrens et al., 2009), respectively. The bilateral
fusiform gyri (left: 21 voxels, [−28, −54, −14], Z = 3.526; right:
33 voxels, [30, −36, −10], Z = 3.574) showed the same trend as
well.

Action Inference
The mean activity of the voxels in the vlPFC ROI (Figure 4) was
greater for the faces that had been paired with a bad reputation
than it was for those with no reputation. This was marginally
significant in the retrieval session (contrast value = 0.414,
Z = 1.736, p = 0.087) and significant in the disregard session of
action inference (contrast value = 0.707, Z = 2.717, p = 0.007).
The mean vlPFC activity in the bad- vs. no-reputation conditions
did not differ significantly between the retrieval and disregard
sessions (p = 0.338), and its average across the two sessions was
significantly greater than zero (p = 0.006).8 In addition to the

8More specifically, linear mixed model analysis was performed using the
following model: vlPFC activitysi = β0 + β1 × Sessions + ui + εsi,
with s denoting the session of action inference (1 = retrieval session, 2
= disregard session), i denoting the participant (i = 1, . . ., 28), Session
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FIGURE 4 | The cluster of voxels in the vlPFC region significantly activated in response to bad reputations during reputation learning (p < 0.05, FWE
corrected at the voxel level; minimum cluster size 20 voxels). Numbers above slices indicate coordinates in Montréal Neurological Institute (MNI) space.

ROI analysis, we conducted whole-brain conjunction analysis
to explore regions showing greater activation in the bad- than
no-reputation conditions both during reputation learning and
during the two sessions of action inference. With a lenient
statistical threshold (p = 0.05 at the voxel level, uncorrected;
minimum cluster size = 20 voxels), this analysis also identified
the vlPFC (cluster size = 100 voxels, peak coordinates = [−48,

being a dummy variable (Session1 = −1, Session2 = 1), β0 representing
the average of the vlPFC activity across sessions, β1 representing the
difference in the vlPFC activity between the two sessions, and ui and
εsi, respectively, indicating random effects associated with each participant
and each observation. The estimates of the fixed effects were β0 = 0.562
(p = 0.006, 95% CI [0.186, 0.937]) and β1 = 0.163 (p = 0.338, 95%
CI [−0.170, 0.496]).

24, 4], Z = 2.390).9 Overall, these results support Prediction 1.
The activity in the left thalamus showing significantly greater
responses in the bad- vs. no-reputation conditions during
reputation learning was also subjected to the same ROI analysis,
yielding non-significant results.

As no reputation was displayed during action inference, the
abovementioned vlPFC activity in the bad-reputation condition

9The other regions that were identified by the conjunction analysis were the
left superior prefrontal cortex (20 voxels, [−10, 44, 50], Z = 2.740), the right
superior temporal sulcus (54 voxels, [56, −24, −4], Z = 2.219), and the left
medial prefrontal cortex (31 voxels, [−4, 52, 16], Z = 2.093). In this article,
the ROI specification was performed with the data during reputation learning
(i.e., Figure 4) rather than with this conjunction analysis in order to avoid the
criticism of ‘‘double dipping’’ (Kriegeskorte et al., 2009; Vul et al., 2009) in the
following ROI analysis (see also footnote 6).
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FIGURE 5 | Regions significantly active across the three reputation conditions during reputation learning identified by conjunction analysis
(p < 0.001, uncorrected for multiple comparisons; shown in red). Numbers above slices indicate z coordinates in MNI space. Yellow circles at z = −12 and
z = 0 indicate approximate locations of the amygdala and the anterior insula, respectively.

