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Spontaneous brain activity has received increasing attention as demonstrated by
the exponential rise in the number of published article on this topic over the last
30 years. Such “intrinsic” brain activity, generated in the absence of an explicit task,
is frequently associated with resting-state or default-mode networks (DMN)s. The focus
on characterizing spontaneous brain activity promises to shed new light on questions
concerning the structural and functional architecture of the brain and how they are
related to “mind”. However, many critical questions have yet to be addressed. In this
review, we focus on a scarcely explored area, specifically the energetic requirements
and constraints of spontaneous activity, taking into account both thermodynamical and
informational perspectives. We argue that the “classical” definitions of spontaneous
activity do not take into account an important feature, that is, the critical thermodynamic
energetic differences between spontaneous and evoked brain activity. Spontaneous
brain activity is associated with slower oscillations compared with evoked, task-related
activity, hence it exhibits lower levels of enthalpy and “free-energy” (i.e., the energy that
can be converted to do work), thus supporting noteworthy thermodynamic energetic
differences between spontaneous and evoked brain activity. Increased spike frequency
during evoked activity has a significant metabolic cost, consequently, brain functions
traditionally associated with spontaneous activity, such as mind wandering, require less
energy that other nervous activities. We also review recent empirical observations in
neuroscience, in order to capture how spontaneous brain dynamics and mental function
can be embedded in a non-linear dynamical framework, which considers nervous
activity in terms of phase spaces, particle trajectories, random walks, attractors and/or
paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to
the realm of “variational free-energy”, a theoretical construct pertaining to probability
and information theory which allows explanation of unexplored features of spontaneous
brain activity.
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INTRODUCTION

Neural oscillations are observed throughout the central nervous system (CNS) and at all
levels. Here we are specifically concerned with ‘‘spontaneous brain activity’’, that is brain
activity generated in the absence of an explicit task and frequently correlated with ‘‘resting-
state or default-network activity’’ (Raichle et al., 2001). Much of what is known concerning
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the intersection of brain anatomy and function comes from
functional magnetic resonance imaging (fMRI) studies that
highlight task-evoked responses. In general, fMRI studies
focus on changes in the blood oxygenation level-dependent
(BOLD) signal, which is induced by the neural response to an
externally controlled stimulus/task (Damoiseaux et al., 2006).
These experiments, as well as those employing a variety of
other techniques, encourage the view that two different types of
neuronal activity drive brain function: evoked and spontaneous.
However, such an approach ignores an alternative possibility:
that the brain’s operations are primarily spontaneous and involve
the acquisition and maintenance of information (Raichle, 2010;
Barrett and Simmons, 2015). Multiple techniques, such as fMRI,
electroencephalography (EEG) and magnetoencephalography
(MEG), show that spontaneous, low-frequency fluctuations of
cerebral activity, which cannot be attributed to the experimental
design or other explicit input or output (Fox and Raichle,
2007), are temporally coherent within distributed, spatially
independent, functional networks, and resemble those evoked
by sensory, motor, and cognitive paradigms (de Pasquale and
Marzetti, 2014). Spontaneous activity of the brain, first formally
characterized 30 years ago, has received growing attention, as
witnessed by the ever-increasing number of articles dedicated to
this topic (Fox and Raichle, 2007; Buckner et al., 2008). Although
sceptical researchers hold that BOLD signals mainly originate
from cerebral blood flow (Tong and Frederick, 2010), it is widely
believed that spontaneous signals are best correlated with spikes
in the range of slow cortical potentials (Raichle et al., 2001).
Indeed, spontaneous fluctuations have not only been observed in
electric activity, but also in various hemodynamic and metabolic
parameters, including spontaneous fluctuations in themembrane
potential, spontaneous spikes and neurotransmitter release
(O’Donnell and van Rossum, 2014). Multiple observations
have documented the finding that fluctuations in spontaneous
neurotransmitter release show a 1/f frequency distribution,
similar to that of BOLD. Recent reports also suggest that
such spontaneous neurotransmission release events have an
autonomous role in intra-neuronal communication—as well as
in the regulation of synaptic plasticity and homeostasis—distinct
from that of evoked release and independent of presynaptic
action potentials (Kavalali, 2015). Such findings highlight the
realization that spontaneous brain activity has a vital functional
role, is produced at all levels of the brain, and can, with
the appropriate analytic and theoretical approaches provide
unparalleled insights into dynamic brain function.

