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We propose a framework for building electrophysiological predictors of single-trial motor

performance variations, exemplified for SVIPT, a sequential isometric force control task

suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of

20 subjects with mean age of 53 years was recorded prior to and during 400 trials of

SVIPT. They were executed within a single session with the non-dominant left hand, while

receiving continuous visual feedback of the produced force trajectories. The behavioral

data showed strong trial-by-trial performance variations for five clinically relevant metrics,

which accounted for reaction time as well as for the smoothness and precision of the

produced force trajectory. 18 out of 20 tested subjects remained after preprocessing

and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG

data of a short time interval prior to the start of each SVIPT trial. For 11 subjects,

SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity

are predictive for the performance of the upcoming trial. Since SPoC may overfit to

non-informative subspaces, we propose to apply three selection criteria accounting

for the meaningfulness of the features. Across all subjects, the obtained components

were spread along the frequency spectrum and showed a variety of spatial activity

patterns. Those containing the highest level of predictive information resided in and

close to the alpha band. Their spatial patterns resemble topologies reported for visual

attention processes as well as those of imagined or executed hand motor tasks. In

summary, we identified subject-specific single predictors that explain up to 36% of

the performance fluctuations and may serve for enhancing neuroergonomics of motor

rehabilitation scenarios.

Keywords: single-trial performance prediction, trial-by-trial variability, isometric force modulation, hand motor

rehabilitation, visuomotor integration, EEG, oscillatory subspace, spatial filtering

1. INTRODUCTION

Motor training is utilized in rehabilitation scenarios to accelerate the re-gain of lost motor function
after brain injury. State-of-the-art rehabilitation concepts are based on repetitive training tasks
with the aim to reach a functional gain (Dobkin, 2004; Timmermans et al., 2009; Langhorne
et al., 2011). Most prominent training paradigms comprise mirror training (French et al., 2007),
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constraint-induced movement therapy (Wolf et al., 2002),
simultaneous bilateral training (Coupar et al., 2010), BCI-
supported training (Ang and Guan, 2013) and robot-assisted
techniques (Kwakkel et al., 2008). Recent rehabilitation
approaches include the training of novel, unfamiliar motor skills
instead of training well-known habitual motor tasks, attempting
to optimize functional cortical reorganization.

Repetitive paradigms allow for the assessment of motor
performance on a very fine-granular time scale. The performance
of each single trial can be monitored by metrics such as
the length, speed or smoothness of the produced movement
trajectory. The distributions and temporal characteristics of
trial-wise motor performance variations have been studied by
different groups (Abe and Sternad, 2013; van Beers et al.,
2013; Wu et al., 2014; Hadjiosif and Smith, 2015). While
practicing a motor task over several sessions enables a user
for skill acquisition (Lage et al., 2015), trial-by-trial variability
of motor performance is a prominent feature which does not
fully vanish with training (Cohen and Sternad, 2009; Osu et al.,
2015). The underlying neural mechanisms of motor performance
fluctuations on short time scales is subject of controversial
discussion in literature and is not fully resolved yet (Faisal et al.,
2008; Hadjiosif and Smith, 2015; Osu et al., 2015).

In the present work, we aim toward closing this gap.
Therefore, trial-wise performance fluctuations of a sequential
visuo-motor task (SVIPT; Camus et al., 2009; Reis et al., 2009;
Fritsch et al., 2010 are investigated while registering a user’s brain
activity by EEG. In SVIPT trials, the quality of a movement
changes within seconds and from repetition to repetition.

Our hypothesis is that subject-specific pre-trial brain signals
can partially explain and temporally predict the trial-by-trial
fluctuations of the upcoming motor performance. Given that
such informative neural markers exist, then the SVIPT paradigm
could be altered in order to meet the cognitive ergonomic
requirements of each single user. Practically, the starting time
point of the upcoming trial can be determined based on the
information contained in this pre-trial neural marker. Ideally,
such a neuroergonomic closed-loop gating strategy could provide
control over the level of difficulty. This should allow to causally
influence user performance and ultimately support SVIPT motor
learning on the long run.

Paradigms which include brain-state-dependent experimenting
(see Jensen et al., 2011; Horschig et al., 2014c) require that an
informative neural marker can be extracted robustly from brain
signals. Given the high dimensionality and noisy characteristic of
most types of brain signals, the extraction and decoding of such
individual neural markers is a challenging task.

Screening literature on relevant neural markers of visual
and motor performance, it is important to make a distinction
between the use of single-trial decoding in contrast to the
extraction of statistical differences, which may even be reported
as group averages. Neural features which correlate with the task
performance on the grand average (GA) of a set of subjects
have limited usefulness for closed-loop experimenting with a
given individual. As inter-subject differences get lost during the
averaging, GA features may have low predictive power when
tested with data of a novel subject. Research in the field of

brain-computer interfaces (BCI) has pushed forward methods
for single-trial decoding of individual brain activity (mostly EEG
signals) (Millán et al., 2010; Makeig et al., 2012). Results from
this field affirm that brain signals and informative features vary
strongly between individuals (Müller et al., 2008). To obtain
optimal decoding results, BCI data processing pipelines thrive to
identify subject-specific informative features. Technically, these
are gained either from a calibration recording prior to the
online use of the BCI (Blankertz et al., 2007), or by transfer
learning methods (Kindermans et al., 2014) which exploit
features from pre-trained machine learning models of earlier
sessions or previous users. Furthermore, attention needs to be
paid to temporal dependencies: brain features may correlate with
previous behavior, with simultaneous behavior or may even be
predictive for future behavior. Only the latter brain features can
serve as a tool for brain-state-dependent experimenting.

Statistical correlates of visual perception performance are
reported by several groups. For stimuli near the perception
threshold, the pre-stimulus occipital alpha bandpower correlates
with the detection performance (van Dijk et al., 2008), even on
a single-trial basis using predictive features (Hanslmayr et al.,
2007). In addition to bandpower, the pre-stimulus alpha phase
was reported to correlate with the detection performance (Busch
et al., 2009). Single-trial decoding methods were not applied
in those auditory studies, but the reported correlates precede
the perception, which may open the possibility for closed-loop
experimenting. Based on the findings of Hanslmayr et al. (2007)
and van Dijk et al. (2008), there are two examples that set
up an online experiment based on occipital alpha bandpower
features. Tonin et al. (2013) using EEG data and Horschig
et al. (2014b), who employed MEG signals, both decoded covert
visual attention in a closed-loop experiment by utilizing single-
trial feedback on the detected attention shift. However, both
groups did not fully close the loop e.g., by manipulating the
perception performance, which may have been possible by
selecting suitable brain states for stimulation. Gonzalez Andino
et al. (2005) studied a cued reaction time task and identified
that gamma band oscillatory activity observed in fronto-parietal
regions prior to the stimulus onset correlates with reaction time.
Similarly, Hoogenboom et al. (2010) stated that the strength
of visually induced gamma band activity is predictive for the
detection of stimulus motion. Somatosensory stimuli of low-
intensity, but above threshold were delivered and combined
with a distracting masker stimulus by Schubert et al. (2009).
Investigating perceived vs. missed stimuli in an offline analysis,
pre-stimulus beta bandpower over the left frontal cortex was
found predictive for the perception performance on the grand
average, as well as mu and beta bandpower over the pericentral
sensorimotor areas.