suggests that the stimulus faces themselves might have acquired
the capacity to elicit negative evaluation directly. In order
to verify this possibility, linear mixed-model analysis was
performed to examine whether vlPFC activity in response to
the faces paired with bad reputations could explain distrust
toward them (i.e., the lower rate of ‘‘return’’ responses). Table 1
compares the goodness of fit of the two regression models,
Model 1 and Model 2, without and with an interaction term
allowing for different relationships between vlPFC activity and
distrust in the retrieval and disregard sessions (see ‘‘fMRI Data
Analysis’’ Section for details of the models). Model 1 was selected
because of its superiority in terms of both information criteria
and model parsimony (West et al., 2007). Table 2 summarizes
the parameter estimates for Model 1, demonstrating that vlPFC
activity was a significant predictor of distrust. That is, during
both the retrieval and disregard sessions of action inference,
participants who showed larger vlPFC activity in response
to faces previously paired with bad reputations inferred that
these individuals would be less likely to cooperate (Figure 6).
These results support Prediction 2 and are consistent with
our interpretation that the vlPFC may be involved in negative
evaluation.

TABLE 1 | Fit indices for Models 1 and 2.

AIC BIC Deviance

Model 1 −83.011 −70.859 −95.011
Model 2 −80.202 −63.999 −96.202 χ2

(2) = 1.191, p = 0.5513

TABLE 2 | Fixed- and random-effects estimates for Model 1.

Fixed-Effects Estimates

γ 00 (Intercept) 0.071, (0.029, 0.113)
γ 01 (SESS) −0.143, (−0.187, −0.099)
γ 10 (DISTRUST_PRE) 0.004, (−0.268, 0.277)
γ 20 (ROI_ACT) 0.214, (0.014, 0.419)

Random-Effects Estimates

σ u 0.080, (0.040, 0.114)
σ 0.082, (0.063, 0.107)

Note: The values are point estimates with 95% confidence intervals (in brackets).

We also performed linear model analysis to examine whether
vlPFC activity during reputation learning in response to the faces
paired with bad reputations could explain distrust toward them
in the subsequent action inference tasks. Results showed that
vlPFC activity during reputation learning was not significantly
related to distrust in either the retrieval (β = 0.143, p = 0.356) or
disregard (β =−0.055, p = 0.770) sessions. Although descriptive,
vlPFC activity had less individual variability during reputation
learning (coefficient of variability = 0.922) than it did during
action inference (3.086 and 1.910 in the retrieval and disregard
sessions, respectively), which might obscure its relationship with
the behavioral measure.

DISCUSSION

The present study yielded two main findings. First, a region of
the left vlPFC was activated when participants were informed of
the bad reputations of stimulus people, and more importantly,
this same region was also activated by the subsequent encounters
with those people, irrespective of whether participants attempted
to retrieve or disregard those bad reputations. Second, in the both
retrieval and disregard sessions of action inference, participants
who showed greater activity of the vlPFC in response to faces that
had been paired with bad reputations were more likely to infer
that those people would not cooperate. These results overall are
consistent with the idea that negative evaluations, which are here
assumed to be related to vlPFC activity, are transferred from a
bad reputation to the target person, and consequently, the person
may continue to be distrusted irrespective of the validity of their
prior reputation.

The vlPFC receives multimodal sensory information about
external stimuli including visual, auditory, and somatosensory
inputs (Price, 2008; Romanski, 2012). In addition, this region
is contiguous with and interconnected to the orbitolateral
prefrontal cortex representing internal signals about visceral
reactions (Öngür and Price, 2000; Price, 2008). Visceral reactions
can function as a signal of the emotional meaning or value of
a certain stimulus for the organism, as they convey information
regarding the demands of the organism to maintain homeostasis
and satisfy basic needs (Damasio et al., 1996; Craig, 2002). The
vlPFC may thus be able to associate the sensory representations
of an external stimulus with its value. Activation in this region
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FIGURE 6 | Partial regression plot between vlPFC activity in response
to the people with bad reputation (ROI_ACT) and distrust toward them
(DISTRUST_POST) in the retrieval (Ret) and disregard (Dis) sessions of
action inference. The abscissa represents the residuals from the regression
of ROI_ACT on DISTRUST_PRE and SESS, whereas the ordinate represents
the residuals from the regression of DISTRUST_POST on the same two
variables. The plot thus illustrates the marginal relationship between ROI_ACT
and DISTRUST_POST after the effect of the other variables has been removed
(Faraway, 2005). For reference, the dashed line shows DISTRUST_POST
Residuals = 0.214 (point estimate of γ 20 from Table 2) × ROI_ACT Residuals.
See “fMRI Data Analysis” Section for more detailed descriptions of each
variable.