This review comprises five sections in which we hope
to address this rapidly expanding area of research. The
first section highlights the conceptual view that spontaneous
fluctuations are the basic, standard architecture, not just of
functional, but also of anatomical brain organization. Section
two describes the high energetic requirements of the brain, but
also emphasizes the fact that ‘‘spontaneous activity’’ requires
less energy than ‘‘evoked activity’’. Starting from such an
assumption, the following section aims to explain spontaneous
activity using the framework of ‘‘energetic landscapes’’ and
complex, nonlinear systems. Section four reviews the most
recent experimental studies, which have explored the link

between spontaneous brain activity and psychological states.
The fifth section, starting from the ubiquitous phenomenon
of power laws and its correlations, provides an overview of
one of the most successful general brain frameworks, Friston’s
(2010) ‘‘Free Energy Principle’’, in order to explore the power
of this theory to explain the role of spontaneous brain
activity.

SPONTANEOUS ACTIVITY IS THE
INTRINSIC ARCHITECTURE OF BRAIN
ORGANIZATION

It is clear that spontaneous brain activity cannot be simply
reduced to ‘‘background noise’’ uncorrelated to the system
response, rather it occurs during unconstrained ‘‘resting states’’;
that is, in subjects who are lying quietly with eyes closed,
or while fixating on a target, but with no explicit task
instruction, directed to think of nothing in particular, but
importantly, awake. Spontaneous signals detected and recorded
by fMRI, EEG or MEG support the hypothesis that spontaneous
fluctuations constitute the basic architecture of functional brain
organization (Cole et al., 2014). Spontaneous cortical electric
activity is already present in the foetus by the 34th week of
gestation (Krueger and Garvan, 2014); the brain spontaneously
pulsates during the fatal period, in the same manner as the
heart spontaneously contracts. It has also been demonstrated
that spontaneous fluctuations are more frequently observed
in immature synapses as compared to those that are more
mature (Kavalali et al., 2011). In addition, the vertebrate spinal
cord and brainstem possess central pattern generator (CPG)
circuits, which can produce meaningful functional output in
the absence of sensory inputs. Neocortical circuits could be
regarded as particularly plastic types of CPGs, as they have
rich spontaneous dynamics that are powerfully modulated or
engaged by sensory inputs, but can also generate output in their
absence (Yuste et al., 2005). Recent results also demonstrate that
gamma-band activity in the alert monkey is largely an emergent
property of cortex, arising from the resting state waves (Bastos
et al., 2014). These fluctuations in cortical excitability exert
a remarkable effect on other elements of the field potential’s
activity, as well as on the spiking activity of neurons. In
fact, this ‘‘coupling’’ or nesting of many spikes subserves an
important coordinating role and provides a logical structure
for the integration of functional activity (Buszáki, 2006). In
sum, spontaneous fluctuations appear to represent the standard
architecture of the nervous system’s functional organization
(Cole et al., 2014), have a critical functional role, are produced
by brain circuits and provide a window into their dynamic
operations.

