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Human automation interaction (HAI) systems have thus far failed to live up to
expectations mainly because human users do not always interact with the automation
appropriately. Trust in automation (TiA) has been considered a central influence on
the way a human user interacts with an automation; if TiA is too high there will
be overuse, if TiA is too low there will be disuse. However, even though extensive
research into TiA has identified specific HAI behaviors, or trust outcomes, a unique
mapping between trust states and trust outcomes has yet to be clearly identified.
Interaction behaviors have been intensely studied in the domain of HAI and TiA and
this has led to a reframing of the issues of problems with HAI in terms of reliance
and compliance. We find the behaviorally defined terms reliance and compliance
to be useful in their functionality for application in real-world situations. However,
we note that once an inappropriate interaction behavior has occurred it is too late
to mitigate it. We therefore take a step back and look at the interaction decision
that precedes the behavior. We note that the decision neuroscience community has
revealed that decisions are fairly stereotyped processes accompanied by measurable
psychophysiological correlates. Two literatures were therefore reviewed. TiA literature
was extensively reviewed in order to understand the relationship between TiA and
trust outcomes, as well as to identify gaps in current knowledge. We note that an
interaction decision precedes an interaction behavior and believe that we can leverage
knowledge of the psychophysiological correlates of decisions to improve joint system
performance. As we believe that understanding the interaction decision will be critical to
the eventual mitigation of inappropriate interaction behavior, we reviewed the decision
making literature and provide a synopsis of the state of the art understanding of the
decision process from a decision neuroscience perspective. We forward hypotheses
based on this understanding that could shape a research path toward the ability to
mitigate interaction behavior in the real world.

Keywords: trust in automation, interaction decisions, decision making, human automation interaction,
neuroergonomics
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INTRODUCTION

The purpose of this review is to address a largely unexplored
aspect of human automation interaction (HAI); that is, the
human decision that leads to interaction behavior, traditionally
considered a manifestation of the user’s level of Trust in
Automation (TiA). The extension of this concept has been that,
if HAI is to be actively managed in joint human-automation
systems, one must calibrate the TiA of the user so that decisions
about interactions with automation are appropriate. Further, it
has been considered that if one could measure instantaneous
levels of TiA, inappropriate interaction decisions could be
predicted and mitigated. Research interest in HAI systems is
motivated in large part because of observations that even the
most advanced HAI systems have not yet fully realized the
ultimate vision of both safe and seamless integration of the
human into the system that would lead to improved task
performance. Specifically, successful applications of automation
within task spaces involving human operators have not yet been
realized without simultaneous definition of significant context-
specific design constraints that delineate human and automation
responsibilities. Such constraints may improve focused aspects
of performance, but also increase the risk in other ways,
particularly in circumstances and moments involving handoff of
control authority, and these constraints limit more generalized
application of HAI concepts and methods, particularly in terms
of improving joint system efficiency (Parasuraman and Riley,
1997; Dekker and Woods, 2002; Dzindolet et al., 2003; Jamieson
and Vicente, 2005; Parasuraman and Manzey, 2010).

Decades of human factors research have resulted in an
understanding of what factors affect TiA, but as of yet, it
remains unclear how specific levels of TiA translate into specific
human decisions regarding interaction with a given automation.
This knowledge gap may exist because human behavior and
joint system performance can be thought of as the result of
a combination of many factors only one of which is TiA
(Hancock et al., 2011; Schaefer et al., 2014). Research aimed
at predicting interaction behaviors has previously met with
some success, particularly with respect to decision aid systems
(Bliss et al., 1995; Meyer and Bitan, 2002; Meyer et al., 2014)
and automated driving aids (Kumagai et al., 2003; Gold et al.,
2015; Terai et al., 2015). We consider such results to suggest
that understanding the interaction behavior may be a more
fruitful and immediate route toward active, online mitigation of
problems thought to arise from mis-calibrated TiA. This idea
is developed with the appreciation that interaction behaviors
result from decisions about how and when to interact, and any
individual interaction decision may or may not be motivated by
a change in TiA.

Our specific proposal is that, as much as behavior is a
key to managing HAI, understanding the process of decision-
making in the context of HAI is critical for understanding
and predicting interaction behaviors. It is an important step
that is implicitly necessary for eventual online mitigation of
inappropriate interaction behavior. This is especially applicable
in our discussion inasmuch as we believe that TiA reflects
changing degrees of perceived risk and uncertainty and is an

instance of value based decision making in dynamic contexts.
We further suggest that physiological correlates of value based
decisions could be measured and leveraged to provide valuable
data that may increase the likelihood of predicting a consequent
interaction. To develop the connection between TiA and value
based decision making, the discussion begins by reviewing extant
human factors literature to demonstrate that, while TiA is one
of many important factors influencing HAI performance, it
is ultimately the interaction behavior that is of interest. It is
then argued that this behavior, if intentional, is the result of a
decision, and thus understanding the decision process leading to
the behavior may facilitate near- to medium-term solutions for
active mitigation strategies while understanding of the nuances
and complexities of TiA continues to evolve over the long
term. The discussion then turns towards a synthesis of selected
cognitive neuroscience literature that focuses particularly on
value based decision making. We conclude with future research
directions that would be necessary to enable decision based
monitoring and prediction of interaction behaviors and the
eventual development of active mitigations for the types of
HAI problems currently believed to be brought about by
mis-calibrated TiA.

THE IMPORTANCE OF TiA IN JOINT
SYSTEM PERFORMANCE

The term automation, or automated system, as used here
is best defined by Parasuraman et al. (2000) as a ‘‘machine
execution of functions’’. This definition includes automation
with capabilities as diverse as controlling a sophisticated cockpit
system or as simple as an automated coffee maker. Because
automation is not yet fully ‘‘intelligent’’ it has no agency
for adapting to unexpected circumstances, and therefore often
requires the supervision and/or occasional intervention of
humans. Part of this supervisory role requires that there be
HAIs, but these interactions need to be appropriate, or the
joint system performance will suffer. Decades of HAI system
research have indicated that appropriate interactions are the
result of decisions subsequent to calibrated TiA. An established
conceptual model of factors influencing HAI performance is
provided in Figure 1. As themodel suggests, TiA has traditionally
been considered to be the critical component driving human user
decisions about interactions such as intervening in an automated
task. Given the importance that TiA has been accorded to
overall joint system performance, in this section we provide
a brief review of important aspects of TiA and its dynamics.
We aim to highlight the complex relationship between TiA
and human user behavior, and implications arising from this
relationship that imply that even if moment to moment
levels of TiA were to be measured, it is unclear how such
information could be leveraged to predict an interaction
behavior.

