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Numerous efforts have been devoted to revealing neurophysiological mechanisms of

mental fatigue, aiming to find an effective way to reduce the undesirable fatigue-related

outcomes. Until recently, mental fatigue is thought to be related to functional

dysconnectivity among brain regions. However, the topological representation of brain

functional connectivity altered by mental fatigue is only beginning to be revealed. In

the current study, we applied a graph theoretical approach to analyse such topological

alterations in the lower alpha band (8∼10 Hz) of EEG data from 20 subjects undergoing

a two-session experiment, in which one session includes four successive blocks with

visual oddball tasks (session 1) whereas a mid-task break was introduced in the middle

of four task blocks in the other session (session 2). Phase lag index (PLI) was then

employed to measure functional connectivity strengths for all pairs of EEG channels.

Behavior and connectivity maps were compared between the first and last task blocks

in both sessions. Inverse efficiency scores (IES = reaction time/response accuracy) were

significantly increased in the last task block, showing a clear effect of time-on-task in

participants. Furthermore, a significant block-by-session interaction was revealed in the

IES, suggesting the effectiveness of the mid-task break onmaintaining task performance.

More importantly, a significant session-independent deficit of global integration and an

increase of local segregation were found in the last task block across both sessions,

providing further support for the presence of a reshaped topology in functional brain

connectivity networks under fatigue state. Moreover, a significant block-by-session

interaction was revealed in the characteristic path length, small-worldness, and global

efficiency, attributing to the significantly disrupted network topology in session 1 in

comparison of the maintained network structure in session 2. Specifically, we found

increased nodal betweenness centrality in several channels resided in frontal regions

in session 1, resembling the observations of more segregated global architecture under

fatigue state. Taken together, our findings provide insights into the substrates of brain

functional dysconnectivity patterns for mental fatigue and reiterate the effectiveness of

the mid-task break on maintaining brain network efficiency.

Keywords: functional connectivity, lower alpha, mental fatigue, graph theoretical analysis, mid-task break,
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1. INTRODUCTION

Mental fatigue commonly occurs after a prolonged period
engaging in a cognitive task (Boksem and Tops, 2008), especially
in a boring and repetitive task. The ability to successfully
implement a task is diminished under the condition of
fatigue, exhibiting the slower response speed and the increased
propensity to commit errors and lapses. In the contemporary
society, mental fatigue is a prevalent problem that office workers
have to face daily because of intense and stressful work.
Up to now, much effort has been devoted to investigating
the neurophysiological mechanism of mental fatigue (Boksem
et al., 2005; Simon et al., 2011; Craig et al., 2012; Käthner
et al., 2014; Sun et al., 2014). In these studies, a diversity of
paradigms, ranging from trial-based sustained attention tasks,
e.g., psychomotor vigilance test (Lim et al., 2012; Sun et al.,
2014) to more realistic scenario, e.g., car-driving simulation
(Lin et al., 2010), were employed to induce mental fatigue.
Among them, sustained attention tasks have been particularly
amenable to studies of mental fatigue because of their reliability
and validity for inducing mental fatigue. Moreover, the neural
mechanisms associated with sustained attention are fairly well
understood. In our previous neuroimaging study of sustained
attention (Lim et al., 2010), we found that cerebral blood flow
in the fronto-parietal regions tends to decrease as time-on-
task (TOT) increases, possibly reflecting a depletion of neural
resources, or an inability to retrieve these resources (Langner
et al., 2010).

TOT-related changes of brain electrophysiological activities
have been consistently revealed, with a large number of studies
showing that spectral power density was associated with the
effect of prolonged task (Simon et al., 2011; Craig et al.,
2012; Sauvet et al., 2014; Trejo et al., 2015). For instance,
Craig et al. (2012) have reported a spectral power increase
in widespread cortex when participants became fatigued in a
monotonous simulated driving task. Under the fatigue state,
participants paid less attention to the driving task, and showed
signs of lower cognitive capacity, which significantly changed the
representation of spectral power (Craig et al., 2012). Although
the above-mentioned studies are informative and useful in
identifying vigilance levels and characterizing spectral power
attributes of mental fatigue, they have not taken into account
temporal relationships between brain regions, which is crucial
when the attention system is challenged. These relationships
are termed by functional connectivity, referring to the activity
synchronization between brain regions that are anatomically
distinct but functionally collaborative. Functional connectivity
in sustained attention and fatigue have only been explored
in recent studies. For instance, the fronto-parietal connectivity
network relevant to mental fatigue was reported in an fMRI
study (Esposito et al., 2014). Liu and colleagues further reported
a weakened fronto-to-parietal functional coupling in the alpha
band when mental fatigue levels increased (Liu et al., 2010). This
weakened fronto-parietal connection observed under fatigue
might reflect functional deterioration in task implementation.
Because task execution required activation in the fronto-parietal
network and suppression in the default mode network, showing

