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Naturalistic stimuli like movies evoke complex perceptual processes, which are of great

interest in the study of human cognition by functional MRI (fMRI). However, conventional

fMRI analysis based on statistical parametric mapping (SPM) and the general linear model

(GLM) is hampered by a lack of accurate parametric models of the BOLD response to

complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate

pattern analysis (MVPA), have received growing attention for their ability to generate

stimulus response models in a data-driven fashion. However, machine-learning methods

typically require large amounts of training data as well as computational resources. In

the past, this has largely limited their application to fMRI experiments involving small

sets of stimulus categories and small regions of interest in the brain. By contrast, the

present study compares several classification algorithms known as Nearest Neighbor

(NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in

terms of their classification accuracy in discriminating the global fMRI response patterns

evoked by a large number of naturalistic visual stimuli presented as amovie. Results show

that LDA regularized by principal component analysis (PCA) achieved high classification

accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a

300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors

were autocorrelations in the BOLD signal compounded by the similarity of consecutive

stimuli. All classifiers performed best when given input features from a large region of

interest comprising around 25% of the voxels that responded significantly to the visual

stimulus. Consistent with this, the most informative principal components represented

widespread distributions of co-activated brain regions that were similar between subjects

and may represent functional networks. In light of these results, the combination of

naturalistic movie stimuli and classification analysis in fMRI experiments may prove to

be a sensitive tool for the assessment of changes in natural cognitive processes under

experimental manipulation.
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INTRODUCTION

Over the past two decades functional magnetic resonance imaging
(fMRI) based on the blood oxygenation level dependent (BOLD)
contrast mechanism has become the neuroimaging tool of choice
for brain research in humans. In spite of this success, the
statistical analysis and interpretation of BOLD fMRI data with
the goal of understanding brain function remains a daunting
task that continuously motivates the development of new and
improved analytical methods. Conventional hypothesis-driven
fMRI analysis of task-evoked activity involves an explicit model
of the BOLD fMRI response to the stimulus. Relevant stimulus
features must be identified a priori and transformed by an
equally predetermined hemodynamic response function (HRF)
to form the design matrix of a general linear model (GLM).
By contrast, data-driven machine-learning (ML) methods, often
referred to as multivariate pattern analysis (MVPA) in the
context of fMRI, are attractive, because they do not require
any generative model of the BOLD signal. ML algorithms for
clustering, decoding, and especially for classification facilitate the
quantification of stimulus-related information without making
strong assumptions about the nature of the BOLD fMRI signal
(Kriegeskorte et al., 2006; Norman et al., 2006; Pereira et al.,
2009). Even without a generative model of the fMRI signal such
information can serve to detect relevant differences between
perceptual, cognitive or pathological brain states (e.g., in a brain-
machine interface; Naci et al., 2012; Sorger et al., 2012; Yuen
et al., 2012) or between experimental conditions (e.g., to evaluate
experimental sensitivity; Chen et al., 2015).

fMRI data analysis by means of non-parametric, model-
free ML methods is particularly interesting in conjunction with
naturalistic stimuli like photographs or movies, because these are
intended to evoke the complex perceptual processes of everyday
life, for which adequate fMRI signal models are lacking despite
unique research in the field (Nishimoto et al., 2011; Horikawa
et al., 2013). In this situation, exploratory data analysis techniques
are expected to generate new testable model hypotheses. Indeed,
machine-learning algorithmsmay offer the best chance of finding
widely applicable models of the BOLD fMRI signal reflecting
higher cognitive functions.

Since watching TV is a common cognitive task in modern
society, motion pictures may be regarded as naturalistic stimuli,
even though cinematographic fiction is not always a faithful
representation of real life. Motion pictures are not only
naturalistic but also convenient stimuli, because they are easy

Abbreviations: BOLD: blood oxygenation level dependent (fMRI); BW: (readout)

bandwidth (MRI parameter); FA: flip angle (MRI parameter); fMRI: functional

MRI; FWHM: full width at half maximum; GLM: general linear model; GNB:

Gaussian Naïve Bayes classifier; GRAPPA: (MRI parallel imaging technique);

HRF: hemodynamic response function; LDA: Linear Discriminant Analysis

classifier; ML: machine learning (algorithm); MRI: magnetic resonance imaging;

MVPA: multivariate pattern analysis; NNE/C: nearest-neighbor classifier with

Euclidean/Correlation distance metric; NME/C: nearest-mean classifier with

Euclidean/Correlation distance metric; PC: principal component; PCA: principal

component analysis; (f)ROI: (functional) region of interest; SNR: signal-to-noise

ratio; SD: standard deviation; SVD: singular value decomposition; SVM: support

vector machine; TE: echo time (MRI parameter); TR: (volume) repetition time

(MRI).

to obtain and to deliver in a controlled fashion. Important for
the success of classification analysis is the fact that movies can
elicit a robust and widespread fMRI response that is consistent
across experimental runs and between subjects. It has been
argued that naturalistic stimuli often elicit an fMRI response
that is more reproducible, although not necessarily stronger than
purely artificial visual stimuli like gratings used in traditional
vision research (Hasson et al., 2010). This increase in fMRI
signal reproducibility could be mediated largely by the global
effects of changes in attention, as captivating movies that attract
attention were found to result in higher inter-trial correlations
than less exciting footage (e.g., from a surveillance camera). This
is not implausible, since attention is known to have a strong
modulatory effect in cognitive experiments (e.g., Çukur et al.,
2013).