Early theories about the construct of TiA were developed
from the psychological construct of interpersonal trust, and they
posited that calibrated TiA was critical for successful HAI system
performance (Sheridan, 1980; Sheridan and Hennessy, 1984).
There are aspects of interpersonal trust that are analogous to TiA,
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FIGURE 1 | A conceptual organization of trust and human user-automation interaction (Adapted from Hancock et al., 2011 with permission from Sage
Publishing). This article focuses on interaction decisions that are part of the overall human automation interaction (HAI).

in particular that there needs to be a sense of risk or vulnerability
on the part of the trustor for trust to develop (Lee and Moray,
1994; Muir, 1994; Corritore et al., 2003; Lee and See, 2004;
Evans and Krueger, 2011). However, it has been debated whether
the two constructs are homologous (Madhavan and Wiegmann,
2007), and so trust as it specifically applies to automation became
a central point of interest in human factors research aimed
at improving joint system performance (Lee and Moray, 1992;
Muir, 1994; Muir and Moray, 1996; Lee and See, 2004). Myriad
definitions of TiA imply that it is the result of a feeling of
trustworthiness towards the automation such that a human user
can depend on the automation to perform the task for which it
was designed. It is worth noting that if the consequence of the
task to the human user is small, if TiA develops at all, its level
becomes irrelevant because the outcome of the joint system fails
to be important. Therefore, much like interpersonal trust (Lee
andMoray, 1994; Muir, 1994), TiA develops in the face of a sense
of risk. In these situations, TiA then develops and shows dynamic
changes from the ongoing comparison of the expectations about
the automation’s behavior and observations by the human user
about the automation’s performance weighted heavily on the risk
borne by the human user (Sheridan and Hennessy, 1984; Muir,
1994; Muir and Moray, 1996).

Determinants and Dynamics of Trust in
Automation: Expectations and
Observations
One of the first explicit theories of TiA (Muir, 1994) stated that
appropriate levels of TiA would develop if three expectations
were met during the course of automation interaction. These

expectations are technical competence, persistence, and fiduciary
responsibility, but they play differential roles in TiA development
and dynamics throughout the course of automation use. For
example, perceptions of competence might be more important
in the early stages of automation use than later in time. The
expectation of technical competence is the expectation that
the automation will accurately and successfully perform the
functions for which it was designed. Persistence, perhaps here
better conceived of as predictability, relates to the issue of
reliability in that an automation that performs in a particular
manner now will be expected to perform in a same or similar
manner when it encounters similar circumstances in the future.
Finally, fiduciary responsibility addresses the notion that a
given human user will hold expectations of an automation of
a particular type that will impact role allocation. That is, the
human user will expect that the automation will necessarily be
responsible for its designed functions as they understand them
and thus fewer personal resources need to be allocated to carrying
out those functions. The importance of these expectations related
to TiA dynamics differ depending on the stage of the interaction
with the automation.

When first presented with an automated system there is
limited information available for the human user to observe,
and thus little with which to evaluate the trustworthiness of
the automation. Some key elements that significantly affect
early levels of TiA include initial expectations borne from
biases toward automations in general, and initial observations
about the design of the automation (Muir and Moray, 1996;
Nass et al., 1996; Dzindolet et al., 2002; Lee and See, 2004;
Parasuraman and Miller, 2004; Miller, 2005; Merritt and Ilgen,
2008; Merritt, 2011; Merritt et al., 2012; Pak et al., 2012). After
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having been introduced to an automation, human users tend
to explore different strategies for subsequent interaction (Lee
and Moray, 1992) and thus learn more about the automation’s
behavior. This experimentation arguably helps the human user
gauge competence, which emerges as one of the most important
predictors of TiA at this early stage. However, it is worth
noting that for various reasons, human users are notoriously
poor at making accurate judgments of competence (Sheridan
and Hennessy, 1984; Lee and Moray, 1992; Dzindolet et al.,
2002, 2003; Madhavan et al., 2006; Verberne et al., 2012; Merritt
et al., 2014). Once automation competence has been judged,
whether correct or not, the most important factor driving levels
of TiA is persistence or predictability of performance over
time (Lee and Moray, 1992). Persistence of performance is
important enough that as long as errors are predictable and the
automation error rate is at a consistent rate of approximately
30% or less, most human users will decide to continue to use
and benefit from the automation (Parasuraman et al., 2000;
Wickens and Dixon, 2007; Wang et al., 2009). As levels of
TiA dynamically change throughout the course of observations
about the automation’s behavior, theory posits that interaction
decisions, and consequent behaviors, should reflect the extant
level of TiA. If there is too much or too little TiA, as it
goes, a human user may decide to overuse or underuse the
automation, respectively. Specific patterns of behaviors resulting
from decisions about how to interact with the automation
have been well documented and are commonly referred to as
trust outcomes as they are believed to directly reflect certain
levels of TiA.