In the motor domain, several groups have successfully
decoded hand kinematics, using the center-out task as the
dominating experimental approach. In their ownwork, Jerbi et al.
(2011) provide a review over the decoding of hand movement
parameters such as direction, position and velocity based on
brain signals. ECoG signals were used by Pistohl et al. (2008)
to decode two-dimensional hand movement trajectories using
an autoregressive filtering approach. Considering non-invasive
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techniques, Waldert et al. (2008) have decoded (but not
temporally predicted) the hand movement direction based
on MEG and EEG. Neural correlates which encode the
velocity of a movement have been investigated by Bradberry
et al. (2009). The decoding of produced grip force based
on a phase feature extracted from the beta range has been
reported on data of three subjects by Logar et al. (2008).
Zaepffel et al. (2013) reported an increased centro-parietal beta
power during the planning period of grasping movements,
but it was not investigated, if decoding may work on the
basis of single trials. Focusing on single-trial methods, Lew
et al. (2014) used slow cortical potentials of the EEG
from fronto-parietal areas to predict self-paced movement
directions a few hundred milliseconds prior to movement
onset. Similarly, Hammon et al. (2008) inspected predictive
EEG features for planning target directions using a cue-based
paradigm.

In the field of BCI research, Maeder et al. (2012) studied a
motor imagery paradigm. The single-trial decoding performance
of left vs. right hand movement imagery tasks could be correlated
to the level of pre-trial alpha bandpower over the sensorimotor
cortices. Despite used offline, this neural marker would allow
for a predictive intervention in a closed loop. In their statistical
analysis, Yang et al. (2014) identified frontal alpha and beta
bandpower features which correlate with performance metrics
of a reaching task. Proceeding to single-trial methods, Meyer
et al. (2014) reported on data of six subjects, who performed
a hand positioning task. Their offline analysis revealed that the
normalized time-to-target could be predicted based on pre-cue
alpha-band activity of the EEG.

The state-of-the-art can be summed up as follows: In
the perception domain, several studies have established
single-trial performance prediction, partially even in closed-
loop applications. The situation is different for the motor
domain since only very few studies have investigated
subject-specific motor performance prediction in single-
trial upon a sufficiently large subject group. Closest to
all of these requirements is the study by Meyer et al.
(2014). Our research hypothesis builds exactly upon this
point. In the context of a hand force task, we propose
a generalized workflow which identifies subject-specific
predictive oscillatory EEG features evaluated on a single
trial basis.

First, by means of a simulated online analysis, an approach
to extract robust and meaningful EEG components is
developed. We evaluate, if the information contained in
selected components is able to partially explain the trial-by-
trial variation of SVIPT performance in a predictive fashion,
i.e., the pre-trial component is required to predict the outcome
of the upcoming trial. Second, the characteristics of the best
performance predictors are investigated by a group-level analysis.

2. MATERIALS AND METHODS

2.1. Hand Motor Paradigm
In the context of hand motor skill learning, Reis et al. (2009)
investigated the Sequential Visual Isometric Pinch Task (SVIPT),

which demands an isometric force control of thumb and
index finger. Interestingly, training-induced improvement of the
SVIPT generalizes well to other hand motor control tasks, even
though pinch grasp activities are rarely displayed during natural
behavior patterns. Compared to the original SVIPT setup, brain
activity is recorded using electroencephalogram (EEG) during a
training session for post-hoc offline analysis. The resulting SVIPT
setup follows the proposal in Meinel et al. (2015) and is sketched
in Figure 1.

Each SVIPT trial consists of three phases: a light blue
(inactive) cursor appears on the leftmost edge of the T0 field
(corresponding to zero force), while the user is touching the
sensor only slightly with his non-dominant left hand. The
appearance of the cursor indicates the start of the get-ready
phase, which corresponds to a waiting period with enhanced
attention level. Its duration is varied randomly between 2 and 3 s.
The transduction of force into cursor movements is deactivated
during the get-ready phase. Fixating the cursor, the user will
observe a distinct color change of the cursor from light to dark
blue. This go-cue indicates the beginning of the running phase, in
which the cursor position can be controlled by applying force to
the sensor. As force is transduced into horizontal cursor position,
increasing force will move the dark blue cursor to the rightmost
position, which is pre-calibrated at session start to represent
30% of the user’s maximum force. The user has been instructed
to navigate the cursor as quickly and accurately as possible,
in order to visit a sequence of target fields (T0, T1, and T2).
Overshoots of the cursor are to be avoided. The current target
field is visually indicated to the subject by a green shading (see
Figure 1). Reaching a target field, a dwell time of 200ms must
be fulfilled in order to achieve a successful hit of this target field.
Hit events are indicated visually by a switch of the target field
(another field is shaded in green), or by the end of the trial.
Trials were chosen randomly from two conditions, each with a
specific required target field sequence (T1-T0-T2-T0 or T2-T0-
T1-T0). A trial was finished by fulfilling the complete sequence
– skipping a target was not allowed. Trial duration is presented
visually as an immediate performance feedback during the pause
phase between trials.

2.2. Subjects and Ethics
Overall, 20 right-handed normally aged subjects (8 female,
average age: 53 years, std: 6 years) were recruited. The subject
group resembles the target group of first-stroke patients with
respect to age and gender (Ovbiagele and Nguyen-Huynh, 2011).
The term normally aged was chosen to indicate our selection
criteria: the participants did not have any known neurological or
psychological history and were probably healthy—even though
we can not exclude the possibility that some participants had a
history of unrecognized micro stroke events.

The offline study was approved by the Ethics Committee of the
University Medical Center Freiburg. Following the principles of
the Declaration of Helsinki, written informed consent was given
by subjects prior to participation. In one session of about 3–4 h
(including EEG setup and washing the hair), every participant
controlled the cursor with their left hand for 20 blocks of 20 trials
each.
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FIGURE 1 | Schematic setup of the EEG-tracked SVIPT. The subject applies force to a sensor using a pinch grasp. Force is transduced into positions of a

horizontally moving cursor. EEG activity is recorded before, during and after repeated trials.