In the recent literature, fMRI data from movie-viewing
experiments have mostly been analyzed by conventional
(univariate) GLM analysis, which quantifies correlations of the
fMRI signal with scalar regressors derived from visual features
such as optical flow (motion), luminance or the presence of
faces in the movie (e.g., Bartels et al., 2008; Huth et al., 2012;
Russ and Leopold, 2015). Alternatively, fMRI signal correlations
between repeated experimental runs have been used as a
(model-free) measure of fMRI signal reproducibility in specific
brain regions (Hasson et al., 2004; Jääskeläinen et al., 2008).
Two published studies have applied classification methods in
conjunction with naturalistic movie stimuli, but neither discuss
the performance of different algorithms (Haxby et al., 2011; Chen
et al., 2015). At the same time a limited number of studies
have compared classification algorithms [notably the support
vector machine (SVM), linear discriminant analysis (LDA), and
Gaussian Naïve Bayes (GNB)] for the analysis of fMRI data, but
all of those focused on binary classification, a small number
of stimulus categories such as houses and faces, and input
from small predefined brain regions of just a few hundred
voxels (Ku et al., 2008; Misaki et al., 2010; Churchill et al.,
2014; Yourganov et al., 2014). According to these studies the
performance of ML methods depends not only on the choice of
classification algorithm but also crucially on the pre-processing of
the data, which must be tailored specifically to the type of fMRI
experiment. It is therefore uncertain that classification methods
designed and optimized for binary classification (like the SVM)
are directly applicable to the more general classification problem
with a large number of classes and a high-dimensional feature
space (e.g., >104 voxels in the brain).

The purpose of this study is to compare several ML methods
suitable for the classification of BOLD fMRI data evoked by large
sets of naturalistic stimuli, which are presented as a 5-minute
movie and repeated a number of times. Such data pose a challenge
for classification algorithms, because they are characterized by
a high-dimensional feature space (≫1000 voxels) and a large
number of more or less distinctive classes (>100 stimulus
time points) that far exceeds the number of experimental
repetitions (<10 stimulus presentations). In this work, several
suitable classification methods were therefore systematically
evaluated to find a maximum in classification accuracy, which
is a proxy for the information content of the fMRI signal.
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Given the conceptual proximity between classification methods
and clustering algorithms this line of research may eventually
bridge the gap between data-driven and hypothesis-driven fMRI
analysis by revealing the relevant stimulus features underlying
the fMRI signal in natural conditions.

METHODS

fMRI Experiments
fMRI Stimuli and Paradigm
Four subjects (age 24 ± 1.2 years, 2 male) each gave written
informed consent in accordance with institutional guidelines at
the NIH (IRB-approved protocol 00-N-0082) to participate in
a series of fMRI experiments. During each fMRI experiment
the iconic opening scene from the popular action movie “The
Matrix” was presented for exactly 5min (video without audio).
This kind of naturalistic stimulus was intended to elicit a broad
range of perceptual and cognitive processes thus precipitating a
varied fMRI response, suitable for analysis by machine-learning
(ML) classification algorithms. Experiments were repeated over
4–6 separate scan sessions spread over several months until each
subject had completed eight viewings of the same video stimuli,
1–2 per session depending on time constraints.

fMRI Data Acquisition
MRI experiments were performed on a high-field 7 T MRI
scanner (Siemens, Erlangen, Germany) equipped with 70mT/m
@ 200 T/m/s gradients and a combined 2-channel transmit 32-
channel receive head coil (Nova Medical, Wilmington, USA).
T∗
2-weighted single-shot EPI images in transversal orientation

were acquired with a TR of 2 s and an isotropic spatial
resolution of 2mm. Other sequence parameters typical for BOLD
fMRI at 7 T included: TR/TE = 2 s/25ms, FA = 63◦, BW =
2004Hz/pixel, matrix= 96×96, GRAPPA= 3. As an anatomical
reference for the co-alignment of fMRI time series a whole-brain
volume of T∗

2-weighted images at 1mm isotropic resolution was
acquired by a GRE sequence (TR/TE = 3 s/24ms; FA = 80◦;
BW= 230Hz/pixel; matrix= 256× 192).

A 3 cm gap between the outer transmit and inner receive
coil accommodated a mirror and a small MR-compatible CCD
camera (MRC Systems GmbH, Heidelberg, Germany) to allow
both the projection of visual stimuli and video recording of
the subject’s eye movements using eye-tracking software by
Arrington Research, Inc. (USA). A separate computer running
the Psychophysics Toolbox (Brainard, 1997; http://psychtoolbox.
org) in Matlab served to play the digital video stimuli in
synchrony with MRI acquisition triggers and the eye tracker.
In addition, each subject’s cardiac and respiratory signals were
recorded by pulse-oxymetry and a pneumatic chest belt.

fMRI Data Analysis
Previous studies of fMRI during movie stimulation have mostly
focused on either inter-trial correlations as a measure of
reproducibility (e.g., Hasson et al., 2008, 2010; Jääskeläinen et al.,
2008) or (manually) extracted regressors like motion energy
or the presence of faces in the movie to perform a classical
GLM analysis (e.g., Bartels and Zeki, 2004; Huth et al., 2012;