anti-correlation between these two networks (Gao and Lin,
2012). The competing relationship between the fronto-parietal
network and the default mode network implies that the anti-
correlation between them should be strong without fatigue
and might be reduced under fatigue. This reduction of the
anti-correlation has been observed after a prolonged attention
task, showing increased functional connectivity between the
posterior cingulate cortex (PCC) and middle frontal gyrus
(MFG) (Gui et al., 2015). Most recently, Clayton and colleagues
proposed a model of the roles of cortical oscillations in
sustained attention and highlighted the role of inter-areal
communication via low-frequency phase synchronization in
maintaining sustained attention (Clayton et al., 2015). These
studies have only investigated functional connections between
regions and did not interrogate connectivity distribution (Liu
et al., 2010; Gao and Lin, 2012; Esposito et al., 2014; Clayton
et al., 2015). As such, they have been unable to quantitatively
comment on fatigue-related alterations of connectivity topology,
an analysis method that yields abundant information about
brain functional segregation and integration. This assessment of
functional segregation and integration is important to explore
inter-regional organization as the brain is functionally separated
to achieve specialized processes and is functionally assembled
to integrate information through interaction and coordination.
However, the investigation of connectivity topology of mental
fatigue was inadequate and the knowledge of such topology
change was still rudimentary (Sun et al., 2014).

Because of the undesirable outcomes caused by mental fatigue
(Tucker et al., 2003), great efforts have been made to find an
effective way to relieve mental fatigue. It is pervasively believed
that rest is able to relieve both physical and mental fatigues and
restore resource and energy for the following expenditure of task
execution. There were evidences that rest break was an effective
manner to maintain performance and to control accumulation
of risk in a prolonged task (Tucker, 2003; Tucker et al., 2003).
Although no one doubts the effectiveness of rest break to fatigue
mitigation, how rest should be administered (e.g., duration,
number of rest breaks) is still in debate. Furthermore, the effect
of rest break to people is divergent in relieving physical fatigue
andmental fatigue. For instance, the requirement of rest duration
for fully relieving physical fatigue varied across people, exhibiting
that the percentage of recuperative people was increased with the
increasing of the rest time (Chan et al., 2012). Besides, the rest
break was also effective in improving comfort and productivity of
workers (Dababneh et al., 2001). For the mental fatigue relief, the
restorative effect of rest is more complicated. Longer rest break
was associated with greater immediate improvement in reaction
time, but was followed by a steeper decrement in the subsequent
performance (Lim and Kwok, 2016). The efficacy of mental break
for mental fatigue mitigation was also not consistent and varied
over circumstances. Ross and colleagues showed that a short
break is helpful to reduce the speed of vigilance decrement, but
the effect of the second short break was not significant (Ross
et al., 2014). Moreover, rest was effective to relieve fatigue in
a simulated driving experiment, but the impact of break was
different among individuals (Phipps-nelson et al., 2011). If the
break was administered through switching task (switch to a task
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that consumes different resource as the current task), its benefit
on fatigue relief was not found (Helton and Russell, 2012). The
complex effect of rest break on mental fatigue motivated us
to investigate whether a rest break affects brain connectivity
architecture.

The lack of adequate exploration on fatigue-related topology
alteration and the unclear effect of a resting break on brain
connectivity architecture motivated us to set up a visual
oddball task experiment with two sessions. Four task blocks
were consecutively implemented in one session (session 1)
whereas a mid-task break was introduced in the middle of
four task blocks in the other session (session 2). Through
this experiment, we expect to address two hypotheses: (1)
brain connectivity topology is altered by the effect of time-
on-task and mental fatigue might lead to a less integrated
connectivity architecture, expressing reduced network efficiency.
(2) a mid-task break might play a role on the alteration of
connectivity topology caused by fatigue, and would make a
positive effect on maintaining connectivity network efficiency.
As consistently reported in the power spectral density studies,
the lower alpha band was closely related to mental fatigue
(Oken and Salinsky, 1992; Klimesch et al., 1998; Klimesch,
1999; Boksem et al., 2005; Craig et al., 2012; Sun et al.,
2014). Therefore, we directly focused on this band to explore
connectivity properties in this study. Phase synchronization
was utilized to construct connectivity matrices with entries
represented relationships of all pairs of channels (Stam et al.,
2009; Sun et al., 2012). Then, connectivity topology was analyzed
by a standard graph theory framework to explore underlying
connectivity architecture (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010).