2.3. SVIPT Performance Scores
SVIPT enables to capture single trial motor performance. Given a
high order motor control, the force profile F(t) of a single-trial is
characterized by a quick force ramp up upon the presentation of
the go-cue and the avoidance of overshoots. The requested speed-
accuracy trade-off can be translated into various performance
scores of the SVIPT task. In Tangermann et al. (2015), the
authors selected a set of scores, which describe the single-trial
performance:

• Reaction Time/RT: A quick response upon the go-cue is a
good start for a successful trial. The time interval between the
go-cue at time tgo and the time point tT0,exit , which indicates
the cursor leaving the starting field T0, is defined as reaction
time.

• Duration/DUR: Comparable to RT, a short time duration
from the go-cue at time tgo until the hit of the first target field
at time point thit characterizes a successful trial.

• Cursor Path Length/CPL: The total path length the cursor
is moved from the go-cue to the hit of the first target field is
described by the integral over the first temporal derivative of
the force profile F(t):

CPL ≡

∫ thit

tgo

|Ḟ(t)| dt′

• Integrated Squared Jerk/ISJ: The level of fine-granular motor
control is reflected in variations of the trajectory smoothness.
Therefore, jerk—defined as the third derivative of the force
profile—is expressed by the ISJ metric, which is defined as:

ISJ ≡

∫ thit

tgo

|
d3F(t)

dt3
|2 dt′

• Normalized Jerk/NJ: A unit-free variant of ISJ captures
smoothness variations. It is given by the normalized jerk:

NJ ≡

√

ISJ · DUR5

2 · CPL2

Since there are two conditions of target field sequences, a
standardization of the performance scores (except for RT) is
the prerequisite for pooling trials of both conditions. Therefore,
the extracted metrics of each condition were standardized (zero
mean and standard deviation one) prior to pooling. Except
RT, the metrics are defined with respect to some end point
(e.g., thit). Choosing this boundary represents a trade-off between
(a) harvesting a metric which is temporally close and thus related
to the get-ready interval (the interval before the go-cue), and (b)
including thorough information about the force trajectory of the
current trial. To balance the two conflicting goals, we chose the
hit of the first target field.

2.4. Data Acquisition and Preprocessing
During a single session, subjects were placed in a chair at 80 cm
distance from a 24-inch flat screen. EEG signals from 63 passive
Ag/AgCl electrodes (EasyCap) were recorded, which were placed
according to the extended 10–20 system. Impedances were kept
below 20 k�. All channels were referenced against the nose.
The signals were registered by multichannel EEG amplifiers
(BrainAmp DC, Brain Products) at a sampling rate of 1 kHz. An
analog lowpass filter of 250Hz was applied before digitization.
The signal of the force sensor was recorded by an additional
amplifier system (BrainAmp ExG, Brain Products).

For outlier identification, the offline preprocessing consisted
of high-pass filtering the raw EEG signals at 0.2Hz, low-pass
filtering at 48Hz and sub-sampling to 500Hz sample frequency.
Therefore, linear butterworth filters of 5th order were applied.
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For each trial and all 63 channels, an epoch of 2000ms duration
prior to the go-cue was extracted. In order to identify outlier
epochs, three rejection methods were applied. First, EEG epochs
violating a min-max threshold of 60µV on frontal channels were
excluded from further analysis. Second, a variance threshold on
single epochs and channels was applied to remove high-frequent
muscular artifacts. Therefore, the variance of single epochs needs
to be within Pup = 90th percentile and is not allowed to
exceed 2 · (Pup − Plow) with Plow = 10th percentile. Third,
epochs belonging to extreme trials, represented by outliers of
the motor performance metric, were removed. For this purpose,
the following min-max thresholds were defined based on earlier
pilot recordings (Meinel et al., 2015). The thresholds were [150,
900] ms for RT, [−1.5, 1.5] for ISJ, [−0.6, 0.6] for CPL, [−1.5,
2] for DUR, and [0, 1300] for NJ. They were applied prior to
further data analysis. The total number of trials Ne entering the
following offline analysis procedures varied across subjects and
performance metrics. Only for 2 out of 20 subjects less than
150 out of the original 400 epochs were remaining after the
EEG preprocessing. We discarded data of these subjects from the
following analysis. The frequency filtering for our main analysis
will subsequently be described in Section 2.6.

2.5. Single-Trial Performance Prediction
In the following, the multivariate variable x(t) ∈ R

Nc

characterizes the EEG signal recorded from Nc sensors. In
addition, s(t) defines the time course of a neural source. The
physics of volume conduction assumes a linear mapping of the
source space to the sensor space. The forward (or generative)
model thus reads :

x(t) = A s(t) (1)

where the matrix A ∈ R
Nc×M describes the projection of the M

sources to the EEG sensor space.
The main goal is to approximate the true neural source s(t)

by ŝ(t), whose power achieves the highest correlation with a
predefined external variable z(t), called target variable from this
point onwards. Several methods can be used to estimate such a
source, among them Blind Source Separation (BSS) and source
reconstruction techniques. BSS techniques rely solely on an
unsupervised framework, which may be a suboptimal approach
given the availability of labels in the form of the target variable
z. Source reconstruction techniques may provide a high level of
interpretability for the results directly in the source space, and
may describe non-stationarities in the data and other complex
dynamics (Castaño-Candamil et al., 2015b). However, there are
three potential drawbacks of source reconstruction approaches
(Grech et al., 2008): First, the estimation of ŝ(t) usually creates a
rather high computational burden. Second, the methods require
a forward model A for each individual subject, which may not
be available in most situations since it corresponds to the exact
anatomical description of a subject’s brain. Third, as source
reconstruction problems are intrinsically ill-posed, the quality of
an estimated source depends on additional assumptions, such as
the density of sources or their location within the brain.

An alternative to both, BSS and source localization approaches
is the family of the so-called supervised spatial-filtering

methods. One widely known approach is the Common
Spatial Patterns algorithm (CSP; Ramoser et al., 2000), which
searches for spatial filters that enhance the contrast between
two classes. Consequently, it is well suited for supervised
classification problems. A more recent approach, the Source
Power Comodulation algorithm (SPoC; Dähne et al., 2014) is
adequate for regression problems. As the five SVIPT metrics are
continuous variables, we preferred to include the SPoC algorithm
into our data analysis framework.

SPoC learns an optimal spatial filter wopt ∈ R
Nc×1 that allows

to estimate the source as ŝ(t) by projecting x(t) into a subspace,
which maximizes the correlation between the band power of ŝ(t)
and the target variable z(t):

ŝ(t) = wopt
⊤x(t) (2)

Without loss of generality, the objective function for SPoC may
be defined in terms of the epoched data x(e), where e refers
to the e-th epoch. Assuming that the EEG sensor signal has
been bandpass-filtered to a narrow frequency band and that the

norm of the spatial filter is constrained, e.g., Var[w⊤x(t)]
!
= 1,

the optimization problem can be solved by maximizing the
covariance:

wopt = argmax
w

{Cov[8x(e), z(e)]} ∀ e

s.t. Var[w⊤x(t)]
!
= 1

(3)

where 8x(e) = Var[ŝ](e). This formulation of the algorithm –
called SPoCλ – can be transformed into a generalized eigenvalue
problem and thus delivers a set of Nc spatial filtersW ∈ R

Nc×Nc .
In this paper, the SPoCλ algorithm is utilized which subsequently
will be abbreviated by the term SPoC.