Russ and Leopold, 2015). By contrast, the current study applied
classification methods to movie-fMRI data in order to quantify
the information content of the fMRI signal. This approach was
inspired by the inter-subject correlations proposed by Haxby
et al. (2011), but is more closely related to a recent study by
Chen et al. (2015), which also focuses exclusively on intra-
subject classification thereby avoiding the fundamental problem
of inter-subject alignment. The following analysis treated each
fMRI volume acquisition related to one particular time point
in the movie (t = n∗TR) as a separate stimulus category for
classification, even though some stimuli might be more similar
than others in terms of the evoked BOLD fMRI response. Unlike
other studies, this work was not aimed at determining what
visual features drive the fMRI response and how the brain
might categorize stimuli. Instead classification accuracy, i.e., the
percentage of correctly identified test stimuli, served us purely
as a measure of information extracted from the fMRI signal and
therefore classifier performance.

fMRI Data Pre-processing
Pre-processing and analysis of the fMRI data were performed
using custom code1 written in Matlab supplemented by tools
from AFNI (http://afni.nimh.nih.gov; Cox, 1996) and FSL
(http://fsl.fmrib.ox.ac.uk; Smith et al., 2004). fMRI data from
all experimental runs underwent slice-timing and motion
correction, they were aligned to each subject’s individual
T2-weighted anatomical scan and resampled to an isotropic
resolution of 1.2mm. To preserve resolution, all spatial
operations were combined into a single linear transformation
with a 7-point sinc interpolation for re-gridding. Motion
parameters as well as linear and quadratic trends were regressed
out before converting each voxel’s time series to a z-score by
subtracting the mean and normalizing the variance over time.

Feature Selection by Univariate ANOVA
Even though ML algorithms are in principle designed to extract
relevant information from noisy data, the performance of such
classifiers on high-dimensional data generally depends on feature
selection as an initial step to exclude input data of high noise
and low signal content. To avoid making assumptions about
the number and location of voxels (i.e., features) that are
most informative for classification, we repeated all classification
analyses for feature sets ranging from 16 to 216 voxels, selecting
those that were most significantly modulated by the stimulus.
The relative significance (or fMRI activation strength) in each
voxel location was estimated by a univariate analysis of variance
(ANOVA), treating each of the 150 fMRI volume acquisitions
during the movie as an independent group (or factor) and each
experimental run as a repeated measurement (Figure 1). The
resulting functional region of interest (fROI) was variable in size
and computed only from the training data in each round of cross-
validation. This was done just to be orthodox, since the location
of the fROI and the resulting classification accuracy varied only
marginally with or without cross-validated feature selection. In
any case, the results below show that optimal classification rates

1Details available upon request via https://amri.ninds.nih.gov/hMvCla.html
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FIGURE 1 | Movie stimuli elicited a widely distributed fMRI response throughout the brain. Example of a voxel-wise ANOVA F-statistic map (threshold

p < 1%, uncorrected) superimposed on the T1-weighted anatomical MRI of one representative subject (16 axial slices in radiological convention). Stimulus-correlated

fMRI activity is widespread in the occipital and ventral temporal cortices, consistent with their established involvement in basic vision and object recognition.

Red/yellow colors mark the top 214 voxel features that maximized classification rates in Figure 2.

were contingent on a large fROI size between 4000 and 20,000
voxels and were not sensitive to small changes.

Classification Methods
The multi-class classifiers compared here are in essence all based
on the efficient nearest-neighbor (NN) or nearest-mean (NM)
classification scheme and evaluated by leave-one-experiment-
out cross-validation. In other words, any sample pattern
(from the test data) is assigned the same class as its nearest
neighbor from a set of class templates (from the training
data) as determined by a metric of pairwise distances. Because
systematic differences between fMRI scans constitute a large
part of the noise confounding classification, the cross-validation
scheme strictly avoided sharing data from any one experiment
between training and validation data. Without this leave-one-
experiment-out cross-validation scheme, scan specific variations
e.g., in shimming, coil sensitivities, subject performance or
even breathing patterns are likely to outweigh inter-stimulus
differences especially for similar stimuli close in time. In other
words, different samples (classes) from the same fMRI scan were
often more similar than samples from the same class in different
scans.

Table 1 details the distinguishing features of all classifiers
compared in this study. Essentially they differ in the distance
metric employed, which is either the correlation distance (one
minus the Pearson correlation coefficient) or a (normalized)
Euclidean distance with various constraints imposed on the
estimate of the normalizing noise covariancematrix. As indicated
in Table 1, some of these classifiers are commonly referred to
as GNB and LDA. The statistical model underlying both of
these common classifiers is a mixture of multivariate Gaussian
distributions, but with different degrees of freedom.

The simplest classifier tested here can be described as pairwise
nearest-neighbor classification with each (single) experimental
run in turn serving as a set of class templates (training data),
against which every fMRI volume from any other experimental
run (test data) was compared either by the Euclidean or the
correlation distance (Table 1, NNE + NNC). More effective

were the various forms of LDA based on multivariate Gaussian
distribution models that represent each stimulus class by its
mean vector (centroid) and a covariance matrix estimated
from the residuals of its members (after subtracting the class
mean). Variants of discriminant analysis are typically qualified
as linear or quadratic as well as GNB, all of which refer to
constraints imposed on the estimated model covariance matrix:
Linear and quadratic discriminant analysis respectively refer
to a common (pooled) or a class-specific (stratified) estimate
of the within-class (noise) covariance matrix. Similarly, the
GNB classifier assumes a diagonal noise covariance matrix (i.e.,
uncorrelated voxels or features)—a simplifying assumption that
is not necessarily accurate, but convenient and often surprisingly
effective in situations where a small number of samples in a
high-dimensional input space renders the covariancematrix rank
deficient and not invertible.