2. MATERIALS AND METHODS

2.1. Participants
Twenty right-handed students and staff members from the
National University of Singapore (NUS) participated in this
study. Average age was 23.1 years old (standard deviation: 3.1,
range: 20 ∼ 32). Twelve of them are female. All participants
had normal or corrected-to-normal vision and no history of
chronic physical or mental illness. They were required to ensure
adequate sleep (more than 7 h) at two nights and to refrain
from consuming caffeine or alcohol and not to undertake
strenuous exercise within 24 h prior to the experiment. Each
participant gave the written informed consent after they were
clearly aware of the experiment. S$120 was paid to compensate
their participation. This study was reviewed and approved by the
Institutional Review Board of the NUS.

2.2. Experimental Settings
In this study, participants took part in two sessions with an
interval of approximate 1 week between sessions. Session order
was counterbalanced for participants to eliminate possible effects
of session order (half participants underwent session 1 first). Each
session comprised three resting blocks (R, 5-min long) and four
task blocks (T, 5-min long) (see Figure 1). There was an interval
of about 20 s between blocks, which allowed experimenter to reset
recording. In this short time, participant kept the position and
waited for the next block. Both sessions started and ended with
a resting block. Four task blocks in session 1 were administered
successively, while a resting block was introduced in themiddle of
task blocks of session 2. In the resting block, a white fixation cross
was presented at the center of the screen while the participant

FIGURE 1 | Experiment protocol. The experiment contained two sessions, each of which consists of 7 blocks. A resting block was presented in the middle of task

blocks in session 2, while task blocks in session 1 were all successive. The interval between two sessions was approximate 1 week. The detail of the task block is

illustrated in the middle rectangle. Each task block comprised 150 trials, each of which lasted 2 seconds. One of four letters (“q,” “p,” “b,” “d”) was displayed in the

first 200 ms, followed by a fixation cross presentation during the remaining 1800 ms.
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was instructed to blink normally and refrain from moving in
the scanner. A selective attention task was employed in the task
blocks. In each task block, one of four alphabet letters (“q,” “p,”
“b,” and “d”) was selected as target stimulus and the rest of three
letters are non-target stimuli. Besides, a null stimulus was also
used, which showed a blank screen without any letter. Each task
block consisted of 150 trials which included target stimuli (30
trials, 20%), null stimuli (30 trials, 20%), and non-target stimuli
(90 trials, 60%). For each trial, the letter was presented for 0.2 s,
followed by a 1.8-s period showing fixation cross. The order of
trials was randomized in each task block. The target letter differed
in task blocks and the sequence of target letter in each session was
also randomized for all participants. Participants were instructed
to press a unique predesignated button using their right hand
as quickly and accurately as possible when a target letter was
presented at the center of the screen while random stimuli were
being sequentially shown on the screen.

The trial sequences were generated using optseq (http://surfer.
nmr.mgh.harvard.edu/optseq). Stimuli were presented using
Psychtoolbox (David, 1997; Pelli, 1997) embedded in Matlab
R2011a (Mathwork, USA) on a NordicNeuroLab LCD monitor
32” (NordicNeuroLab Inc., Norway) behind Siemens Magnetom
Prisma scanner (Erlangen, Germany), viewed through a mirror
device placed on the head coil. Behavioral responses during
the MR scanning were collected using a Current Designs
HHSC-2×4-C (Current Designs, Inc., Philadelphia) response
pad through a Current Designs fORP 932 electronic interface.

2.3. Data Acquisition
Sixty four electrodes were used for EEG recording according
to the international 10–20 standard system by battery powered
amplifier (Waveguard, ANT B. V., Netherlands), which was
connected to the recording PC outside the scanning room
through optical wires. The cable linking the Waveguard cap
and the amplifier was attached to the scanner to avoid cable
movements during scanning. EEG was recorded with high
resolution at the sampling frequency of 4 kHz and referenced
to the average of both mastoids (M1 and M2). The impedance
was maintained below 15 k�. During concurrent EEG/fMRI
recordings, participants lay quietly inside a 3T Siemens scanner
and their heads were snugly fixed with foam pads to minimize
head motion. fMRI data were acquired with parameters: echo
planar imaging (33 slices, TR = 2 s, TE = 30 ms, slice thickness
= 3.5 mm, slice-gap = 0.7 mm, flip angle = 90◦, resolution =

74×74, in-plane resolution = 3 mm). All concurrent EEG/fMRI
recordings were conducted at the Clinical Imaging Research
Centre (CIRC) in Singapore. Only EEG data were included for
connectivity analyses in this paper.