Applying a SPoC filter wtr learned from training data xtr(t),
the method allows to estimate the target variable zest on novel,
unseen test data xte(t) on a single-trial basis by calculating the
bandpower of the narrowband subspace signal:

zest = Var[wtr
⊤xte(t)](e) (4)

Using this relation, we will focus on the prediction of single-
trial SVIPT performance using EEG activity within the get-ready
phase of the trial.

As Haufe et al. (2014) have been pointing out, there is an
existing forward model of the form of Equation (1) for every
backward model as in Equation (2). Thus, the corresponding
spatial activation patterns can be obtained from the spatial filters
W via the covariance matrix Cx of the data x(t) via:

A = CxW (5)

Note, that any subspace components resulting from the SPoC
analysis dependmainly on four hyperparameters. In the temporal
domain, two of them define the epoching interval [t0, t0 + 1t]
where t0 is the starting time relative to the go-cue and a duration
1t. In the frequency domain, the lower frequency f0 and the
band width 1f are the hyperparameters describing the band
[f0, f0 + 1f ] in which x(t) is bandpass-filtered.
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Even though simple regression of bandpower features on the
channel level does not fulfill the requirements of the assumed
forward model, we added this simple method for comparison
with SPoC. Therefore, channel-wise bandpower features of the
training and test set were calculated.

2.6. Selection Criteria for Informative
Oscillatory Components
Performing a grid search across subjects and SPoC parameters,
we restrict the evaluation to a fixed predictive time interval given
by t0 = −800ms prior to the go-cue and a window size of
1t = 750 ms.

As sketched in Figure 2, logarithmically increasing and
overlapping frequency bands ranging from ≈ 1–100Hz (55
configurations in total) were evaluated from the original non-
filtered signals. For bandpass filtering, linear butterworth filters
of 5th order were utilized. As a trial-wise target variable
z, the five different performance metrics introduced in
Section 2.3 were considered. Evaluating SPoC across the
complete study group of 18 subjects, using five different
motor performance metrics, sweeping through 55 discrete
frequency bands and selecting the highest-ranked components
(see details below) per configuration, results in more than
12,000 oscillatory components. In this section, we will
describe an offline selection strategy in order to identify
a subset of the most robust and informative oscillatory
components which qualify to predict single-trial motor
performance.

Upon each parameter configuration, a K = 5-fold
chronological cross-validation procedure was employed
upon the calculation of SPoC (Lemm et al., 2011). Only
trials were considered, which survived the data preprocessing
(see Section 2.4). From these, Ne EEG pre-trial epochs and
their corresponding target variable values z were extracted in
chronological order and split into 5 equally-sized folds. Thus,
4-folds served as training data while the remaining one was
used for validating the SPoC filter as described in Equation (4).
Since each fold served as test fold once, the estimated target
variable zest,j of fold j can be concatenated for all Ne epochs,
resulting in zest = [zest,j]j∈[1,K]. According to Equation (5),
on each fold j the corresponding test pattern is given as

FIGURE 2 | Frequency parameter configurations characterized by the

frequency f0 and the corresponding band width 1f. In total, 55

configurations were used for computing SPoC filters. The omitted points (gray

area) correspond to the power line frequency range.

aj = Cte,jwtr utilizing the covariance matrix Cte of the test data
xte(t).

The same cross-validation scheme was applied upon the
linear regression model. The whole parameter space of 3600
configurations was screened. Note, that this number is smaller
than the number of components delivered by SPoC analysis, since
the latter may deliver more than one component per parameter
configuration. The regression, which delivers a single component
per configuration only, was trained on the training data and
finally applied on test data such that an estimate zest was gained
on all N(e) trials which had survived the data preprocessing step.

For a given parameter set, SPoCλ returns a set of Nc filters.
As described in Tangermann et al. (2015), it is sufficient to take
only the first-ranked components into consideration1. For this
purpose, we applied a rank-based criterion. First, removed the
linear trend from the ordered set of Nc eigenvalues. A threshold
of 1.5·σ (r) relative to the standard deviation σ of the resultingNc

residuals r was defined.We restricted the investigation to positive
eigenvalues.

Given a single componentw, the following set of scores enable
to characterize its predictive strength and stability:

• Correlation characteristics:As a measure to verify the quality
of the predictive strength of a SPoC configuration, the overall
correlation of the Ne-many measured performance labels ztrue
with the corresponding predictions zest can be considered:

Rall = Corr[ztrue, zest] (6)

Similarly, the predictive strength in terms of single-trial
performance can also be verified by checking the mean of the
fold-wise correlations Rj = Corr[ztrue,j, zest,j], which rewards
temporally stable components:

Rfolds =
1

K

K
∑

j=1

Corr[ztrue,j, zest,j] (7)

The correlation based metrics Rall and Rfolds come closest to
the original optimization objective of the SPoC algorithm. If
the trained spatial filters model trial-to-trial fluctuations well,
Rall and Rfolds will report a large value, but only Rfolds allows to
discriminate between single-trial predictors and session-trend
models. Furthermore, a stable component requires that the
correlation of each fold j shares the same sign with Rall. Thus,
it is reasonable to require a high homogeneity Hfolds:

Hfolds =

K
∑

j=1

2(sign(Rall) · sign(Rj)), (8)

with 2(x) = 1 for x ≥ 0 and 2(x) = 0 for x < 0 representing
the unit-step function.

• Separability of estimated performance: Simulating the
trial-wise online application, the continuous prediction is
transferred into a two-class problem. Therefore, we split

1The components are sorted according to their eigenvalues. In case of SPoCλ, they
equal to the covariance between the bandpower features and the target variable.
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the Ne prediction values zest into two distributions (zest,h
and zest,l) based on the 50th percentiles of the true target
variable distribution from ztrue, thus representing high and
low performance. The separability of zest,h and zest,l can
be quantified by a statistical test. Here, the area under
the receiver-operating-characteristic curve (Fawcett, 2006) is
reported. It is denoted as z-AUC and has a chance level of 0.5.

• Stressing the stability: SPoC is a supervised method, which
uses label information to guide the spatial filter calculation.
Thus, the robustness of a resulting component can be stressed
by introducing label noise. The concept of a step-wise
reduction of the SNR of the labels has been introduced by
Castaño-Candamil et al. (2015a). Here, SNR levels were varied
from −20 dB to 10 dB by adding white noise. Applying SPoC,
we estimated the target variable zest for all Ne epochs using
5-fold cross-validation. At each SNR level, three sets of noisy
labels z were calculated. For each SNR level, the separability of
the resulting zest distribution is verified by the z-AUC value.
Regarding the z-AUC values as a function of the SNR, the
area under this curve—referred to as AAUCSNR—describes the
stability of the component.