upon perceiving an external stimulus may reflect the decoding of
the stimulus’ associated value (i.e., evaluation of the stimulus). In
fact, the vlPFC shows greater activation to emotional than neutral
stimuli regardless of the stimulus type (i.e., faces and scenes;
Sabatinelli et al., 2011) and has been reported to be particularly
responsive to negative stimuli (Vytal andHamann, 2010; Mende-
Siedlecki et al., 2013). These findings support our interpretation
that vlPFC activity in the present study is related to negative
evaluation. Our arguments, which are subject to the problem of
reverse inference (Poldrack, 2006), are corroborated by the data
showing that vlPFC activity explained the negative evaluations of
people with bad reputations.

One may argue that activity in the vlPFC during our
action-inference tasks reflects participants’ attempts to recall the
reputations that had been paired with stimulus faces, rather
than the activation of negative evaluations associated with the
stimuli. In fact, it has been proposed that the vlPFC contributes
to cognitive control of memory, the volitional retrieval and
selection of task-relevant knowledge (Badre and Wagner, 2007).
This interpretation, however, does not easily account for some
aspects of the present data. First, vlPFC activity was not greater
in the retrieval than in the disregard sessions. Behavioral results
indicate that participants actually attempted not to retrieve the
memorized reputations in the disregard session. Therefore, if
the vlPFC was involved in the recall of reputations, it should
have been less active during the disregard than retrieval sessions.

Second, in both sessions, vlPFC activity was positively related
to inferences congruent with the memorized reputations. If
vlPFC activity reflected the recall of the memorized reputations,
it should have been positively and negatively related to the
inferences congruent with the reputations in the retrieval and
disregard sessions, respectively, since the recall of reputations
enables conscious correction of their biasing influences on
judgments in the disregard session (Sweldens et al., 2010; Balas
and Gawronski, 2012). These arguments against the alternative
account, however, are admittedly not decisive. The action
inference task is limited in that faces are always presented in the
context of a judgment. It is important to demonstrate that the
mere presentation of faces can activate the vlPFC after reputation
learning to gain further support for the evaluation transfer
view. Thus, a promising procedure for the future experiment
might be to measure vlPFC activity while participants are not
engaging in any evaluative task and relate it to subsequent
evaluations.

Our claim for the involvement of the vlPFC in evaluation
transfer does not preclude the possible role of conscious
recall of reputations in performing the action inference task.
Although speculative, longer RTs during the retrieval session as
compared to the other sessions suggests that the performance
was at least partly based on time-consuming, effortful retrieval
processes. This might explain why in the conjunction analysis,
vlPFC activity in the bad-reputation condition was detected
only when a lenient statistical threshold was used. That is,
in our data, learned associations between faces and bad
reputations might not have been strong enough to robustly
activate negative evaluation upon viewing faces alone, thereby
resulting in only moderate vlPFC activity during action
inference. Although we demonstrated significant vlPFC activity
in ROI analysis, it would be important to see whether the
results could be replicated with more conservative conjunction
analysis when using a more intensive reputation learning
task.

In addition to conjunction analysis, we were unable to obtain
significant results from the analysis on the relationship between
vlPFC activity during reputation learning and behavioral
performance in action inference tasks. It is possible that the
relationship might be masked by low individual variability in
vlPFC activity during reputation learning. The low variability
might make sense considering that the vlPFC ROI was selected
using the data on reputation learning (i.e., the ROI contained
only those voxels showing large signals during reputation
learning), and that a bad reputation on embezzlement would be
evaluated negatively by everyone. Thus, the use of a variety of
(bad) reputations as in previous studies (Schiller et al., 2009; Bell
et al., 2012; Mende-Siedlecki et al., 2013) could introduce more
variability in vlPFC activity, which might enable detection of the
relationship between vlPFC activity during reputation learning
and subsequent distrust.