Trust Outcomes and their Relationship
to TiA
The trust outcomes most commonly discussed are misuse and
disuse and are described in detail by Parasuraman and Riley
(1997). Misuse refers to instances when the automation is
used without undo skepticism, tending to result in overuse
(Parasuraman and Riley, 1997; Bahner et al., 2008; Parasuraman
and Manzey, 2010). Misuse has two related causes; automation
bias and complacency (Manzey et al., 2006; Parasuraman and
Manzey, 2010). They are related in that they both result in
a lack of monitoring where lack of attention plays a central
role (Parasuraman and Manzey, 2010). Automation bias arises
through the mere presence of an automated system, possibly
because humans demonstrate a tendency to choose the route of
least cognitive effort, making it easier, or at least preferable, to
accept that feedback from an automation as correct (Dzindolet
et al., 1999, 2001; Skitka et al., 1999, 2000; Wang et al., 2008;
Parasuraman and Manzey, 2010; Goddard et al., 2014; Mosier
and Skitka, 1996). Complacency, less well understood, can
be said to occur when monitoring is less than optimal and
joint system performance suffers (Parasuraman and Manzey,
2010). However, both automation bias and complacency tend
to increase in cases of high workload and high consequence
environments wherein users often make conscious decisions to
rely on even imperfect automation (Dixon et al., 2007; Wickens
and Dixon, 2007). Disuse describes a continuum that spans from
the user underutilizing the automation to entirely abandoning

the automation in favor of a manual mode. Disuse tends to
occur if a human user has a high expectation of automation
performance and then observes unexpected errors or has more
self confidence in her ability to perform the task than confidence
in the efficacy of the automation for the same task (Lee and
Moray, 1994; Parasuraman and Riley, 1997; Moray et al., 2000;
Dzindolet et al., 2003).

Although trust outcomes have been well defined, a synthesis
of the literature, and recent experimental evidence (Wiczorek
and Manzey, 2010; Chancey et al., 2015) indicate a far more
complex relationship between TiA and trust outcomes than is
implied in the above discussion, and this implies that predicting
interactions based on extant TiA levels is problematic. Such
complex interactions involve perceived risk, self-confidence,
workload, and even personality type (Lee and Moray, 1994;
Muir, 1994; Parasuraman and Riley, 1997; Lee and See, 2004;
Merritt and Ilgen, 2008; Hancock et al., 2011; Schaefer et al.,
2012; Merritt et al., 2014). For instance, human users have
been documented as reporting a high level of TiA and then,
paradoxically choosing amanual operationmode, demonstrating
disuse (Lee and Moray, 1992). Conversely, even when low
TiA has been reported, human users may misuse even a
poorly competent automation, particularly under high workload
conditions (Daly, 2002; Biros et al., 2004). Clearly levels of TiA
do not map uniquely onto trust outcomes, regardless of how they
are represented (i.e., attention, intervention rate, etc.). Therefore,
they are not predictive of the way a human user will decide
to interact with an automation, limiting the use of measuring
TiA for real world applications to improve HAI. We suggest
that this is because TiA is far more complex than may be
useful for those withmore immediate concerns regarding actively
managing HAI. However, it is important to note that when TiA
is studied it is the interaction behavior that is of interest most
often. Therefore, regardless of the manageability of trust, what
might be learned if we focus more simply and exclusively on the
behavior?

TiA as Predictable Behavior
The present discussion is not the first to offer that a shift in
focus from trust to behavior is well justified. In fact, a number
of researchers in this domain have re-framed the problem
space of TiA into one of reliance and compliance, which are
defined exclusively in terms of observable behavior, and are
not intended to imply specific psychological cause such as
trust (Meyer, 2001, 2004; Parasuraman et al., 2008; Rice, 2009;
Meyer et al., 2014). Indeed, there is a non-unique mapping
of reliance and compliance to traditional trust outcomes such
that an observation of inappropriate amounts of either may
alternately signal disuse or misuse and possibly motivate
conflicting interpretations of TiA. We find these behaviorally
defined terms to be useful in their functionality for application in
real world situations. That is, objectively defined and observable
behaviors are especially valuable for the purposes of modeling
and prediction because they obviate the need for drawing
inferences to and making assumptions about manifestations of
more subjectively defined constructs, such as TiA, automation
bias or complacency that are difficult to measure objectively and
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thus unsuitable for use in attempts at active optimization and/or
mitigation.

Reliance is the tendency of the human user to accept the
lack of an alarm, alert, warning, or prompt as a true reflection
of the state of the world (Lee and Moray, 1994; Singh et al.,
1997; Parasuraman et al., 2000; Yeh and Wickens, 2000; Moray,
2003; Dixon et al., 2006). That is, in the absence of an alarm or
warning, the human user accepts, often tacitly, that all is well
and there is no reason for possible intervention. Compliance, on
the other hand, is defined when the user responds to, putatively
agrees with, and ultimately takes the action specified by an
alarm or recommendation from the automation (Meyer, 2001,
2004). Though reliance and compliance are often discussed in
terms of optimal behavior, too much of either in the wrong
context is detrimental to system performance. For instance,
if an alarm is absent and the human user assumes that no
circumstances warranting an alarm exist and thus fails tomonitor
the automation over significant time, he or she is at risk of
over-reliance and the consequences thereof. Conversely, over-
compliance occurs when the human accepts all suggestions
from the automation (when present) without confirming their
validity.

Beyond observation of general behavioral patterns, the greater
benefit of defining compliance and reliance behaviors has been in
providing an avenue towards greater precision in understanding
the factors that affect automation use during HAI, which might
eventually lead to prediction of an interaction. For instance, some
have observed that reliance and compliance are differentially
affected by error type, i.e., false alarms vs. misses in target
detection tasks (Meyer, 2004; Rice and Geels, 2010;Wiczorek and
Manzey, 2014), and by the predictive value of the alarm (Meyer
and Bitan, 2002; Manzey et al., 2014). If a human user observes
frequent failures to trigger alarms, the frequency of monitoring
the automation will increase, thereby reducing reliance on the
automated agent (Masalonis and Parasuraman, 1999; Bagheri
and Jamieson, 2004; Meyer, 2004; Madhavan and Wiegmann,
2007; Parasuraman and Manzey, 2010; Geels-Blair et al., 2013).
Compliance, however, is degraded by higher rates of false alarms.
In particular, when higher rates of false alarms are observed,
users tend to consume critical time and attentional resources to
verify alarms before choosing a response. Further progress in this
line of inquiry has resulted in more general characterization of
how interaction behaviors change with the positive and negative
predictive value of an alarm. Positive predictive value is derived
from a Bayesian calculation of the likely existence of a hazard
given an alarm and, likewise, the probability of an alarm given
no existing hazard (Meyer et al., 2014). Negative predictive value
is calculated similarly, but in the absence of an alarm. Therefore,
positive predictive value decreases as false alarm rate goes up and
negative predictive value decreases with more frequent misses
(no alarm in the presence of a hazard). Interaction behavior
is thus differentially affected by changing positive vs. negative
predictive value. Positive predictive value has been shown to
have strong effects on reliance, but only for values less than 0.75
(Meyer et al., 2014), where values below this threshold have been
associated with excessive time spent monitoring the automation.
Research in HAI domains has thus befitted considerably from

the use of these narrowly and objectively defined behavioral
terms.