To finally identify and select robust and predictive components,
we propose to apply three out of these five criteria in parallel. As
a prerequisite, the data set needs to consist of at least Ne = 150
trials in order to ensure the convergence of the SPoC algorithm
(see Dähne et al., 2014; Castaño-Candamil et al., 2015a):

1. The separability of the predicted performance zest can be
verified by the resulting z-AUC value. A corresponding
threshold z-AUCmin = 0.59 was determined according to the
85th percentile across all configurations.

2. The stability of the component is assessed by the AAUCSNR.
Here, a threshold AAUCmin = 0.18 was determined from the
85th percentile.

3. As an additional stability criterion, we require all fold-
wise correlations Rj to share equal sign as Rall such that
Hfolds,min = 5.

3. RESULTS

3.1. SVIPT Performance Metrics
Single-trial based SVIPT performance can be assessed by
different metrics, as described in Section 2.3. In Figure 3

examples of the trial-to-trial fluctuations of different metrics
are visualized for two subjects. The visualization covers the full
sessions, but omits trials removed during the preprocessing.
Figures 3A,D show the metric reaction time (RT) for two
subjects. It is not affected by a session trend. Its distribution
is slight asymmetric, which is caused by a physiological limit
for the minimal RT. The normalized jerk (NJ) in Figures 3C,F

behaves in a similar manner. It is affected only slightly by a global
trend, but shows a more skewed distribution compared to RT.
In contrast, integrated squared jerk (ISJ) depicted in Figure 3B,
and cursor path length (CPL) in Figure 3E both show a strong
session trend, which can be explained by the user learning (data
not shown here). A comparably strong session trend is present
also in the duration metric DUR (data not shown).

The cross-correlations between all five metrics and the shape
of their distributions were reported in Tangermann et al. (2015).
Metrics ISJ, CPL and DUR showed strong correlations to each
other, while RT as well as NJ both are rather independent from
the four other metrics.

FIGURE 3 | Examples of trial-wise variations of different performance metrics over a full session, and their distributions. (A–C) are taken from data of

subject S9, while (D–F) are from S13.
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3.2. Contrasting SPoC with Linear
Regression on Sensor Level
As a baseline comparison for the predictive power of SPoC
components, a linear regression model employing channel-wise
bandpower features was evaluated as described in Section 2.6.
The resulting distributions of the overall correlation Rall and the
performance separability z-AUC are reported in Figure 4. Across
all configurations, SPoC delivers a median correlation Rall,med =

0.07 and a separability of z-AUCmed = 0.54, while on average the
regression performs on chance level. While both methods come
up with components revealing z-AUC values above chance level,
those with the strongest predictive information are generated by
the SPoC method.

3.3. Single-Trial Motor Performance
Predictors
In Figure 5, five exemplary predictive and robust SPoC
components, gained from five different subjects are
characterized. Although SPoC components are computed
from band-pass filtered data, the resulting filter w (gained on all
available Ne trials) of a component can be re-applied to non-
frequency-filtered epoched data. This spectral content of a SPoC
component is shown in Figure 5A. The frequency band in which
the component was extracted from is indicated by the dashed
gray area. Using all available epochs, Figure 5B shows the spatial
activity pattern gained via Equation (5). In Figure 5C, the SPoC
filter weights on the 2D-scalp projection are shown. The scatter
plot in Figure 5D reports on the measured performance metric
ztrue as a function of the predicted performance zest according
to the CV scheme described in Equation (4). The data points
are colored by the fold index (1–5), which corresponds to the
temporal order of the session. Fold 1 represents the beginning
of the session, fold 5 its end. In addition, the overall correlation
Rall reports on the predictive strength of the component. The
distributions shown in Figure 5E illustrate the separability
of the single-trial performance values zest . For this purpose,

FIGURE 4 | Contrasting the predictive outcome of all 3600 tested

parameter configurations for linear regression (LinReg) and over

12,000 configurations for SPoC. In (A), the overall correlation Rall between

predicted and estimated target variable values is depicted. (B) Shows the

performance separability z-AUC. Gray lines indicate the median, boxes

enclose the 25th to 75th percentile. The whisker length is set to two

inter-quartile ranges.

the estimated labels zest have been reduced to the lower and
upper quartile. The corresponding true labels ztrue were used
to compute the quartiles Qlow,est and Qhigh,est and were fitted
by a kernel distribution (solid lines). In an ideal case, those
quartiles would converge toward the extreme quartiles (Qlow and
Qhigh) of ztrue, which are indicated by dashed lines. As a score of
their separability, the score z-AUC as described in Section 2.6 is
reported based on the 50th percentile.

The exemplary components in Figure 5 are selected across the
investigated frequency range depicted in Figure 2. The predictor
of S7 can be assigned to the theta band, those of S9 and S13
correspond to the alpha range, the component for S5 originates
from the beta range and the one of S8 was found in the gamma
range. Regarding the scatter plots, there are two different types of
patterns recognizable: single-trial predictors showing a confined
point cloud without a clear trend over time (all examples except
for S13), whereas the scatter plot of subject S13 shows a clear
trend over the course of the session. The separability plots
indicate that the predictive power of a single component nicely
matches with the z-AUC value.

3.4. Testing the Stability of SPoC
Components
The stability of an oscillatory component can be challenged by
varying the signal-to-noise ratio (SNR) of the target variable z.
In Figure 6, the z-AUC score is investigated as a function of
the SNR for two parameter configurations. Figure 6A shows a
stable component, where z-AUC is expected to decrease, while
for a non-informative component in Figure 6B the z-AUC can
be expected around the noise floor. Thus, the resulting area
under the z-AUC curve can be assessed as a tool for mapping
the stability of the subspace component under challenging
noise conditions. In Figure 6C, the distribution of this so-called
AAUCSNR is reported for all evaluated SPoC components across
all 18 subjects. The distribution of AAUCSNR values has its
median at 0.07 and is slightly skewed.

3.5. Identification of Robust and Predictive
Components
As described in Section 2.6, the first highest ranked components
of each parameter configuration have been evaluated, resulting
in about 12,000 different subspace components. In Figure 7, the
configurations are characterized by their stability under noise
(AAUCSNR), which is plotted in Figure 7A as a function of
the separability measure z-AUC, in Figure 7B as a function
homogeneity of the fold-wise sign of the correlation Hfolds

and in Figure 7C as a function of the overall correlation Rall.
A few observations can be made: First, the metrics are not
centered at zero. Second, based on all initial configurations
(blue data points), AAUCSNR correlates with the z-AUC as
well as with Rall. The largest AAUCSNR values are evoked
by the most homogeneous fold-wise correlation signs with
Hfolds ≥ 3.