Spontaneous activity has been shown to correlate with
brain function, as well as with precise anatomical structures.
Analyses of spontaneous fluctuations within fMRI signals
have identified a number of large-scale intrinsic networks,
that is, regions with similar functionality and synchronous
activity, which tend to be dynamically correlated in their
spontaneous BOLD activity. Current data support the hypothesis
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that resting state networks have long-term stability, but in
very flexible configurations (Gonzalez-Castillo et al., 2014).
Among the networks exhibiting coherent fluctuations
in spontaneous activity during rest, the ‘‘default-mode
network’’ (DMN) is of particular interest. The DMN includes
functionally and structurally connected regions that show
high metabolic activity and blood flow at rest, but deactivate
when specific goal-directed behavior or cognition is needed
(Raichle et al., 2001). Despite recent, still controversial claims
(Vatansever et al., 2015), a feature of the DMN is the inverse
relationship of its neuronal activity with another intrinsic
network, namely the ‘‘attentional network’’. The attentional
network is activated during externally-directed cognition
and is engaged during cognitive tasks that require focused
attention; importantly, it is deactivated during internally-
directed cognition, whereas the opposite is true of the
DMN.

ENERGETIC REQUIREMENTS OF
SPONTANEOUS ACTIVITY

The brain’s energy consumption follows the traditional
thermodynamic formula:

E = G+ TS

where, E is the enthalpy, G is the free-energy, T is the
temperature and S is the thermodynamic entropy. Note
that the formula, contrary to our simplified account, does
not talk about absolute values, but of their variation. In
simpler words, enthalpy represents the ‘‘fuel’’ coming into
the brain. Enthalpy grossly corresponds to the sum of
the ‘‘useful’’ or ‘‘free-energy’’ (i.e., the energy that can
be converted to do work) and energy dissipation (e.g.,
entropy).

The brain represents 2% of the human body mass yet it
accounts for about 20% of total energy consumed (corresponding
to the enthalpy E), a very substantial proportion by any
measure (Raichle et al., 2001; Fox and Raichle, 2007). The
metabolic activity of the brain, influenced by a balance
between the energy costs incurred by its operation and the
benefits realized by energy expenditure, is therefore high and
remarkably constant over time (Sengupta et al., 2013). Why
does the brain consume such remarkable amounts of enthalpy,
despite the fact that evolution is geared toward minimizing
very high metabolic costs? Almost 20–60% of the enthalpy
allocated for the brain is used to support the specific metabolic
rate of the cortical gray matter, primarily the restoration
of transmembrane potentials, and for neuronal signaling
purposes—e.g., action potentials and synapses (Sengupta et al.,
2013). Although the brain as a whole consumes large amounts
of enthalpy, there are important differences between the
total energy required for spontaneous vs. evoked neural
activity. Evoked activity (i.e., perceptual and motor activity,
task performance and similar cognitive functions), requires
an additional energy consumption of ∼5%, as compared
with spontaneous activity. This is due to local increases in
spike frequency (in particular beta and gamma waves) during

evoked activity, which causes a transitory increase of energy
consumption and free-energy production. A key point here
is that increased spike frequency during evoked activity has
a significant metabolic cost, specifically 6.5 µmol/ATP/gr/min
for each additional spike, with an ATP consumption higher
than the ‘‘typical’’ mean rate at 4 Hz (which is 3.29 × 109

molecules of ATP/neuron/s; Attwell and Laughlin, 2001). These
observations strongly suggest that, although spontaneous brain
activity consumes a significant proportion of the brain’s vast
energy budget (the enthalpy used by various neuronal processes
produces an average of about four spikes/s), that amount
is appreciably less than the more energy-intensive evoked
activity (Attwell and Laughlin, 2001; Sengupta et al., 2013),
Thus, it is clear that spontaneous brain activity exhibits a
lower energetic level as compared with evoked activity. In
sum, the fact that spontaneous brain energy has a lower
energy level than evoked activity is clear in terms of spikes.
Indeed, we know that each spike has a certain consumption
of ATP. Each spike is formed by an oscillation, equipped
with both amplitude and frequency. For Ohm’s law, energy
consumption due to the AMPLITUDE of the oscillation is
negligible as compared with energy consumption due to the
FREQUENCY of the oscillation. This means that evoked
activity, equipped with a mean frequency of spikes higher
than spontaneous activity, expends more energy, both in terms
of enthalpy and free-energy. In the following sections, this
noteworthy statement allows us to analyze how the complexity
of such an adaptive system is best understood as a ‘‘dynamic
network’’ that aims to decrease its free-energy via entropy
transfer.