Another common solution to this curse-of-dimensionality
problem is dimensionality reduction by principal component
analysis (PCA), which was employed here as a form of
regularization to facilitate LDA based on the Mahalanobis
distance that requires a full-rank covariance matrix. All
the nearest-mean LDA-type classifiers were tested by leave-
one-experiment-out cross-validation, meaning that PCA, class
centroids and covariance matrices were computed from training
data that included all but one experimental run, while the left-
out experiment served as validation data for testing classification
results. The comparisons in Figures 2, 3 include only classifiers
using 64 principal components. This number of PCs yielded
the highest classification accuracies in an extended comparison
of classification results computed for 8, 16, 32, 64, and 128
PCs (Figure 6 in Supplementary Material). Note that PCA
was performed on the training data after averaging over
experiments. An alternative computation of PCA on training
data concatenated in time resulted in a much larger number of
eigenvectors, some apparently specific to individual experiments,
others obviously non-neuronal (e.g., emphasizing the ventricles).
To compute sample distances and classification results, both the
training and validation data were projected into the spatial PCA
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TABLE 1 | Summary of classifiers compared.

Legend Figure 2 PCA components Nearest-Neighbor (NN) Nearest-Mean (NM) Distance metric Distance metric D(y, x, 6) =

NNC – NN Correlation distance 1−
EyT Ex

‖Ey‖‖Ex‖

NNE – NN Euclidean distance
∥

∥Ey − Ex
∥

∥

NMC – NM Correlation distance

NME – NM Euclidean distance
√

∑

n (yn − µn )2

GNB – NM norm. Euclidean distance

√

∑

n
(yn−µn )2

6nn

NMC 8, 16, 32,… 8, 16, 32,… NM Correlation distance

NME 8, 16, 32,… 8, 16, 32,… NM Euclidean distance

GNB 8, 16, 32,… 8, 16, 32,… NM norm. Euclidean distance

LDA 8, 16, 32,… 8, 16, 32,… NM Mahalanobis distance
√

(Ey − Eµ)T6−1 (Ey − Eµ)

y, x: sample vectors of test and training data; yn, xn: components of y, x, µ: class mean (centroid) vector from training data; Σnn: diagonal elements of the covariance matrix Σ of the

(pooled) training-data residuals (x−µ).

eigenbasis of the training data. Note that the resulting signal time
series are not normalized in variance, unlike the temporal PCA
eigenbasis. Figure 4 shows five representative slices of the first
8 PCs computed from an (optimal) fROI of 215 voxels in each
of the four subjects. For display purposes only, the temporal PCs
estimated from the fROI were projected back to the whole fMRI
volume, such that any correlations outside the fROI would also
be observed.

RESULTS

Eye Tracking
The eye-tracking data confirm a large degree of consistency in
the way subjects watch the movie stimuli, notwithstanding a
considerable amount of variance due to technical limitations.
Eye blinks, head motion and subject non-compliance, i.e.,
fluctuations in vigilance, are major sources of variability between
experimental runs and subjects. Obvious manifestations of
subject drowsiness are extended intervals of partial or complete
eye closure and corresponding periods of fMRI signal that is
inconsistent with other experimental runs. As a result, subjects,
who were less able to maintain vigilance over a number of
experimental runs, showed lower average classification accuracy.
Nevertheless, after removing obvious artifacts (global drifts,
discontinuities, out-of-bounds signal) the eye traces recorded at
30Hz exhibit a high degree of correlation across experimental
runs and between subjects. (Pearson correlation between
experimental runs typically >0.5, data not shown.) In fact, an
overlay of gaze positions from multiple experiments onto the
dynamic movie stimulus makes it obvious that there are rarely
more than one or two foci of attention at any given moment
during the movie.

ANOVA F-Statistic Maps
The ANOVA F-statistic maps from a typical subject (Figure 1)
clearly delineate consistently activated regions in the occipital
and inferior temporal cortices, including areas that are
commonly associated with the ventral visual pathway of high-
level object recognition. Functional ROIs of adjustable size
were defined on these maps by selecting between 16 and

216 (65,536) of the most activated voxels, i.e., those showing
the highest F-values. For reasons of computational efficiency,
this input ROI for classification analysis was confined to the
occipital half of the fMRI volume, where virtually all the
stimulus-correlated fMRI signal was concentrated. By contrast,
frontal regions close to the paranasal sinuses were strongly
affected by susceptibility artifacts as well as a stimulus-correlated
motion artifact in the eyes, which corroborates the consistent
eye-tracking results and would certainly confound stimulus
classification.