The threshold criteria applied to select the best of the 12,000
subspace components are indicated by red dashed lines, and
red dots indicate the components finally selected. As shown in
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FIGURE 5 | Characterization of exemplary predictive SPoC features. Each component is characterized line-wise labeled by the used performance metric and

the rank according to the full-session filters. (A) Power spectrum of the component applied on non-bandpass filtered full data. The frequency band where the

component has been trained is marked by the dashed lines. Note that for the component of S8 a broader frequency range is visualized compared to the other

examples. (B) Spatial activity pattern. (C) Filter weights visualized. (D) Scatter plot between true labels ztrue and the predicted ones zest, color coded by the fold of the

chronological cross-validation. (E) To illustrate the separability of the prediction, the distribution of ztrue values has been split using the corresponding trials of the

upper and lower quartiles of zest, which resulted in Qlow,est and Qhigh,est. As a reference, the extreme quartiles Qlow and Qhigh of ztrue are also given (dashed curves).

In addition, the z-AUC value based on the 50th percentile split is reported.

Figure 8, the overall correlation Rall is strongly correlated with
the z-AUC metric, such that an additional threshold criterion on
Rall was not necessary. The most predictive components achieve
a correlation value of up to 0.6, corresponding to Rall

2 = 0.36.
Assuming a linear relationship between ztrue and zest as well as
normally distributed data, this means that zest can explain up to
36% of the performance variance contained in ztrue.

In Figure 9, all 361 selected components are characterized
by histograms in terms of their input parameters. Figure 9A
displays the subject-wise grouping. In total, 11 out of 18

subjects contribute at least one component, for three subjects
more than 50 configurations survive the selection procedure.
Figure 9B shows the histogram over the number of trials
available for the offline analysis. Note, that this histogram is
dominated by the best three subjects reported in Figure 9A, who
contributed a large number of the selected 361 configurations.
Figure 9C characterizes the selected components assigned to
their underlying frequency band [f0, f0+1f ] (see Figure 2). Most
components are gained from the alpha- and beta-band range.
Interestingly, robust features detected in the gamma band were
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FIGURE 6 | Stressing the stability of two exemplary SPoC components for two different parameter configurations (A,B). While stepwise decreasing the

SNR ratio (indicated by the red arrow), z-AUC-values (solid lines) describing the separability of the prediction are plotted together with standard deviations (dashed

lines). The area under the z-AUC curve—further on called AAUCSNR—describes the stability of the component under the challenge of added noise. (C) Shows the

histogram of all AAUCSNR scores evaluated for the considered parameter configurations.

FIGURE 7 | Characterizing the space of SPoC components by several metrics, which describe their stability and predictive information. The

SNR-challenged AAUCSNR is given as a function of the performance separability z-AUC (A), in relation to the homogeneity of the correlation sign Hfolds (B), and

dependent on the overall correlation Rall (C). Red data points describe the selected SPoC components after applying thresholds (dashed red lines).

dominantly selected for their ability to predict CPL. The slow
frequency (<4 Hz) components are dominated by artifactual
subspaces. Figure 9D reports on the occurrences of the different
performance metrics among the selected components. Most
components could be extracted for RT (61%), followed by CPL
(16%) while all other metrics contribute almost equally well
with 6–8% of the selected components. Figure 9E provides an
overview over the SPoC ranks of the surviving components.
The rank ordering corresponds to the eigenvalue ordering of
the complete data set. As the number of selected components
drop with increased rank, the ranking is associated with the
information content of the subspace component.

SPoC as a linear filtering method allows for a limited
neurophysiological interpretation of spatial activity patterns.
A representative subset of typical scalp topographies from
the selected stable and informative subspaces are plotted in
Figure 10. The components were assigned to three groups. About
70% of components fall into group G1, which comprises patterns
ranging from activations in occipital, to central or frontal areas.
The maximum activity of those components often is found
over one of the hemispheres. About 10% of the components

fall in group G2. They show patterns of probable non-neural
sources and may represent e.g., eye artifacts, muscular activity or
single noisy channels. Group G3 comprises noisy topographies.
As indicated by patterns in the intersection area of the three
groups, mixed components were observed as well. The detailed
parameter configurations of each of the plotted components is
listed in Table 1.

4. DISCUSSION

We hypothesized that subject-specific pre-trial brain signals
contain information which allows to partially explain and
temporally predict the trial-by-trial variability of the upcoming
motor performance in SVIPT. To test the hypothesis, we
developed a workflow which is capable to extract informative
oscillatory EEG subspace components and to identify the most
robust ones. Simulating an online application, our analysis
revealed strong evidence that the band power of the selected
components is predictive for the single-trial SVIPT performance.
Major findings were that these components indeed exist, but need
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to be optimized for individual users. With 11 out of 18, not all,
but a majority of the subjects revealed the desired informative
features.

In the following we will first discuss the decision to utilize
SPoC instead of other alternative analysis methods. In this
context, the proposed selection procedure and the stability of
SPoC components over time is discussed, with a special focus
onto the role of SNR, frequency and the illiteracy phenomenon.
In addition, the detected components will be related to existing
literature and characterized on a group-level with respect to
the covered frequency bands, sub-processes reflected by the
components and the time courses revealed. Before concluding,
we will describe a neuroergonomically enhanced rehabilitation
paradigm as a possible use case of our contribution.

4.1. SPoC and its Alternatives
Designing the data analysis workflow, we built upon our
background in BCI. Accordingly, we carefully selected

FIGURE 8 | Relation between separability metric z-AUC and the overall

correlation Rall for all SPoC configurations (blue dots) and the selected

ones (red dots). The dashed red line indicates the threshold z-AUCmin

applied to select most informative components. The red bars indicate the

distribution of Rall values for the selected components.

algorithmic building blocks only, if they can be applied in
single-trial analysis [e.g., the application of the spatial SPoC filter
according to Equation (4)]. This decision should simplify the
translation of the presented workflow to closed-loop experiments
in the future. The choice of the supervised SPoC algorithm for
extracting informative components is supported by its good
performance compared to a supervised linear regression of
bandpower features on the sensor level (see Section 3.2). This
is in accordance with findings of Dähne et al. (2014). On data
from an auditory steady-state evoked potential paradigm, these
authors reported better results for SPoC compared to both,
linear regression and an unsupervised subspace decomposition
using independent component analysis (ICA). SPoC does
not reconstruct sources of the brain, but instead performs a
supervised subspace decomposition. Thus, a SPoC subspace
component can not be expected to correspond to a single
physical source or even a dipole source (even though such SPoC
components are possible). Theoretically even several spread-out
brain areas may contribute to a single SPoC component, if they
share oscillatory activity which co-varies over time with the
labels. The choice between SPoC and source reconstruction
approaches (Gonzalez Andino et al., 2005) represents a trade-
off—while the latter may facilitate the interpretation of results,
SPoC components avoid several of the drawbacks mentioned in
Section 2.5. As our workflow was aligned in terms of applicability
for single-trial online paradigms, our decision was biased toward
SPoC.