UNDER SPONTANEOUS ACTIVITY, THE
BRAIN EXHIBITS COMPLEX DYNAMICS

Recent models of nervous activity are starting to incorporate the
complexity of adaptive evolving systems as dynamic relationship
networks (Fraiman and Chialvo, 2012). Indeed, brain function
can be analyzed not only through old-fashioned cause/effect,
linear paradigms typical of deterministic systems, but in other,
more promising ways. The concept of a nonlinear brain needs
to be framed into the energy landscape theory, a concept built
for assessment of potential surfaces in proteins (Bryngelson
and Wolynes, 1987; Tozzi et al., 2016). In such a framework,
the brain stands for a ‘‘phase space’’, an abstract space where
particle trajectories travel. In line with recent ‘‘nonlinear’’
neuronal theories (Friston and Ao, 2012), each brain function
can be mathematically treated as a particle that crosses abstract,
functional landscapes made of energy valleys, peaks and basins.
Whirlpools (called attractors) are located within these landscapes
and correspond to low-energy basins, which transport the
particles (Watanabe et al., 2014). The particle movements occur
through transitory, erratic, stochastic processes (called ‘‘random
walks’’), giving rise to self-organized, self-assembled and self-
sustained structures (Bak et al., 1987; Strogatz, 2001; Vuksanovic
and Hövel, 2014). Such nonlinear techniques are able to predict
the evolution of trajectories in time; for each of the cycles
around the attractor, there is a characteristic nonlinear scaling
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law (Newman, 2005) that governs the amplitude and period of
the orbit and that can be quantified via differential equations.
Among the several models described in the literature, the fixed-
point attractor—a funnel-like location in phase space where
trajectories converge as time progresses, following the shortest
path—is suggested by recent articles (Sengupta et al., 2016;
Tozzi et al., 2016). However, several alternative neuronal models
to fixed-point attractors have been proposed: for example,
it has been suggested that brain function exhibits a stable
sequence, called transient heteroclinic channel (Afraimovich
et al., 2013) and that, at least during spontaneous brain
activity, the brain might display a functional torus (Tozzi and
Peters, 2016). Further, concepts like communication-through-
coherence (Fries, 2005; Deco and Jirsa, 2012) must also be taken
into account.

Apart from nonlinearity, brain activity retains the
characteristics of a complex system with non-equilibrium
dynamics. This means that a large number of interacting and
inter-dependent components exhibit emergent properties (i.e.,
properties that cannot be found at the micro-level state of
organization, but are typical of the macro-level state). Changes
propagate through interlinked levels, inducing connectivity
and interaction at all scales of the brain system. Thus cognitive
processes become observable products of the underlying
dynamical system, with macroscopic features emerging from
the sum of high fluctuating elements. Accordingly, behavior
emerges as a macroscopic property from the renormalization of
microscopic brain events (Papo, 2014).

It has also been proposed that the brain operates near
criticality (Beggs and Timme, 2012) at the edge of chaos. That
is, it works within a narrow window between randomness
and regularity, forming a functional regime where information
processing occurs as rapidly as possible (Tognoli and Kelso,
2014). It has been suggested that the brain exists near a
second-order phase transition (Afraimovich et al., 2013), a
state characterized by peculiar dynamical features—such as the
universal power laws described in the next paragraphs. Claims of
brain criticality are still quite controversial (Beggs and Timme,
2012). For example, Priesemann et al. (2014) suggest that neural
activity does not reflect a self-organized critical state, but a
slightly sub-critical regime. Other researchers suggest that brain
function does not exhibit erratic brain dynamics nor attractors,
but rather exhibits a stable sequence (Afraimovich et al., 2013).