We advocate here for shifting research towards more clearly
defined behaviors and the factors that affect them because of
how this shift creates important opportunities for systematic
research into HAI. The domain of application for such a
shifted focus would include contexts where TiA may be
involved, at least inasmuch as TiA reflects assessments of the
relative value of specific behavioral options defined in terms of
probable risk versus reward. We argue that such behavior-based
understandings are important for progress on multiple levels
from phenomenology to predictive modeling. The extant work
discussed above has provided an essential corpus of knowledge
regarding the relationship between automation performance
characteristics (i.e., error rate, type, and predictive value) and
human user interaction behaviors. However, we also suggest that
in order to be useful down the road for real-world mitigation
of inappropriate interactions, this shift from trust to behavior
does not go quite far enough for two important reasons. First,
to mitigate a potentially detrimental interaction behavior in
a dynamic context, prediction is necessary. This is because
a behavior that has already occurred cannot be changed and
the consequences are likely to be too immediate to offset in
post hoc fashion. Moreover, the predictive power required must
occur on a time-scale that allows a reasonable opportunity
to enact a mitigation when an inappropriate behavior is
expected. Second, the current understanding of reliance and
compliance is tied to automation design; an automation that
frequently misses events reduces reliance, and an automation
that frequently produces false alarms reduces compliance. This
understanding, then, usefully provides an improved framework
for HAI, but has yet to account for variability in individual
instances of HAI. Therefore, the predictive power of the current
understanding of interaction behaviors based on population
averages remains limited to overall design strategies whereas
we are interested in building towards eventual prediction and
mitigation of reliance and compliance at the level of individual
instances of interaction behavior. In order to improve the
ability to predict an interaction behavior we thus believe it
is necessary to consider not only the effects of automation
design on interaction behaviors such as compliance and reliance,
but also the individual internal phenomena that precedes the
behavior.

INTERACTION BEHAVIOR REFRAMED AS
A DECISION TO INTERACT WITH AN
AUTOMATION

Before an intentional behavior occurs, the human user must
make a decision as to which among a limited array of options
will be selected. Here we argue that research concerned with
improvingHAIwould benefit greatly from studying the decisions
that precede interaction behaviors. Such an approach satisfies
the need for focus on individual interactions in a manner
that affords prediction on a time-scale that is useful for active
mitigation. We define such decisions as interaction decisions,
given as specific to the intention to interact with an automation.
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While TiA has often been considered to motivate interaction
decisions, the richness of the decision process itself, as well
as accompanying stereotypical psychophysiological indicators
thereof, has not been thoroughly investigated as a source
of information that could be applied to the prediction of a
consequent interaction behavior. Our starting point in this
pursuit is to understand the underlying psychological and
physiological processes of decision making, with a particular
focus on value based decision making. This understanding can
provide a cornerstone for the advancement of scientifically based
hypotheses about how interaction behaviors may eventually
be predicted for the sake of active mitigation. Predicting
decision outcomes, or the interaction behavior in a real-
world HAI context, is of course not trivial, but laboratory-
based research in decision neuroscience has established decision
making as a reasonably stereotyped process with clear behavioral
and physiological precursors. Further, the ability to predict
decision outcomes has been pursued by both the cognitive
neuroscience (Soon et al., 2008; Haynes, 2011; Perez et al.,
2015) and brain computer interface (Musallam et al., 2004)
communities. Indeed, attempts at predicting some types of
decision outcome behaviors have already met with success in
a laboratory environment, possibly because the specifics of a
decision process in the brain begin even before there is conscious
awareness of the impending decision (Soon et al., 2008, 2013;
Haynes, 2011; Perez et al., 2015). Some of these studies have
been criticized because there lacks a sense of risk or value to
the decision maker in a controlled experiment, and therefore,
the assumption is that the decision outcomes that are being
predicted are trivial (Gold and Shadlen, 2007; Lavazza and De
Caro, 2010).

The lack of risk, value, or reward in these controlled
laboratory environments is in contrast to interaction decisions
that inherently involve some type of personal risk or reward.
For example, over relying on an automation can compromise
joint system performance, and therefore causes degradations
in joint system performance. Thus, we are chiefly concerned
with decisions that are based on expected value and risk, or
value based decisions (Rangel et al., 2008; Wallis, 2012). Value
based decisions are particularly relevant to the HAI context
because it is often required that a human user continuously
weigh the expected personal value of allowing the automation
to complete the task versus performing it manually or, rather,
whether to comply with the recommendation of an automated
system. Importantly, this assessment and subsequent judgment
of value to the user must be made against the backdrop of risk
that the decision may compromise joint system performance.
Thus, through the common elements of risk, reward, and
expected value, we believe interaction decisions during HAI
to be an instance of value based decision making. We
believe that understanding the value based decision process
is important to improving HAI and, therefore, we briefly
discuss results of value based decision making research as
it relates to HAI in order to support hypotheses forwarded
in the discussion, aimed at establishing a research path
that will allow the eventual prediction of HAI interaction
behaviors.