Classification Accuracy
The main results of this study are summarized in Figure 2,
which compares all classifiers (color labels, refer to Table 1)
in terms of their mean classification rate (y-axis) and as
a function of the number of input features i.e., voxels in
the fROI (x-axis). All classifiers performed well above the
theoretical chance level (1/150 = 0.7%), but the classification
accuracy depended strongly on the classification algorithm
and the extent of the fROI. Irrespective of their vastly
different peak classification rates between 30 and 90%, all
classifiers showed a similar functional dependence on the
fROI size with a broad maximum between 4000 and 20,000
voxels, roughly 5–25% of all voxels showing significant activity
in these experiments [p(F)<1% uncorrected]. This is the
expected consequence of first adding voxels of high functional
contrast (F-statistic) and later voxels that contribute less signal
than noise.

A similar dome-shaped dependence was observed when
testing classification rates as a function of dimensionality
reduction using 8–150 principal components (Figure 6 in
Supplementary Material), although a peak was only reached for
the Mahalanobis and normalized Euclidean distance metrics and
contingent on the fROI size. The reason might be the limit on
the maximal number of PCs, which cannot exceed the number of
stimulus time points in these experiments. With the inclusion of
more PCs, Euclidean and correlation distances computed in PC
space should approximate the equivalent voxel-space analyses,
since PCA is an orthonormal transform. In any case, the number
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FIGURE 2 | Comparison of classifier performance. (Top): Bar-plot summary of classification rates averaged over subjects and cross-validation runs (4× 8): Each

bar marks the median (dot), the 25–75% inter-quartile range (bar), and the full data range (line), as well as any outliers exceeding 1.5x the inter-quartile range (+).

Classification rates depended strongly on the number of input voxels (x-axis) and the classification algorithm (color labels, see Table 1): NNC, NNE: Correlation and

Euclidean distance metrics used in pairwise nearest-neighbor classification; NMC, NME, GNB: Correlation, Euclidean, and normalized Euclidean distance (= GNB)

metrics combined with nearest-mean classification; NMC64, NME64, GNB64, LDA64: Same as preceding classifiers after dimensionality reduction to 64 PCs plus

LDA based on the Mahalanobis distance metric. Bottom: The growing extent of the functional ROI in one subject is illustrated by axial maximum intensity projections

(sum over slices) of the voxels included.

FIGURE 3 | Classification error distribution in time. A confusion matrix (left) of (mis-)classification rates between training and validation stimuli (x/y axes) averaged

over all subjects, experiments and classifiers (based on the optimal input fROI of 214 voxels) and the corresponding (mis-)classification lag histogram (right) of the

same data both illustrate that most mis-classifications fall within ±1 TR (2s) of the correct target simulus (i.e., the diagonal = lag zero; Classifier labels NNC, NNE, etc.

refer to Table 1). The known hemodynamic lag of the BOLD signal offers an obvious explanation, but the visible block-diagonal structure (left) implicates the

compounding effect of perceptual similarity between stimuli. Some blocks of high similarity apparently correspond to scenes of fast motion or prominent faces in the

movie stimulus.

of PCs is an influential tuning parameter, which was set at 64 (out
of 150 maximum) for the highest classification rates in the final
comparison.

At their maxima (∼16,000 voxels), the LDA and GNB
classifiers based on averaging, PCA, and covariance weighting
achieved the highest classification rates (∼90% and ∼85%
respectively). By comparison, the nearest-mean classifiers (NMC,

NME, GNB, Table 1) based on averaged class templates
performed considerably worse, close to 60%, irrespective of the
distance metric. Notably, this was still higher than pairwise
nearest-neighbor classification of single-trial fMRI data without
any averaging (∼30–50% for NNE + NNC, respectively), which
yielded particularly poor results with the Euclidean distance
metric (NNE).
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FIGURE 4 | Functional connectivity patterns revealed by the eight leading principal components. Five representative slices (rows) representing projections of

the eight highest-variance PCs (columns) in four subjects (small top panels) illustrate similarities across subjects and large-scale interactions between major

subdivisions of the visual system. The ANOVA F-statistic (colored numbers) for each PC time course indicates, which components strongly influence LDA classification

in PC space. The large bottom panel shows the feature space used for PCA in the context of the T1-weighted anatomy of the first subject.

PCA Maps
Dimensionality reduction by PCA in combination with GNB or
LDA strongly increased classification rates in our experiment. It
was therefore of interest to investigate the spatial basis functions
that account for most of the signal variance as well as their
within-class noise covariance. Both of these determine each
component’s weighting as part of the normalized Euclidean
and the Mahalanobis distance metrics. The basis functions
computed by PCA can be viewed as spatial brain maps (Figure 4)
that indicate, which brain regions are positively or negatively
correlated with the associated signal time course (Figure 5).

Figure 4 shows maps of the eight leading (i.e., highest-
variance) PCA components (spatial PCs), a few representative
slices from each subject. Following convention, the components
are sorted in the order of descending variance contribution
(PC#1–8). However, the PCs of highest variance need not be

the ones contributing most reliably to classification success. This
is indicated by an ANOVA F-statistic quantifying the ratio of
between-class over within-class variance for each temporal PC
(colored numbers in Figures 4, 5). This suggests an alternative
strategy for selecting the most relevant PC features. Finally,
one may appreciate the degree of anatomical similarity between
the leading spatial PCs from different subjects as well as the
corresponding PC time courses.