Another major concern regarding the evaluation transfer
model is that the activity of evaluation-related limbic structures
other than the vlPFC was not detected in this study. In particular,
we had expected greater activity of the anterior insula in response
to bad reputations considering its possible involvement with
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anger and disgust (Murphy et al., 2003; Sanfey et al., 2003;
Rilling et al., 2008). The role of the amygdala in the evaluation
of others’ behaviors has also been highlighted (Buckholtz et al.,
2008; Schiller et al., 2009). As mentioned in the ‘‘Results’’
Section, participants might have perceived the no-reputation
condition as risky or ambiguous because they were unsure about
whether the stimulus individuals in this condition had returned
or embezzled the money. The evaluation-related regions listed
above are known to be sensitive to risk and ambiguity (Adams
et al., 2003; Singer et al., 2009). In fact, conjunction analysis
revealed that these regions were activated not only in the good-
and bad-reputation conditions but also in the no-reputation
condition. Thus, the subtraction between the good-/bad- and no-
reputation conditions could have cancelled out their activity. The
use of a more neutral baseline condition in future research may
elucidate the roles of those structures in evaluation transfer.

The role of valence in evaluation transfer also remains in need
of being carefully examined. Our findings that bad reputations
persisted while good ones did not might reflect a human
sensitivity to cheaters that has evolved as an adaptation to secure
reciprocity in social exchange (Cosmides and Tooby, 1989).
However, any brain region including the vlPFC did not show
greater activation for bad than for good reputations. In addition,
although speculative, cheating behaviors would be perceived as
not only negative but also uncommon (Mende-Siedlecki et al.,
2013). It is therefore possible that the bad reputations for having
embezzled the money were so unexpected that they captured the
attention of participants (Bell and Buchner, 2012), facilitating
evaluation transfer and the formation of persistent memory. In
this study, we controlled for the effect of unexpectedness by
means of post hoc parametric modulation, and one may doubt
the validity of the specific functional assumption in the analysis.
We would like to note that the model without the parametric
modulation regressors reproduced the vlPFC responses to the
faces paired with bad reputations and their relation to distrust,
and thus, these main findings should not be affected by
the arbitrariness of the presented model. Nevertheless, future
research should experimentally manipulate the unexpectedness
of good and bad reputations in order to clarify the effect of
valence on evaluation transfer. In addition, reputation learning is
known to vary across the lifespan (Fett et al., 2014), and therefore,
our results from a young-adult population might not generalize
to other ages. It would be especially important to determine the
changes in later life given the possible vulnerability of older adults
to cheating (Castle et al., 2012).

Finally, the formation of stimulus-value associations has
been extensively studied using computational models of
reinforcement learning (O’Doherty, 2004; Behrens et al., 2009).
As our experimental tasks did not clearly involve reinforcement
(i.e., participants did not receive either reward or punishment),
this paper is written within a descriptive framework of evaluative
conditioning, the role of which in attitude formation has been
highlighted in the social psychology literature (Fazio, 2007; Jones
et al., 2010). Nevertheless, considering that reinforcement values
could be defined for any type of stimuli (e.g., pictures; Katahira
et al., 2011), it would be interesting to apply computational
modeling to reputation learning. To achieve this goal, a
reputation learning task might need to include fewer stimulus
persons andmore learning opportunities (e.g., Chang et al., 2010)
so that reliable estimation is possible.

In conclusion, this study demonstrated that once participants
had learned a stimulus face’s bad reputation, they came to
activate the vlPFC when judging that face, independent of
the validity of the bad reputation. In addition, vlPFC activity
explained the participants’ distrust toward such people. Taken
together with the implicated role of the vlPFC in negative
evaluation, the findings are interpreted as reflecting evaluation
transfer that directly associates the negative evaluation of a bad
reputation with a target person. Our results advance a possible
neurocognitive explanation as to why bad reputations continue
to affect judgments even after they have been shown to be
invalid.
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