The Importance of Considering the
Decision Process
An important argument in favor of studying the decision process
in order to improve HAI is that significant efforts in cognitive
neuroscience have revealed decisionmaking as fairly stereotyped,
and therefore, a potentially predictable process. Moreover, this
body of research has identified a number of psychophysiological
correlates that unfold in advance of, and during a decision.
Critically, these correlates are measurable, and therefore useful
for understanding the decision process, at least in laboratory
settings. Some have observed that these correlates unfold in
predictable ways through defined cognitive stages, and therefore
measuring them has potential use for active mitigations of
inappropriate interaction decisions and behavior. This approach
is fundamentally different than attempting to measure and
calibrate TiA because the psychophysiological correlates of a
decision are measurable whereas the construct of TiA is yet to
be defined in a way that is equally useful for active monitoring.
In general, many cognitive neuroscientists model decisions
as comprising three cognitive stages (Fellows, 2004; Bogacz,
2007). However, five cognitive processes, some analogous to
stages of the cognitive models of general decisions, have been
described in value based decision making (Rangel et al., 2008)
and are therefore relevant to our discussion of interaction
decisions. These processes, which are not discrete stages per se,
are: (1) representation of the problem, i.e., identification of
alternative choices, and of internal and external states that
affect the value of the choices; (2) evaluation of gathered
evidence that allows the assignment of a value to the alternatives;
(3) comparison of these values in order to make a decision;
(4) accumulation of the comparative value for each alternative
and making the decision; and (5) generation of prediction
errors that provide feedback in order for learning to occur. The
psychophysiological processes that unfold within the first four
processes will be discussed as they relate to HAI contexts such
as risk and reward. The fifth process, generating feedback on the
decision has been studied in the context of learning, and may be
useful for later development of adaptive mitigation strategies, but
is beyond the scope of the current review (Nieuwenhuis et al.,
2005; Christie and Tata, 2009; Cohen et al., 2011; van de Vijver
et al., 2011). We note that we discuss these processes sequentially
mainly for organizational purposes, however, during the decision
process they may overlap or even occur in parallel (Rangel et al.,
2008).

The Value Based Decision Process
In order for the need to identify alternatives to arise, there
must be some recognition of the need for a decision; in a
sense it is the motivation to perform a task (Gold and Shadlen,
2007). Decisions must be initiated by either salient external or
internal stimuli. These stimuli will often produce an orienting
response (Sokolov et al., 2002; Glimcher and Rustichini, 2004;
Delgado et al., 2005), characterized in humans by a measurable
increase in tonic skin conductance (SC) levels and a decrease
in heart rate variability (Figner and Murphy, 2011). In an
HAI domain, relevant stimuli typically include those specifying
alerts from the automation, acute changes in environment,
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or internal feelings that the current behavior is inappropriate
(typically seen as an error-related potential in the brain or a
gradual shift in peripheral physiology). Once the need for a
decision has been established, however, decision alternatives are
identified. As alternatives are identified, in the case of interaction
decisions, the human user will also identify, if not consciously,
a representation of internal and external states (Rangel et al.,
2008). These representations play an important part during
the process of assigning values to individual alternatives. For
example, a human user is more likely to take control from the
automation if they detect that the automation is malfunctioning
and they perceive an associated risk. The neural basis of this
early stage in the decision process is not well understood. For
example, it is unclear how the brain decides which alternatives
should be considered, and if there is a functional limit to the
number that can be assessed at one time (Rangel et al., 2008).
Nevertheless, such questions are important for determining how
to leverage physiological indicators into models of decision
making during HAI.

Once the possible alternatives are identified evidence for or
against each alternative must be evaluated in order to make
an optimal decision. In the case of interaction decisions, which
due to the presence of risk are analogous to value based
decisions, it has been hypothesized by some (Rangel et al., 2008;
Glimcher and Fehr, 2013) Reading hidden intentions in the
human brain cognitive valuation systems that the brain might
use; the Pavlovian, Habitual, and Goal directed. We believe
the goal directed system to be most relevant to our discussion
because the goal directed system assigns values to potential
actions by calculating action-outcome associations from previous
experience and comparing this value to the perceived rewards
associated with possible outcomes of the decision (Rangel et al.,
2008). In the goal directed valuation system the value assigned
to a piece of evidence is equivalent to the potential value of the
alternative it supports, with the value assigned to an alternative
being equal to the expected reward of the action. In the context
of HAI, an important research question would be whether the
probability of success is greater by relying on the automation or
not and, moreover, how that probability scales with perceived
risk to determine the direction of a given interaction decision.

When a person valuates a piece of evidence they will do
so by observing the relevant data (e.g., visual scanning, sound
or other stimulus), consulting their memory, and integrating
this against a backdrop of expectations (Mulder et al., 2014).
In the case of visual evidence, gaze fixation is thought to support
evidence evaluation such that evidence about the value of an
alternative is sampled at each fixation (Krajbich et al., 2010;
Krajbich and Rangel, 2011). Memory consultation causes a
person to compare past decision outcomes with the available
alternatives. The brain creates a prediction error that would
represent the difference between the expected value of choosing
current decision alternatives from the value that has been
experienced in the past by choosing alternatives that are similar
in nature (Hare et al., 2008). For example, consider a human
user who has previously experienced aberrant behavior from
an automation, but there has been no decrement in joint
system performance, and joint system performance continues

to remain better than what would be expected from only one
agent performing the task. Even in risky environments such
as in the battlefield, or during a search and rescue operation,
the experienced user is more likely to rely on an automation
(Lyons and Stokes, 2012) than a user who has not experienced
the aberrant behavior because the experienced user has realized
the value in relying on the automation despite the probability
of an error.