4.2. Selection Criteria for Robust and
Predictive Components
Over-fitting is a general issue for supervised methods and for
SPoC in particular, as no form of regularization was applied. This
requires some form of post-hoc selection of SPoC components.
The situation is aggravated, as SPoC returns full rank filter
matrices, which result in a very large numbers of subspaces.
However, only a fraction of these can be expected to be
informative about the labels. As robustness over time as well
as with respect to label noise are important criteria for the
potential closed-loop applicability of a component, a single
selection criterion (e.g., a threshold on the correlation value) is
not sufficient. By that, we selected three criteria (see Section 2.6),
which suited best these requirements. Out of the initial five
selection criteria, the two scores Rall and Rfolds turned out to

FIGURE 9 | Histograms of different parameters solely for the selected SPoC components. (A) Shows the assignment over the 18 subjects. (B) Gives the

allocation over data set sizes Ne (with a lower limit of 150 trials). (C) Visualizes the distribution across frequency bands. (D) Depicts the spread of components over

the five utilized motor performance metrics, while (E) shows the split according to their SPoC rank positions.
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FIGURE 10 | Overview over typical activity patterns resulting from the selected components, grouped in three categories: G1 consists of components

with neural origin, G2 comprises artifact-related subspaces and G3 captures non-informative components. Details on their parameter configurations are given in

Table 1.

TABLE 1 | Parameter configurations for components of groups G1, G2 and G3 as visualized in Figure 10.

G1 G2 G3

Comp. no. Subject f0 [Hz] Metric Rank Subject f0 [Hz] Metric Rank Subject f0 [Hz] Metric Rank

1 S13 7.9 NJ 2 S14 1.0 RT 2 S12 27.5 ISJ 1

2 S9 8.7 ISJ 3 S11 27.5 ISJ 1 S10 20.3 RT 1

3 S13 7.9 RT 3 S10 5.0 DUR 1 S9 8.7 ISJ 1

4 S13 8.7 NJ 2 S9 39.0 DUR 2 S15 19.2 CPL 1

5 S10 15.3 RT 6 S10 3.7 RT 3 S10 74.4 NJ 2

6 S5 30.4 RT 3

7 S9 14.4 RT 5

8 S9 10.2 ISJ 4

9 S9 18.2 DUR 1

10 S8 77.4 CPL 4

11 S13 74.4 CPL 1

be beneficial for characterizing the extracted components. Thus,
they were omitted for the selection process, since a strong
correlation between z-AUC and Rall was observed (see Figure 8).
The same holds for the correlation between z-AUC and Rfolds (not
shown).

An alternative to the current selection procedure would be
to relax the thresholds and combine it with additional methods
to judge the plausibility of the remaining components post-
hoc. For ICA components, workflows have been proposed, such
as MARA, an automatic classification of artifactual components
by Winkler et al. (2014). MARA uses features based on
topology, time-frequency analysis and source reconstruction.
Similar approaches have been proposed by Daly et al. (2015)
and Grosse-Wentrup et al. (2013).

4.3. Influence of SNR on SPoC
Components
By applying rather strict selection criteria, weaker but still
informative components may have been removed. As a result,

the data of some subjects did not reveal informative pre-
go oscillatory components. Reasons may be a lower SNR of
their data, which hides potential informative content from
the SPoC analysis, especially in combination with the limited
number of trials used. The work of Castaño-Candamil et al.
(2015a) on robustness testing of SPoC components backs
this interpretation. In this case, future improvements may be
expected by regularization techniques introduced to SPoC, a
reduction of the dimensionality prior to applying SPoC, using
more data or from transfer learning approaches. However, we
can not exclude that informative oscillatory components may
not be visible to the EEG or may be absent in some subjects.
This problem has been described as BCI “illiteracy." It has
predominantly been studied in the context of motor imagery
paradigms for the control of BCI applications (Hammer et al.,
2012), where decoding the imagery class usually is not possible
for a subset of subjects. The BCI illiteracy problem was tackled
by novel experimental setups like hybrid BCI paradigms (Allison
et al., 2012; Müller-Putz et al., 2015), but could also be alleviated
by more advanced decoding methods (Sannelli et al., 2010).
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FIGURE 11 | Relation between SPoC rank stability and pattern homogeneity over five cross-validation folds (chronological order). (A) Stationary case:

component is first-ranked across all five folds (data of subject S9, f = [9.4,11] Hz, RT). (B) Rank switching: Two almost stable components switch rank positions

between folds (S5, f = [27.5,30.3] Hz, RT). Lines connect the corresponding topologies. (C) Intensity variation: intensity of first-ranked component decreases over

time folds (S13, f = [13.6,15.3] Hz, CPL).

4.4. Rank Stability of SPoC Components
over Time
In Section 4.3, the relation between SPoC solutions and the
SNR of the data has been touched. As SPoC ranks the detected
components according to their covariance values, solutions
may seem unstable when only the first-ranked component
is considered. In real-life data sets, variation of the SNR
over time can induce rank switches or mixed components.
Tracking a component over multiple runs of the subspace
decomposition method is a challenging task, especially as
mixtures theoretically can not be distinguished from a single
source. However, as similar problems arise for online learning
of blind source separation methods like ICA, practical solutions
are available (Hsu et al., 2015). Figure 11 gives examples of
stable, stationary components (Figure 11A) and of unstable
SPoC components (Figures 11B,C), both observed over the five
chronological cross-validation folds. Instable components may
be evoked if the stationarity assumption of SPoC is violated
e.g., by slow temporal intensity variations due to user learning.
For Figure 11B, arrows indicate a possible path through rank
positions across folds by connecting corresponding components.
Please observe, that SPoC generates cases with even severe
variation between folds as those depicted in Figures 11B,C.
However, such components typically have been removed during
the selection process. While mixed, yet stable components may
be hard to interpret, they can still be useful for predicting the task
performance.

We have observed a high sensitivity of SPoC for small
differences in the frequency parameters. Seemingly unstable
components which display rank switching behavior (see
Figure 12 at 8.7Hz) can sometimes be stabilized by slightly
changing the frequency, e.g., to 9.4Hz in this example. Further

increase of the frequency to 10.2Hz again induces instability in
this example.

4.5. Characterization of Informative SPoC
Components and Sub-Processes
The proposed SPoC workflow delivers a diverse set of oscillatory
components, which vary in their topological patterns as well as
in their underlying frequency band. This is not surprising, since
SVIPT requires the interaction of several cognitive sub-processes
in order to reach a good overall performance. For each sub-
process, one or more specific neural features may exist, with all of
them being informative about the overall outcome of the complex
task.