2.4. Preprocessing and Functional
Connectivity Estimation
All EEG recordings were first denoised by a customized artifact
removal method (its schematic flowchart can be found in the
Supplementary Figure S1). Detailed description was shown in
the supplement. Briefly, EEG signals were first up-sampled to
40 kHz to facilitate volume alignment. All volumes in the
same channel were then assembled into a matrix, in which

rows represented volumes. Subsequently, canonical correlation
analysis (CCA) (Hotelling, 1936) was utilized to seek components
that maximize the correlation between volume-matrix and its
one-point lag version. Those components relevant to MRI
artifacts were removed and the remaining components were used
to reconstruct clean EEG. Because spectral power representation
during eyes-open and eyes-closed periods are prominently
different in alpha band and can be consistently observed
(Barry et al., 2009), this criterion was utilized to validate our
method whether the critical alpha difference was retained after
artifacts removal. EEG data recorded under eyes-open and
eyes-closed conditions with and without scanning were used
to assess effectiveness of the proposed method. Performance
was also compared with the state-of-the-art artifact removal
method (Optimal Basis Set, OBS) (Niazy et al., 2005) and the
comparison results were shown in supplementary materials.
It can be clearly seen that the proposed method was of
comparable performance of the OBS. The critical phenomenon
of alpha power difference was retained after artifact removal,
showing suppression in alpha power when eyes were open (see
Supplementary Figure S2).

After removing artifacts, EEG signals were down-sampled and
band-pass filtered to the lower alpha band (8 ∼ 10 Hz) using an
FIR filter with the order of 660. The filtered continuous signals
were partitioned into segments with 2-s length according to the
onsets of stimuli, resulting in 150 segments for each task block.
For each segment, phase lag index (PLI) was applied to estimate
phase synchronization that are invariant against the presence of
volume conduction and different montages (Stam et al., 2007).
Although the PLI is relatively vulnerable to random disturbance
than the weighted phase lag index (Vinck et al., 2011), this effect
can be canceled out by averaging over segments. As shown in
Rana et al. (2013), the PLI can perform well if the number
of segments was large (e.g., 80). In our study, the number of
segments is 150, which is large enough to ensure applicability of
PLI. Furthermore, the PLI has been already employed by many
studies to successfully detect intrinsic characteristics contained
in physiological signals, such as mental deterioration (Yu et al.,
2016).

Let sk(t) and sl(t) indicate time series of the kth and lth
channels in a segment. Their analytical representation can be
derived from the real signals sk(t) and sl(t) using the Hilbert
transform as follows (Tass et al., 1998; Celka, 2007; Aydore et al.,
2013)

zk(t) = Ak(t)e
jφk(t)

zl(t) = Al(t)e
jφl(t),

(1)

where Ak(t) and Al(t) are instantaneous amplitudes at time point
t, and φk(t) and φl(t) are instantaneous phases at time point t.
Then, instantaneous phase difference between sk(t) and sl(t) are
obtained by

1φk,l(t) = φk(t)− φl(t). (2)

Finally, PLI can be calculated from a time series of phase
differences 1φk,l(ti), i = 1 . . .N by Stam et al. (2007)

PLI(k, l) =
∣

∣

〈

sign[1φk,l(ti)]
〉∣

∣ , (3)
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where 〈·〉 denotes the mean value, |·| denotes the absolute value,
and sign stands for signum function. PLI value ranges from 0 to
1. A PLI value of zero means either no coupling or coupling with
a phase difference centered around 0 and π and a value of one
indicates perfect phase locking with consistent phase difference
other than 0 and π (Stam et al., 2007). The above procedure was
repeated for all pairs of channels. Subsequently, all PLIs were
assembled to form a connectivity matrix, indicating by M. The
codes for PLI implementation were from the Neurophysiological
Biomarker Toolbox (http://www.nbtwiki.net/).