At a cellular level, data have suggested that the cognitive
evaluation of evidence is supported by neural ‘‘evaluators’’
that store dynamic estimates of which decision alternative is
supported by the evidence. For instance, studies using fMRI
in risk reward scenarios have identified two candidate neural
evaluators; the amygdala and ventral striatum. A reward based
fMRI study indicated that the amygdala evaluates the cost or
risk of acting on an alternative (Yacubian et al., 2006; Basten
et al., 2010). In the same fMRI study the ventral striatum was
implicated in the formation of representations of the expected
value or reward of an alternative (Yacubian et al., 2006; Kable and
Glimcher, 2007; Rangel et al., 2008; Basten et al., 2010; Lim et al.,
2011). Other authors, however, have found that in addition to the
amygdala and the ventral striatum that the lateral orbitofrontal
cortex and the medial orbital frontal cortex also act as neural
evaluators for risk and reward, respectively (Hare et al., 2008;
Rangel et al., 2008; Rangel and Hare, 2010). The neural substrates
that have been observed support value based decision making
processes are detailed in Table 1.

The neural evaluators, then, form representations of the
risks and rewards for each alternative; the benefit of relying
or complying with an automation, as opposed to choosing to
complete the task manually. As the risks and rewards of a
potential interaction behavior are processed by the amygdala
and ventral striatum, the value of these representations must
be assessed relative to each other; they must be compared.
Neural correlates of this third process involved in value based
decision making, comparison of the values assigned to the
evidence, have been observed in fMRI studies. That is, value
based comparison has been suggested as supported by activation
in the ventral medial prefrontal cortex (vmPFC; Chib et al.,
2009; Gläscher et al., 2009; Basten et al., 2010), whereas
the ‘‘comparator’’ function in perceptual decisions has been
associated with increased activity in the dorsolateral prefrontal
cortex (dlPFC; Basten et al., 2010; Philiastides et al., 2011).
While the evidence comparison process unfolds, some have
hypothesized that the comparative value, also known as the
decision variable, is accumulated in the lateral intraparietal
cortex (LIP) until a decision threshold is reached, bringing about
a decision (Platt and Glimcher, 1999; Kiani and Shadlen, 2009;
Mulder et al., 2014). Evidence to support this hypothesis has
mainly been shown in primate studies of single cell recordings
during cued saccade trials (Platt and Glimcher, 1999; Platt,
2002). However, there has been evidence from fMRI studies
that the human parietal cortex is also involved in accumulating
the decision variable (Ploran et al., 2007; Heekeren et al.,
2008). It is interesting to note that the temporal integration of
activity in the frontal-parietal regions, which are considered to
be involved in comparing and accumulating compared value
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TABLE 1 | Neural substrates and their putative role in decision making.

Neural substrate Role in decision making Reference

Amygdala Processes/computes the value of negative stimuli Yacubian et al. (2006) and Basten et al. (2010)

Ventral striatum Processes/computes the value of positive stimuli Yacubian et al. (2006), Basten et al. (2010)
and Lim et al. (2011)

Ventral medial prefrontal cortex (vmPFC) Calculates the difference of value signals from
amygdala and ventral striatum in value based decisions

Basten et al. (2010) and Philiastides et al. (2011)

Dorsolateral prefrontal cortex (dlPFC) Calculates the difference of signals from amygdala
and ventral striatum in perceptual decisions

Basten et al. (2010) and Philiastides et al. (2011)

Lateral intraparietal cortex (LIP) Accumulates and integrates the value of evidence
processed by the vmPFC (evidence largely
from monkeys)

Platt and Glimcher (1999); Platt (2002); Basten
et al. (2010) and Rorie et al. (2010)

A cortical area involved in gaze fixation, saccade,
and attention, underlying evidence accumulation

Coe et al. (2002) and Goldberg et al. (2006)

signals, has been observed as preceeding the conscious decision
to act (Gold and Shadlen, 2007; Soon et al., 2013; Perez et al.,
2015).

The putative involvement of the parietal cortex in decision
making is noteworthy because of its central role in the process.
For example, gaze fixation, critical for evidence evaluation (Poole
and Ball, 2006) in visually based decisions, is controlled by the
LIP in monkeys (Coe et al., 2002). This region forms a ‘‘salience
map’’ for the oculomotor system to saccade to a target, or
maintain gaze fixation on a target (Goldberg et al., 2006). The
LIP then, not only plays a role in accumulating the comparative
value of the evidence as discussed above, but is critical for its
initial evaluation. Brain computer interface research has also
found that the medial intraparietal cortex in monkeys forms
representations of the value of an alternative that has been
encoded in the vmPFC (Musallam et al., 2004), such that the
intent of the monkey to choose one alternative over an other
can be decoded from intracellular electrodes. Although much
evidence of the importance of the parietal cortex during decision
making, and especially value based decision making, has come
from primate research, there is evidence that analogs in the
human parietal cortex are also central to decisionmaking (Ploran
et al., 2007; Heekeren et al., 2008).

Despite the hypothesized causal role of integrated frontal-
parietal activity in the conscious decision to act, there are
no measurable psychophysiological variables that allow an
accurate determination of the exact time that a decision
threshold is reached. However, psychophysiological correlates
occurring hundreds of milliseconds before a conscious decision
involving risk and reward (Cohen et al., 2009), inherent in
value based decision making, have been identified. For instance,
the readiness potential, a slow negativity in scalp recording of
cortical activity precedes fully endogenous decisions by a few
hundred milliseconds (Libet, 1993). Even more proximal to the
decision spectral correlates have been observed. In a paradigm
involving playing a competitive game against a computer,
spectral decomposition of scalp-recorded EEG led to the finding
that the decision process was accompanied by a general shift
in power between lower bands (delta, 1–4 Hz and theta, 5–7
Hz) to higher frequency bands (alpha, 8–12 Hz and beta,

13–35 Hz), as well as a broadband increase in cross-trial phase
coherence at about 220 ms post stimulus (Cohen and Donner,
2013). Similar indications were found during complex real world
choice tasks and a two-choice forced-decision paradigm. In
these cases, significant correlations of increased power were
seen in delta, theta, beta, and gamma (36 + Hz) bands of EEG
activity approximately 250–500 ms post-stimulus (Guggisberg
et al., 2007; Davis et al., 2011). In decisions involving risk, risk
is represented by an asymmetry in the alpha band such that
there is an increased alpha power in the right frontal region
(Gianotti et al., 2009). These spectral correlates of value based
decision making are measurable in real time and available for
current application outside a laboratory, which is encouraging
in the context of improving HAI. However, these scalp recorded
spectral correlates occur only hundreds of milliseconds before an
interaction decision and therefore have limited use because they
are so temporally proximal to the behavior itself.