While this study is not concerned with the relationship
between specific stimuli and the spatial distribution of the fMRI
response, we will briefly comment on spatial characteristics of
the PCs observed. Since PCA is equally sensitive to spatially
correlated signals of neuronal and non-neuronal origin (e.g.,
subject motion or scanner drift), it is reassuring to note that
all of the leading PCs reflect the known functional anatomy of
the visual cortex and other functionally related brain regions.
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FIGURE 5 | PC signal time courses for PC#1–4 (columns) in subjects 1–4 (rows). Each panel shows PC signals for eight experimental runs (gray) and their

mean (black). The F-statistic (colored numbers) quantifying signal over noise variance for each set of curves indicates, which PCs are most reproducible and likely to

contribute to classification success.

Notably, there is a first PC common to all subjects that
broadly covers lateral occipital and ventral temporal cortices. The
second common component highlights the motion sensitive area
V5/hMT and has the highest F-statistic in all subjects. Many
of the following PCs (#3, 4,. . . ) seem to contrast different sub-
regions of the visual cortex V1-4, which one would expect to
be represented by a number of PCs. In general, the leading
PCs exhibit a clustered structure of low spatial frequency and
bilateral symmetry that resembles functional networks reported
in studies of task-based and resting-state functional connectivity
(e.g., Smith et al., 2009).

DISCUSSION

The present study demonstrates the use of cinematographic
videos presented repeatedly as visual stimuli (without sound)
for the purpose of reliably eliciting a widespread, diverse, and
reproducible BOLD fMRI signal response in human subjects.
Consistent with previous studies, the naturalistic movie stimuli
evoked reproducible activity in the occipital and ventral temporal
cortex (Golland et al., 2007; Hasson et al., 2008; Jääskeläinen
et al., 2008). These brain areas have been described as object
selective and as part of the ventral visual stream, which is
also known as the What pathway that processes the semantic
identity of visual percepts (review Grill-Spector and Weiner,
2014). In contrast to other studies, the present analysis is not
concerned with the relationship between stimulus content and
the activation of specific brain regions (Huth et al., 2012).
Instead, we tested and optimized the ability of various ML
classification methods to detect and discriminate stimulus-
specific fMRI signals. The identification of reliable and efficient
algorithms is an important prerequisite to establishing the
use of classification methods as an alternative, data-driven
and information-based strategy for analysing BOLD fMRI data
from naturalistic movie viewing experiments. In light of the
present results, such methods have the potential to detect

perceptual and cognitive changes in individual subjects. It is
important, however, to understand what aspects of the data
acquisition and processing strategy determine experimental
sensitivity.

Previous fMRI studies have applied and compared
classification methods mostly based on experiments with
few distinct stimulus categories presented in a block-design
or event-related paradigm (Ku et al., 2008; Yourganov et al.,
2014). For such data the linear SVM was generally found to
yield superior classification performance. However, the popular
SVM is ill suited to handling the large number of classes in
the data at hand. For this reason, our study compared several
multi-class classification methods related to LDA, in essence
all nearest-neighbor (NN) classifiers using a variety of distance
metrics. The classifiers compared all performed well above
chance given a sufficient number of input voxels. In fact, all
classifiers showed qualitatively equivalent results, performing
just above chance level for fewer than 16 voxels and reaching
peak performance broadly between 4000 and 20,000 voxels
(about 5–25% of all activated voxels) before declining again
with higher voxel counts. The rise, peak and fall of classification
rates as a concave function of functional ROI size is more than
plausible under the assumption that the voxel features added
first are highly informative, while those added later are apt to
confound classification with a higher noise contribution and
less signal reproducibility as evidenced by lower values of the
F-statistic. Since all classifiers consistently benefited from a large
fROI one may also conclude that stimulus-related information
in the brain is spatially distributed and its coarse global structure
most reliably interpreted.

Notwithstanding these qualitatively similar results, Figure 2
reveals substantial quantitative differences between classifiers.
Since average classification rates mark a lower bound on
the information content of the BOLD fMRI signal, higher
classification rates amount to higher sensitivity to detecting
stimulus-driven information, and better performance when
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utilizing such information e.g., in a diagnostic test. In theory,
classifiers that model the signal and noise statistics of the
data more accurately would show higher classification rates.
Therefore, differences in the performance of various classifiers
may offer insight into the analyzed signal and its noise structure.

Firstly, we note that the correlation distance metric performed
substantially better than the Euclidean distance for pairwise
classification with individual scans (rather than class averages)
as templates (Figure 2, NNE + NNC). Secondly, nearest-mean
(NM) classifiers based on averaged class templates achieved
higher classification accuracy (>60%) than pairwise nearest-
neighbor classification (<50%). Interestingly, the distance metric
had little influence in this regime judging by the equivalent results
for the Euclidean, normalized Euclidean and correlation distance
(Figure 2, NME, GNB, NMC).

Detailed inspection of pairwise cross-classification rates
between individual experiments (NNE, NNC) confirmed that
classification accuracy varied and tended to be higher when
training and validation data were acquired during the same
scan session (Figure 7 in Supplementary Material). For this
reason the cross-validation scheme chosen here avoided sharing
any data from the same experiment or scan session between
training and validation data. Such findings are not uncommon
(Misaki et al., 2010): In spite of successful co-alignment, signal
mixing through interpolation and partial-volume effects retains
some dependence on the original scan geometry, shimming,
slice timing, etc. not to mention a subject’s daily constitution.
Such experimental variations were mitigated by averaging 6–7
volumes from different scans. One might also suspect implicit
spatial smoothing to mediate such effects, but explicit Gaussian
smoothing of the data to 3mm FWHM did not improve
classification rates (data not shown). In any case, data acquisition
and cross-validation schemes are important caveats to consider
when evaluating and comparing fMRI classification rates across
scans or studies.