Another possibility is that the brain could be in phase
transition during spontaneous activity, but be out-of-phase
during evoked activity (i.e., while processing stimuli coming
from the external world). Indeed, under spontaneous conditions,
the CNS displays the slow dynamics associated with low free
energy (Papo, 2014). This suggests that spontaneous brain
activity might lie at the bottom of the energy landscapes’ deep
basins, in steep valleys where the free energy is (relatively)
lower, as compared with the peaks. In such valleys, various
dynamical phenomena might counteract the dissipation of brain
energy. In particular, attractors could contribute to slowing
the loss of energy and decreasing the entropy production
typical of random systems (Gaspard, 2005). During spontaneous
fluctuations, energy expenditure is thus balanced by homeostatic

mechanisms—such as attractors and power laws (Vuksanovic
and Hövel, 2014), in an effort to minimize free-energy.
It has been proposed that, in the presence of attractors,
resting-state networks emerge as ‘‘structured noise fluctuations’’
around a stable, low-firing equilibrium state (Deco and Jirsa,
2012). In contrast to spontaneous brain activity during rest,
engaging in effortful cognitive tasks seems to modify brain
function in a different manner. Neural systems can evolve
from a subcritical regime of randomness to a critical state
and then, beyond the critical value, to a supercritical regime,
characterized by regularity and absence of complexity (Zare
and Grigolini, 2013; Papo, 2014). This raises the possibility
that evoked activity could lead to an exit from the phase
transition that is typical of spontaneous activity. In sum,
the spontaneous activity of the brain is an example of an
‘‘open system’’, partly stochastic due to intrinsic fluctuations,
that maintains an interplay between structural bottlenecks and
non-equilibrium steady-state dynamics (i.e., homoeostasis or
allostasis), in the face of environmental fluctuations (Friston,
2010).

MENTAL FUNCTIONS AND
SPONTANEOUS ACTIVITY

There is ongoing discussion as to whether spontaneous
fluctuations reflect changes of the underlying brain physiology
independent of neuronal function, or instead reflect the neuronal
baseline activity of the brain, when goal-directed neuronal action
and external input are absent (Damoiseaux et al., 2006). Despite
some claims to the contrary (Fox et al., 2015; Vatansever
et al., 2015), it is widely believed that intrinsic activity is
associated with unconstrained, conscious cognition (i.e., mind-
wandering or day dreaming propensities; Kucyi and Davis,
2014) and with higher cognitive functions, such as internally-
oriented cognition, autobiographical memory (Conway and
Pleydell-Pearce, 2000; Morewedge et al., 2014), self-referential
processing, affective decision making and autobiographical
memory (Philippi et al., 2015). Others hypothesize that
spontaneous functional connectivity patterns at rest might well
constitute a ‘‘signature of consciousness’’, reflecting a continuous
stream of ongoing cognitive processes as well as random
fluctuations shaped by a fixed anatomical connectivity matrix
(Barttfeld et al., 2015). It has also been recently proposed
that the DMN is the dreaming state (Domhoff and Fox,
2015).

Different DMN subsystems play an important role in aspects
of internally-directed, spontaneous self-generated thought
(characterized by their independence from external stimuli),
such as accessing conceptual knowledge or autobiographical
memories, conceptual processing, experiences focused on
the future, construction of coherent mental scenes, retrieval
of information related to self and other, to be reflected
upon in a meta-cognitive manner (for a description of the
terminology, see Andrews-Hanna et al., 2014) and open-
monitoring meditation (Marzetti et al., 2014). Recent evidence
suggests considerable overlap between the DMN and regions
involved in self- and other-related mental processes—such
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as social, affective and introspective processes—(Amft
et al., 2015). In line with the celebrated experiments of
Libet et al. (1983), our ability to make choices might
arise from random fluctuations in the brain’s background
electrical noise; this suggests that individuals might well
behave independently of cause and effect (Bengson et al.,
2014).