The proximity of these value based decision correlates to
the actual decision may be discouraging in the context of
predicting and mitigating interaction behavior. Nonetheless,
research efforts in decision neuroscience and in brain computer
interface have found in fMRI studies that the correlates of an
outcome of a decision to move at a time chosen by the subject
are measurable up to 7 s before the conscious awareness of
the decision is reached. Moreover, through analysis of these
correlates, the intended goal of the decision can be decoded
before conscious awareness of it arises (Haynes et al., 2007; Soon
et al., 2008, 2013; Haynes, 2011; Perez et al., 2015). In two fMRI
studies (Haynes, 2011; Soon et al., 2013) subjects were asked
to decide at will when to either press a button on their left or
right side, or add or multiply a set of numbers, and then to
report when they were consciously aware of the decision. Spatial
pattern analysis of the blood oxygen level dependent signal, a
measure of neural activation in fMRI studies, revealed that the
frontal polar cortex appeared to encode the intentions of the
subjects before they reported having made the decision. In a
driving study using implanted EEG electrodes in human epilepsy
patients a modulation of gamma power in the posterior lateral
cortex predicted whether the subjects would turn left or right
at an intersection before they consciously made the decision
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(Perez et al., 2015). These studies made use of technology such
as fMRI that as yet is not available for real world applications,
unlike EEG, because of the need for the subject to lie still
in the large, importable fMRI equipment. Further, although
EEG is portable, it cannot directly measure activity in deep
cortical and subcortical areas, and these are exactly the areas
that showed activity prior to a conscious decision. However, the
results are encouraging for making use of the interaction decision
process to improve HAI and, moreover, can be leveraged into
research aimed at developing models that capture relations
between cortical and subcortical brain activations during value
based decision making. Identification of such relations is an
important avenue for future research aimed at active mitigation
during HAI.

Indeed, decision neuroscience and brain computer
interface research have facilitated the development of precise
understandings of decision making that could facilitate the
development of methods for identifying an interaction
decision within the contextual space of HAI. Efforts in
decision neuroscience as well as in more applied domains,
such as neuroergonomics, have shown that there are clear and
measurable behavioral and psychophysiological correlates (fMRI
activation patterns, EEG, SC, gaze fixation, heart rate, etc.)
of component processes that are antecedent to the decision.
In addition, decision neuroscience has begun to provide an
understanding of the underlying cortical and sub-cortical
processes involved in decision making. While many of these
processes have as yet only been identified by fMRI, their
understanding will allow meaningful hypotheses to be advanced
about measures that can be recorded in real time.

DISCUSSION

HAI systems have as yet to live up to their expectations, and
one critical reason is that human users often make inappropriate
decisions about how and when to interact with an automation.
These interaction decisions have traditionally been considered
to be motivated by extant levels of TiA. Therefore, if TiA
can be measured, it is expected that it can be managed
and inappropriate interaction behaviors could be mitigated.
Given that substantive theory, it was appreciated that TiA is
an important construct that undoubtedly affects human user
interaction behavior, and hence we reviewed and synthesized
the TiA literature. From that exercise, we observed that the
relationship between TiA and human behavior is complex
and not fully understood. Further, relevant to immediate real
world applications for improving HAI system performance, TiA
cannot be readily measured, and even if it were measurable
in real time it is unclear how certain levels of TiA map onto
specific interaction behaviors. By contrast, specific behaviors
such as reliance and compliance are readily observed and
measured in real time and do not have the confounding effect of
inferring psychological causality. Such cause-agnostic variables
are particularly attractive in HAI research aimed at defining
concrete methods for improving joint system performance, both
in terms of initial system design as well as for ultimate real-time
applications.

Reframing the problem space of HAI and TiA as a problem
of behavior, rather than of TiA, has been successful in
allowing general predictions of interaction behavior based on
knowledge of system design given specific environmental and
internal conditions such as increased risk or increased workload,
respectively. For example, knowing that an automation is prone
to false alarms will allow the general prediction that a human user
will often fail to comply with alerts. This understanding allows a
system designer to set thresholds for alarms that are appropriate
to intended use. For example, in high risk environments it
may be better to set an alarm threshold low so that critical
cases are not missed. This predictive ability has been significant
in designing systems, but the knowledge is unlikely to allow
active mitigation of interaction behavior on an individual basis
in real time application, an implicit goal of the aims of HAI
focused research. This is the case for two important reasons.
First, we argue that focusing attention on interaction behavior
does not go far enough because once the behavior has occurred
it is too late to mitigate it in an post hoc fashion in a timely
manner. Second, behaviorally based predictions for automation
use are by definition general because the predictive ability has
been achieved through extensive observation of how human
user behavior is affected by system design. The behaviorally
based predictions, however, do not take into account individual
variation and dynamic changes in environment. Therefore, they
are unlikely to apply to individuals on a case by case basis. For
example, it has been shown that a human user may continue
to rely on an automation that persistently commits errors of
omission, or ‘‘misses’’, due to automation independent reasons
such as increasing workload. Therefore, an approach is needed
that considers individual cognitive and behavioral aspects, as well
as ensuring that there is time to not only mitigate behavior, but
allow the prediction of the likelihood of an interaction behavior.