The best components differ between subjects and
predominantly occur in the alpha band, followed by beta
and gamma band. Our findings are supported by informative
features in the alpha and beta-range observed during pre-
movement intervals of a hand grasping task (Zaepffel et al.,
2013; Meyer et al., 2014; Yang et al., 2014). Furthermore, the
informative frequency ranges for SVIPT are comparable to
those reported for attention related tasks (Gonzalez Andino
et al., 2005; Hoogenboom et al., 2010; van Ede et al., 2012).
We obtained best results when using RT as a performance
metric, which supports our earlier findings on disjunct data from
younger subjects (Castaño-Candamil et al., 2015c; Meinel et al.,
2015). RT of course does not automatically lead to a successful
trial, but it can be seen as an indicator for a quick ramp-up phase
and alertness. For fewer users, presumably those with highest
SNR characteristics, informative oscillatory features could be
identified for other performance metrics of the force task, too.

Comparing the topological plots of group G1 in Figure 10

with those reported in literature, it can be observed that many
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FIGURE 12 | Influence of the frequency band upon the rank stability. While stable at f0 = 9.4 Hz, a component develops rank instability with slight

increase/decrease of its frequency band (data of subject S9).

of them resemble patterns emerging for motor imagery tasks in
BCI (Krauledat et al., 2008). These often display a clear maximum
of activity in channels located over one of the sensorimotor
areas (cp. pattern 5 of G1 in Figure 10 and the pattern of S5 in
Figure 5) or are located centrally over both hemispheres. While
similarity of patterns are by no way a proof for an origin of these
oscillatory components in the sensorimotor cortices, the hand
force action required to succeed in the SVIPT task would allow
for such components.

Other components show a maximum intensity over parietal
and occipital areas and may reflect the involvement of the visual
system in the SVIPT task. Pattern 2 of Figure 10 and patterns in
Figure 11A display a lateralization similar to patterns reported
for directed and covert visual attention processes (Hanslmayr
et al., 2007; Horschig et al., 2014a). Components with a centrally
located maximum (cp. pattern 1 of Figure 10 or the pattern of
S9 in Figure 5), or with double wing shapes (e.g., pattern 3 of
Figure 10) resemble components reported for generalized visual
attention processes (van Dijk et al., 2008; Meyer et al., 2014).
Again,most of these rather clear patterns originate from the alpha
frequency band.

While the relevance of several of the selected components
cannot be fully interpreted, we do consider these features as
added value for neurologists, e.g., by tracking the power time
course over sessions for a subject-specific component. Further
insight into underlying sub-processes and participating brain
areas may be obtained from a post-hoc source reconstruction
applied upon single SPoC subspaces.

4.6. Behavioral Variability on Different Time
Scales
Independent of the choice of the exact motor task, subjects
generally display two types of performance variations
(Chaisanguanthum et al., 2014). First, a large trial-to-trial

FIGURE 13 | The identification of session trends vs. single-trial

variations of performance is possible by localizing a predictor’s

characteristic with respect to two selection criteria. The scatter plot

visualizes AAUCSNR as a function of the mean correlation value across folds

Rfolds for all configurations (light blue) and the selected ones only (red). Two

classes of predictors can be identified: single-trial predictors showing a high

Rfolds value while session-trend predictors show a very low Rfolds value.

performance variability is observed from behavioral data.
Second, slow performance drifts can occur over the course of
a session. Accordingly, SPoC can deliver components, which
reflect either one of the two types of performance variations.
To tell them apart, a comparison between Rall and Rfolds is
helpful. High values for Rall, but low for Rfolds indicate a session
trend. If both are high, then the component is informative for
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trial-by-trial variation (see single-trial predictors and session trend
predictors in Figure 13 as well as the examples given in Figure 5).

For the purpose of brain-state-informed closed-loop
experimenting, single-trial predictors may be more suitable.
Session trend predictors, however, may still be useful for pre-
cleaning the performance labels. While session trend predictors
may reflect an increasing fatigue or a learning effect, it is
much harder to determine underlying mechanisms, which
cause the rapidly changing trial-to-trial performance of the
single-trial predictors (Wu et al., 2014; Hadjiosif and Smith,
2015; Osu et al., 2015). However, our identified components
reveal strong evidence that the pre-trial brain activity is
partially informative about trail-by-trial variability of motor
performance. This in accordance with Churchland et al. (2006)
who reported on monkey experiments that at least 30% of
behavioral variability could be explained by the fluctuations
of preparatory neural activity in the dorsal premotor cortex.
However, Chaisanguanthum et al. (2014) stated only a weak
relationship between motor cortex activity (PMd/M1) in
monkeys and trial-wise fluctuations of behavior.

4.7. Closed-Loop Experimenting as
Neuroergonomical Application
The predictive EEG features are extracted from a pre-go
interval of each trial. Our pipeline carefully simulated an online
scenario, but this approximation of course can not replace
the evaluation within a future online study. However, the
informative trial-by-trial performance predictors may serve to
enhance the neureorgonomical needs of motor rehabilitation
scenarios. Since motor performance variability was reported
to become larger for stroke patients (Lodha et al., 2010),
applying identified patient-specific components within brain-
state dependent closed-loop experimenting may enable to
causally influence their performance e.g., by manipulating
difficulty levels in motor rehabilitation paradigms. So far, BCI
methods in stroke rehabilitation (Ang and Guan, 2013) have
been used to detect the attempted movement of the affected
hand by analyzing informative ERD/ERS features of the EEG
and subsequently close the feedback loop for the patient either
by triggering a simulated hand movement on a screen (Pichiorri
et al., 2015) or by triggering a passive movement of the
affected hand, e.g., via an external robotic device or an active
orthesis (Ramos-Murguialday et al., 2013).

When implemented in future closed-loop applications, it
may be worth to combine SPoC features across multiple

frequency bands e.g., by a regression approach. This might
allow for enhancing the trial-wise performance prediction, in
case the information contained in different frequency bands is
independent. Similarly, the combination of predictors based on
different performance metrics might serve to gain an enhanced
performance estimate.

5. CONCLUSION

In summary, we have shown that the proposed workflow is
a suitable basis to identify subject-specific single-trial based
neural markers which are predictive for the performance of
an upcoming motor task. Those predictors may be valuable
building blocks for neuroergonomic applications since they are
informative about the status of the visual subsystem as well as
the sub-processes involved in hand motor control. Moreover,
exploiting those features in future closed-loop experimenting,
e.g., by temporal gating of upcoming trials, they will allow for
brain-state-informed rehabilitation paradigms. Furthermore, the
group-level analysis motivated to utilize our workflow to gain
a better understanding of trial-to-trial variations of cognitive
sub-processes, which are relevant for a successful rehabilitation
outcome.
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