If the above described brain functions are truly correlated
with spontaneous activity, it means that they display lesser
energetic requirements that other activities, such as sensation or
perception. This testable proposition is an example of how our
hypothesis about the lower energetic expenditure of spontaneous
activity might be empirically proved. Some evidence already
exists: e.g., it has been demonstrated that, during mind
wandering, sensations and perceptions entrain the brain in a state
of lower energy expenditure (Fox et al., 2015). In terms of the
dynamical systems theory framework, this might correspond to
the basins of the spontaneous networks, which form a temporary
random walk for spontaneous thoughts.

In the general context of the brain as a whole, spontaneous
activity provides a bridge that links different actors that
come into play, for example among anatomic structures,
energetic requirements and functional connectivity. Indeed,
the low-energy activity constitutes such a conceptual
bridge, because it exhibits both anatomical/functional
(spontaneous brain activity and DMN) and psychological
correlates (spontaneous, deliberate, self-generated thoughts;
Andrews-Hanna et al., 2014).

FREE-ENERGY THEORY AND
SPONTANEOUS BRAIN ACTIVITY

The brain activity observed at many spatiotemporal scales
exhibits a 1/f n-like power spectrum (Newman, 2005), including
not just macroscopic electric oscillations, EEG, MEG and fMRI
signals (He, 2014), but also microscopic membrane potentials
and fluctuations in neurotransmitter release (Linkenkaer-
Hansen et al., 2001; Milstein et al., 2009). In particular, the
frequency spectrum of cerebral electric activity displays a scale-
invariant behavior S(f)= 1/f n, where S(f) is the power spectrum,
f is the frequency and n is an exponent that equals the negative
slope of the line in a log power vs. log frequency plot (Pritchard,
1992; Van de Ville et al., 2010). Pink noise has been regarded
as an intrinsic property of the brain characterizing a large class
of neuronal processes (de Arcangelis and Herrmann, 2010);
moreover, power law distributions contain information about
how large-scale physiological and pathological outcomes (Jirsa
et al., 2014) arise from the interactions of many small-scale
processes. The emergence of power law distributions in the
brain (i.e., the spontaneous neuronal ‘‘avalanches’’ occurring in
the upper cortical layers) has been interpreted in terms of self-
organized criticality (Beggs and Plenz, 2003); thus, spontaneous
brain activity has been proposed as a source of ideal 1/f noise
(Allegrini et al., 2009).

In addition, the connectome displays a free-scale structure,
involving not just temporal power laws, but also geometric
fractals (Reese et al., 2012): this interesting observation further

supports the hypothesis that the brain is in phase transition.
However, the presence of power-law scalings in the brain
remains controversial (Beggs and Timme, 2012). It must be
emphasized that the fractal slope is not invariant in brain, but
is rather characterized by multiple possible exponents (He et al.,
2010), summarized by a single value, the ‘‘generalized fractal
dimension’’. Accordingly, we may view the multifractal cortex
as an ensemble of intertwined (mono)fractals, each with its
own dimension and scaling slope: the brain is thus regarded
as a system of fractal geometry with a complex spectrum of
self-exact similarity breakdown, in which scaling exponents
mark dynamical transitions between different response regimes
(Papo, 2014). With an increase in free-energy, the power
law exponent varies across brain regions (Pritchard, 1992; He
et al., 2010; Beggs and Timme, 2012; Tinker and Velazquez,
2014). The question that arises is: do cortical fluctuations
in power law exponents modify the energy of the system?
And the answer is yes. Recent articles have begun to uncover
connections between such an exponent and activation free-
energy, specifically in escape paths from energy basins (Perkins
et al., 2014). Furthermore, it has been shown that fractals
ensure an increase of production of entropy, when a system is
close to equilibrium (Gilbert et al., 2000). The critical slowing
implicit in power law scaling is mandated by any system that
tries to minimize its energetic expenditure. For example, it
has been demonstrated that brain regions with a larger fractal
exponent are more expensive in their glucose metabolism (He,
2011).