Finally, in addition to the use of mean class templates, another
leap in classification accuracy was achieved by the combination
of PCA and LDA, which respectively amounts to utilizing the
covariance matrices of both the (mean) signal and the residuals
(after subtraction of the class means). Note that PCA alone did
not confer any increase in classification accuracy, although it
did offer a 100-fold reduction in dimensionality (∼64/16,000)
without substantially compromising results (compare Figure 2

NME + NME64). However, subsequent normalization by the
estimated within-class noise covariance (that factors into the
normalized Euclidean and Mahalanobis distance metrics for
GNB and LDA) increased classification accuracy by 20–30%.
In effect this amounts to weighting PCs by scaling down
those harboring most of the intra-class noise variance. This
variance normalization made the number of PCs another
critical optimization parameter, as results deteriorated again
with an increasing number of low-variance PCs (Figure 6 in
Supplementary Material). Incidentally, the number of 32–64 PCs
that maximized classification rates in our experiments seems
to confirm similar experiments by Haxby et al. (2011) and is
comparable to the number of functional connectivity networks
that are typically distinguished by PCA and ICA in the field of

resting-state fMRI (Abou Elseoud et al., 2011; Ray et al., 2013).
One may wonder, if this reflects some intrinsic dimensionality
of the fMRI signal, although that may well depend on SNR and
spatial resolution.

The highest classification accuracy of 90% on average was
achieved by the PCA-regularized LDA classifier based on the
Mahalanobis distance. This classifier required regularization or
dimensionality reduction by PCA, since the necessary covariance
matrix of the residuals is inevitably rank-deficient and not
invertible in the original high-dimensional data space. Note
that the GNB classifier based on a diagonal approximation to
the residual covariance matrix in the same eigenbasis yielded
just marginally lower classification accuracies around 85%.
This would indicate that off-diagonal cross-terms played a
subordinate role in the residual covariance matrix. In other
words, signal and noise components were largely separated by
PCA. Notably, the same GNB classifier afforded no increase in
classification rate when applied without PCA in the original data
space, where voxel correlations are known to be high. As one
would expect, the first 16–32 PCs of highest variance accounted
for most of the classification accuracy. Still, at least 64 PCs
of diminishing variance contributed to increasing classification
accuracies. Of course, components carrying more noise than
signal are selectively suppressed by LDA and GNB classifiers. The
F-statistic for each PC (Figure 4, color labels) indicates, which
PCs are most relevant under the covariance-weighting scheme.
Note that the first PCs of highest variance are not the most
relevant according to the F-statistic.

The observed smooth tuning functions for the fROI size and
the number of extracted PCs might be somewhat misleading in
the sense that they portray a continuous, gradual and progressive
accumulation of information, which might in fact be less
distributed than it seems. The sequential feature selection scheme
based on the F-statistic implemented here may be effective but
not necessarily optimal in an information theoretic sense. In
other words, algorithms for selecting and combining a subset
of fMRI signals to achieve optimal stimulus discrimination with
a limited number features represents another promising area
of investigation. However, the exploration of (computationally
expensive) feature-selection algorithms is beyond the scope
of this paper that focuses on a comparison of classification
methods.

The component vectors of PCA should be viewed as spatial
maps of correlated (fMRI) signal sources (Figure 4). One might
expect these to reflect networks of functionally connected and
co-activated brain regions, however, stimulus-correlated artifacts
and residual noise components are also likely to be captured
in some components. Note that the subject-wise PCA analysis
performed here makes no attempt at finding components that are
common between subjects; such hyperalignment methods are not
directly pertinent to this study (Chen et al., 2014). Nevertheless,
many of the leading principal components exhibit a temporal and
anatomical structure that is similar between subjects and strongly
reminiscent of functional connectivity patterns described in
other contexts (e.g., Smith et al., 2009).

The first PC in all subjects reflects a global unison activation of
cortical regions accounting for the largest fraction of variance but
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not the highest F-statistic. This PCmay well reflect a system-wide
modulatory effect like arousal. The second PC exhibits the
highest F-statistic indicating the most reproducible stimulus
response in all subjects. This and the apparent involvement
of motion-sensitive areas V5/hMT suggests that PC#2 reflects
optical flow and motion, which are known to account for a large
proportion of fMRI signal variance throughout the visual system
(Bartels et al., 2008; Nishimoto et al., 2011; Russ and Leopold,
2015). Other leading PCs accentuate various parts of the occipital
visual cortex likely representing differential activity in areas V1–
V4, which would be expected to encode much of the visual
stimulus variations.

The leading 16–32 PCs, which account for most of the fMRI
signal variance and classification accuracy, extend over large
areas of the brain. This could mean that widely distributed
regions across the brain are under the direct influence of a
common signal source, e.g., global visual features like luminance
and motion or stimulated arousal. However, it has been argued
(Hasson et al., 2010) that the commonly observed functional
connectivity patterns with large-scale regional variations is more
consistent with another popular hypothesis, which postulates a
number of distinct networks of interconnected brain regions as
the major processing units of the brain. Our results, showing
the best classification accuracies for extensive functional ROIs,
primarily confirm that information about the identity of diverse
visual stimuli is widely distributed across the occipital and
temporal cortices.