2.5. Graph Theoretical Analysis
A network is defined by a collection of nodes and edges. In
our case, nodes represent channels and edges represent the
strengths of estimated PLI. Weak and non-significant edges
in a connectivity matrix may represent spurious connections
(Rubinov and Sporns, 2010), so sparsity threshold, defined as
the ratio of the number of actual edges to the number of all
possible edges in a fully connected network, is often applied
to remove those spurious connections (Rubinov and Sporns,
2010). Since there is no definitive way to determine a precise
sparsity threshold (Achard and Bullmore, 2007), we explored
graph metrics with a wide range of sparsity from 0.1 to 0.4 with
an incremental step of 0.01, resulting in 31 sparse connectivity
matrices. These sparse connectivity matrices were then binarized
to obtain connectivity matrices with entry values of either 1
(connected) or 0 (unconnected). All graph theoretical metrics
(shown in the next paragraph) were calculated based on these
binary connectivity matrices. Finally, the integrals (an integral is
equivalent to the area under the curve of that metric as a function
of sparsity) of graph theoretical metrics were calculated over
the range of sparsity (Achard and Bullmore, 2007). In this way,
summary measures that were independent of a single threshold
selection were obtained to quantitatively compare the network
properties. After respectively calculating above integrals of graph
metrics for each segment, these integrals for each metric were
averaged across all segments belonging to the same block.

In this study, we investigated connectivity topology at
both global and regional scales. Clustering coefficient (C)
and characteristic path length (L) (Watts and Strogatz, 1998;
Rubinov and Sporns, 2010) were utilized to explore local density
and integration of connectivity network. Small-worldness (σ )
(Humphries and Gurney, 2008) was employed to investigate
integrated property combining high local density and short path
length. Local efficiency (El) and global efficiency (Eg) (Latora
and Marchiori, 2001) were used to further illustrate clear and
direct physical meaning of small-wordness in terms of connective
efficiency. Betweenness centrality (Freeman, 1979) was adopted
to explore nodal importance at a regional scale. Definitions and
brief descriptions of these metrics were listed in the Table 1.
Metric calculation was implemented by using the codes from the
brain connectivity toolbox (Rubinov and Sporns, 2010).

2.6. Statistical Analysis
Linear mixed model (LMM) (Krueger and Tian, 2004) with block
and session as fixed effects and subject label as random effect was
used to compare means of behavioral measures and connectivity

metrics to determine whether there were statistically significant
effects of blocks [two levels: the first task block (T1) and the
fourth task block (T4)], sessions (two levels: session 1 and session
2), and block×session interaction. The post-hoc two-tailed paired
t-test was subsequently conducted on paired samples to check
whether there was significant difference between their means in
both directions if a significant main effect was found in the LMM
analysis. A value of p < 0.05 was considered significant. Because
of the exploratory nature of the current study, corrections for
multiple testing were not applied.

3. RESULTS

3.1. Behavioral Data Analysis
Reaction time in both sessions were increased from T1 (Session
1: 577 ± 16 ms; Session 2: 579 ± 11 ms) to T4 (Session 1: 629
± 15 ms; Session 2: 602 ± 12 ms). The increasing extent was
larger for session 1 than that for session 2. Generally speaking, all
participants performed well with high rate of correct responses
in each block of both sessions. Although response accuracy was
high in each block, we still observed a decline trend from T1
(Session 1: 98.67% ± 0.24%; Session 2: 98.37% ± 0.43%) to T4
(Session 1: 97.73% ± 0.68%; Session 2: 98.10% ± 0.68%). We
further estimated the inverse efficiency score to scale the extent
of fatigue, which dismiss possible criterion bias or speed accuracy
trade-off (Jacques and Rossion, 2007). This inverse efficiency
score was derived from that the mean of reaction time averaged
within a task block divided by the response accuracy of that
block. The LMM analyses revealed that there was a significant
block effect on reaction time [T1 < T4, F(1, 57) = 19.223, p <

0.001] and the inverse efficiency score [T1 < T4, F(1, 57) =

27.319, p < 0.001]. More interestingly, a significant block ×

session interaction was revealed in the inverse efficiency score
[F(1, 57) = 5.134, p = 0.027]. Further post-hoc test showed that
the significant interaction was attributed to a highly significant
increase of the inverse efficiency score in session 1 [t(19) =

−4.590, p < 0.001] in comparison to a significant increase
in session 2 [t(19) = −2.549, p = 0.020] (see Figure 2). No
significant block effect, session effect, and interaction (p > 0.05)
were found in response accuracy.