Overall then, ongoing fluctuations with complex scale-free
properties, such as spontaneous brain oscillations, can be
absorbed into a free-energy principle (Friston, 2010), a
theoretical framework that is of central importance in this
context. In such a framework, a general theory of spontaneous
brain function arises in a biologically informed fashion and
has the potential to be operationalized and empirically assessed
(Barrett and Simmons, 2015; Papadopoulou et al., 2015). The
free-energy principle for adaptive systems (that is, biological
agents, like the brain) attempts to provide a unified account
of action, perception and learning. Any self-organizing system
at equilibrium with its environment must minimize its free-
energy, thus resisting a natural tendency to disorder/entropy.
This formulation reduces the physiology of biological systems
to their homeostasis, specifically, the maintenance of their states
and form in the face of a constantly changing environment.

The brain operates at the edge of a delicate equilibrium and
therefore appears to avoid minimizing its thermodynamic
entropy production. It corresponds to the principle of
minimizing the so-called ‘‘variational free-energy’’ at each
point in time. The concept of variational free-energy is slightly
different from the above mentioned ‘‘classical’’ thermodynamical
free-energy, because the former refers to Helmholtz free-energy,
which is a functional of some outcomes and a probability density
over their (hidden) causes. Such a tenet supports the attempt to
understand how subtle steady-state equilibrium is maintained
through apparent resistance to the natural tendency to increase
entropy, in order that the living beings restrict themselves
to a limited number of states. The variational free-energy
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construct is an information theoretic quantity, as opposed to a
thermodynamic quantity, thus it has been exploited in machine
learning and statistics to solve many inference and learning
problems. (Friston, 2010). In this context, the ‘‘time average’’ of
variational free-energy becomes a proxy for entropy.

From the point of view of the brain, the environment
includes both the external and the internal milieu. The
probability of sensory states (interoceptive and exteroceptive)
must have low entropy and because entropy is also the average
of self-information or ‘‘surprise’’, the brain implicitly avoids
surprises (Friston, 2010). The free-energy principle separates
the environment (the external states) from the agent (the
internal states). Agents suppress free energy (or surprise)
via changing sensory input by acting on external states,
or by modifying their internal states through perception.
This embodied exchange with the environment endeavors
to maintain, as far as possible, an unsteady state that
is the essence of survival and self-organization. In the
framework of a logical-mathematical formalism, the variational
free energy considered above pertains to probability and
information theory—but what role does thermodynamic free-
energy play? Crucially, minimizing variational free-energy
necessarily entails a metabolically efficient encoding that is
consistent with the principles of minimum redundancy and
maximum information transfer (Picard and Friston, 2014).
Maximizingmutual information andminimizingmetabolic costs
are two sides of the same coin; by decomposing variational
free energy into accuracy and complexity, one can derive
the principle of maximum mutual information as a special
case of maximizing accuracy, while minimizing complexity
translates into minimizing metabolic costs (Friston et al.,
2015). Thus, the basic form of Friston’s free-energy principle
supports the idea that the energetic levels of spontaneous
brain activity, which are lower when compared with evoked
activity, allow the CNS to obtain two apparent contradictory

achievements: to minimize as much as possible the metabolic
costs, and to the largest extent possible, maximize mutual
information.

In conclusion, every psychical state in living beings is a
result of the self-preservative processes of the organism, a
biological fact of the drive to maintain, as far as possible, a
state close to a (more or less stable) equilibrium. This optimal
point, around which the life of the organism moves in constant
oscillation, also has a logical-mathematical significance when
framed within an energetic theory of spontaneous brain activity.
Thus, consideration of the energetic differences between
spontaneous and evoked brain activity and the effect on
dynamic cortical networks, when viewed using a non-linear
dynamical framework, constitutes a new approach to better
understanding spontaneous brain dynamics as a conceptual
bridge between anatomical/functional and psychological
correlates.
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