Few studies have systematically compared classifiers in fMRI
experiments with static visual stimuli (Ku et al., 2008; Misaki
et al., 2010; Pereira and Botvinick, 2011; Yourganov et al.,
2014) and literally only a couple of studies have applied
within- or between-subject classification to fMRI data from
dynamic movie stimulation (Haxby et al., 2011; Chen et al.,
2015). The present study combines both approaches, and its
results are broadly consistent with the literature, judging by
the reported classification accuracies and the relative ranking
of different classifiers. However, a direct comparison between
studies is problematic and agreement not necessarily expected,
given substantial differences in experimental procedures and
data processing. As illustrated above, nominal classification
rates are highly sensitive to a number of factors, including
the extent of input patterns in voxel space and any form of
averaging over space or time, not to mention any perceptual
similarity between the presented stimuli themselves. In this
regard one must, for instance, distinguish studies that perform
classification on statistical parametric maps (SPMs) generated
by a preceding GLM analysis, which is sometimes termed
an encoding model and constitutes a form of averaging that
constrains the ML model (Misaki et al., 2010; Naselaris
et al., 2015). For the kind of non-randomized dynamic data
generated in movie-viewing experiments, classification rates
can also be boosted by extending input patterns over several
TR in time, which will help disambiguate very large data
sets (Haxby et al., 2011). In the present experiments most
classification errors are in fact misclassifications of fMRI
volumes adjacent in time, i.e., separated by only one TR of 2 s
(Figure 3). This might be plausibly explained by the well-known

hemodynamic response function, which has a FWHM of 5–
6 s and causes strong autocorrelations on that time scale in
the fMRI signal. However, the overall high classification rates
and a noticeable block diagonal structure in the confusion
matrix (Figure 3) suggest that perceptual stimulus similarity
plays a major role: The blocks of more similar (i.e., confusable)
stimuli actually correspond to movie scenes of high motion
content or prominent faces. Also, the overall high classification
rates indicate that BOLD auto-correlations do not preclude
distinctive BOLD signal patterns, presumably because of the
highly consistent sequence and timing of movie stimuli. In the
same vein, a recent study using 30-s video stimuli in conjunction
with fast fMRI acquisitions by means of the simultaneous
multi-slice technique found that the number of discriminable
fMRI signal patterns increased with decreasing TR even as
short as 600ms before saturation was reached (Chen et al.,
2015).

Finally, it should be mentioned that there is technically
no guarantee that classification in experiments like these is
driven by neuronal phenomena. Especially with experiments
that do not allow for a counterbalanced randomized stimulation
paradigm, a caveat one must consider with ML techniques is
the possibility that correlated artifacts like systematic scanner
drifts or stimulus-correlated motion could underlie classification
success. In this study we consider this unlikely, because the
PCs are reminiscent of functional networks, and because
within-subject cross-classification between two separate movie
stimuli yielded classification rates at chance level (data not
shown).

The present study confirms the suitability of several
classification methods for fMRI experiments with movie stimuli
and it demonstrates the separate influences of the distance metric
and the feature space (fROI) on absolute classification rates.
In analogy to previous work (Haxby et al., 2011; Chen et al.,
2015), we plan to use this experimental paradigm to evaluate the
sensitivity of fMRI acquisition and pre-processing techniques.
Conversely, we also envisage the use of short fMRI experiments
with movie stimuli as calibration scans for comparing the BOLD
fMRI signal across scan sessions and subjects. Eventually, the
examination of distance and confusion matrices as well as the
noise covariance in relation to stimuli and other metadata may
reveal new information about the underlying physiological and
cognitive processes. For example the experimental paradigm
should lend itself to the study of cognitive habituation effects,
although the analysis will have to be modified to hone in on
systematic inter-scan variations rather than similarities. This is
work in progress. The present analysis primarily supports the
conclusion that some aspects of the human BOLD fMRI response
remain (surprisingly) stable over several viewings of the same
movie stimulus.

CONCLUSIONS

The results presented above demonstrate how fMRI experiments
with repeated naturalistic movie stimuli can suitably be
analyzed using multivariate classification methods tailored to
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data with high dimensionality, numerous categories (and few
repetitions). Cinematographic motion pictures are convenient
naturalistic stimuli for studying complex (quasi-natural)
perceptual processes by fMRI. They evoke a diverse yet robust
and reproducible fMRI response throughout large visual areas
in the lower occipital and temporal cortices. In a comparison
of common classifiers average classification accuracies above
90% were achieved by the most successful combination of trial
averaging, PCA and LDA. This is remarkably high, considering
the relatively large number of classes (150) used in this study.
However, absolute classification rates are not too meaningful,
since they depend on many factors such as feature selection,
variance normalization and other pre-processing of the data.
Nevertheless, high classification rates may translate into high
sensitivity for the detection of various cognitive and perceptual
processes. The optimization of classification algorithms also
reveals properties of the fMRI signal: Best classification results
are supported by a global fROI, indicating that information about
visual stimulus identity is not local but distributed throughout
occipital and temporal cortices. Interestingly, the spatial and
temporal patterns of the dominant PCA components are similar
between subjects and reminiscent of functional connectivity
networks.
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