We note that antecedent to the interaction behavior is
a decision, which has been characterized by the decision
neuroscience community as fairly stereotyped and accompanied
by measurable psychophysiological correlates. These properties
of decisions suggest predictability, and importantly, as decisions
are individual in nature, these properties also imply the
likelihood of behavioral prediction at an individual level.We thus
believe that understanding the interaction decision is a useful
approach to improving HAI, and that with future research that
the decision correlates can be leveraged to predict the likelihood
of an individual’s impending interaction behavior. This approach
not only satisfies the problems just discussed, but takes into
consideration the human and environmental variability that is
found in real world situations in ways that research focused
on reliance and compliance has yet to achieve. While it is true
that many of the psychophysiological correlates of value based
decisions are only measurable with fMRI, we consider that
the discoveries afforded by fMRI studies provide a solid basis
to form specific scientific hypotheses to guide future research
aimed at understanding the interaction decision and consequent
interaction behavior. We understand that the fruit of decision
neuroscience research might be applied to any domain where it
would be advantageous for one decision outcome over another.
However, our domain of interest is HAI, and therefore, our focus
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is in leveraging what is known about value based decisionmaking
to understand interaction decisions in the hopes of eventually
predicting the likelihood of one decision over another. This
goal will require future research, and we begin by forwarding
hypotheses to guide research efforts.

One of our first assumptions in this review is that interaction
decisions are in fact a case of value based decisions, and that
assumption guides our first hypothesis; interaction decisions
are a special instance of value based decisions, and therefore
the neural correlates accompanying value based decisions will
be observable during interaction decisions. One of the first
avenues of research is to demonstrate that value based decisions
and interaction decisions are analogous in that the sense of risk
and reward are inherent in both. This could be achieved by
measuring bilateral frontal alpha power during an interaction
decision to look for the characteristic asymmetry found in
situations entailing risk. Further research to support this
hypothesis should necessarily include observing the predicted
vmPFC-parietal activation found in value based decisionmaking,
during an interaction decision. The strength of this evidence, if
found, could be enhanced if concurrent with the parietal-vmPFC
activation there is significantly less activation of the dlPFC.

If our first hypothesis is confirmed, we can begin to
make more specific hypotheses. Our second hypothesis relates
to the fact that there is little understanding of the first
stage of value based decision making, the observation of
alternatives and representation of internal and external states.
Understanding this stage could be particularly important for
mitigating inappropriate behavior because it is also accompanied
by physiological changes (SC, decreased heart rate variability),
which are readily observed. We believe that future research
should be aimed at revealing neural correlates of this stage.
We hypothesize that activity in the frontal polar cortex and
in areas of the parietal cortex during, or just prior to a
conscious decision to interact with an automation will occur
along with or just prior to the physiological correlates. Evidence
previously discussed, that activation patterns in the area of
the frontal polar cortex in humans, and in the area of the
mid-parietal in monkeys, can be decoded to reveal behavioral
intention supports this hypothesis. Should this hypothesis be
confirmed, it would add significant evidence that the approach
of focusing on interaction decisions will provide an improved
method to mitigate interaction behaviors on an individual
level. For example, consider the fact that users tend to rely
on an automation in the face of risk as demonstrated by
traditional behavioral research. However, if this interaction
behavior is inappropriate, but the decision to rely can be decoded,
there is a chance to mitigate the inappropriate interaction
behavior.

While not hypotheses, we believe that future research should
also be focused on understanding the psychophysiological basis
for, or correlates of, the interaction behaviors of relying or
complying on an automation. One first step should include
finding the psychophysiological correlates of the demonstrated
tendencies of users to rely or comply with automations in
circumstances such as workload and risk. For example, what
psychophysiological processes drive a human user to perhaps

over comply with an automation in conditions of increased
cognitive workload, and are there measurable correlates that
would suggest that this is the likely interaction behavior?
Conversely, what psychophysiological correlates can be found,
apart from alpha asymmetry, that appear to suggest the human
user is perceiving increased risk, and therefore more likely to
over rely on an automation? In order to mitigate disuse, potential
psychophysiological correlates, such as particular levels of heart
rate variability, SC and EEG power require future study.

Finally, though on a longer horizon, we suggest that it might
ultimately be feasible to leverage the understanding of value
based decisions in behavioral mitigations aimed at improving
HAI system performance. Logically, management of a particular
interaction between a human and an automated system requires
a minimum of three elements. First, it is essential to understand
the capabilities and vulnerabilities of both the particular operator
and the particular automation as well as how these may vary
under different task and contextual constraints. With such
knowledge, one may be able to infer an optimal strategy for
allocation of control or decision authority, such as has been
done with behaviorally based predictions. Second, though the
behavior of automated controls is relatively predictable with
knowledge of how its control system was designed, establishing
likelihood of human behaviors is a much more challenging task.
Therefore, it is also critical to develop methods for prediction
of likely changes in operator behavior on a time-scale that
leaves room for active intervention through the understanding
of the interaction decision. Third, an understanding of how to
influence the decision process of humans in principled ways is
necessary to ultimately define appropriate systems of actuation
when inappropriate behaviors are expected. Of these three
elements, it seems that the second may be the most challenging.
This is because it is relatively trivial to establish baseline
operational or performance characteristics of both humans
and automated systems and it is already known that human
behaviors and perceptions are subject to influence by a variety
of factors, including workload, display properties, transparency,
and may be amenable to influence by other task and contextual
factors. However, predicting impending behavioral choices
is particularly challenging because this requires methods to
develop advance insight into the unfolding of the decision
process that has largely been studied through the use of fMRI.
Here, we offer one way of addressing this; by the application
of modern techniques from cognitive neuroscience and
psychophysiology.

CONCLUSION

The main purpose of this review is to explore the gap
between the understanding of TiA and the actual human user
interaction behavior which does not appear to have a clear
mapping from TiA levels. We argue in this article that, in
addition to understanding the influence of changing levels
of TiA, understanding the antecedent decision of the human
user’s interaction behavior is critical for improving HAI system
performance. Decisions have not been explicitly studied in
the context of HAI and TiA specifically, but due to the
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importance of these interaction decisions we reviewed decision
making literature and summarized findings that provide a basic
understanding of the psychophysiological processes involved in
decision making. We are particularly interested in value based
decision making because, just as in the case of TiA, if there is
no risk, the behavior ceases to be important. While the value
based decision process is not yet fully understood as it relates
to interaction behaviors, there is a significant understanding
of the underlying psychophysiological processes and correlates.
This knowledge can be used to advance hypotheses that define
a research path aimed at achieving mitigation of human user
interaction behaviors.
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