3.2. Global Network Properties
Quantitative statistical analyses revealed significant topological
changes in the global network metrics between both blocks
and sessions, which were conducted by comparing blocks (T1
and T4) and sessions (Session 1 and Session 2). The results
derived from the LMM statistical analyses were listed in Table 2.
A significant block effect was found in clustering coefficient
[T1 < T4, F(1, 57) = 9.806, p = 0.003], characteristic path
length [T1 < T4, F(1, 57) = 8.600, p = 0.005], local efficiency
[T1 < T4, F(1, 57) = 8.283, p = 0.006], and global efficiency
[T1 > T4, F(1, 57) = 8.916, p = 0.004]. Significant session
effect was observed in characteristic path length [Session1 >

Session2, F(1, 57) = 7.394, p = 0.009] and global efficiency
[Session1 < Session2, F(1, 57) = 6.928, p = 0.011].
More interestingly, significant block × session interaction was
discovered on characteristic path length [F(1, 57) = 4.324, p =
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TABLE 1 | Definitions and brief descriptions of the network metrics applied in this study.

Network metrics Definitions Brief descriptions

GLOBAL METRICS

Clustering

coefficient (C)
C = 1

n

∑

i ∈ N

∑

j,h∈N
mijmihmjh

ki (ki − 1)

C is the average of clustering coefficients of all nodes, reflecting the prevalence of clustered connectivity

around individual nodes. The clustering coefficient of node i is the fraction of triangles around this node

and is equivalent to the fraction of node’s neighbors that are neighbors of each other. ki is the number of

edges connected to the node i, mij is a binary value indicating connection status (mij = 1, connected;

mij = 0, disconnected), and N stands for the set of n nodes.

Characteristic path

length (L)

L= 1
n

∑

i ∈ N

∑

j∈N, j 6= i dij
n − 1 L is defined as the average shortest path length between all pairs of nodes in a network, measuring

functional integration (how well integrated a network is). dij is the shortest path length between nodes i

and j.

Small-worldness

(σ )

σ =
γ
λ

=
C/Crand
L/Lrand

σ is defined as the ratio of normalized clustering coefficient γ to normalized characteristic path length λ.

γ is a ratio of the clustering coefficient C of the tested network to the mean of clustering coefficients

Crand of 100 surrogate random networks. These random networks were generated from the original

network by randomly reshuffling edges while preserving basic characteristics of size, density and degree

distribution of the original network. λ is a ratio of L to the mean of characteristic path lengths Lrand of

100 surrogate random networks.

Global efficiency

(Eg)

Eg = 1
n

∑

i ∈ N

∑

j∈N, j 6= i d
−1
ij

n − 1 Eg is the average inverse shortest path length in the network, which is closely related to L.

Local efficiency

(El)

El = 1
n

∑

i ∈ N

∑

j, h∈Ni , j 6= h [djh (Ni )]
−1

ki (ki − 1)

El is the global efficiency only computed on node neighborhoods. djh (Ni ) is the length of the shortest

path between j and h that are in the neighborhoods (the set of nodes that directly connect to the node i)

of node i.

LOCAL METRIC

Betweenness centrality

(BC )

BCi =
1

(n − 1)(n−2)

∑

h,j∈N
h 6= j 6= i

phj (i)

phj
BC measures how important a node exerting in a network, which defines as the fraction of all shortest

paths in the network that contain this node. phj is the number of shortest paths between nodes h and j,

and phj (i) is the number of shortest paths between nodes h and j that pass through the node i.

0.042], small-worldness [F(1, 57) = 5.219, p = 0.026] and global
efficiency [F(1, 57) = 4.695, p = 0.034]. The post-hoc two-tailed
paired t-test revealed that these interactions were resulted from
significant change from T1 to T4 for session 1, but not for session
2 (see Figure 3).

3.3. Nodal Metric Results
Using LMM statistical analyses, we further localized important
nodes showing statistical mental fatigue related alterations
(Table 3). Specifically, significant block effect (T1<T4, p < 0.05)
was revealed in four channels mainly resided in the frontal area
(i.e., Fp2, FC1, FC6, and F5). Statistically significant session main
effect was found in six EEG channels (including Fp1, F4, O2, AF3,
CP4, and P6) distributed in the frontal region and right parietal
areas. Furthermore, a significant block×session interaction was
revealed in the PO8 channel, attributing to a significant reduction
of betweenness centrality in session 1 and no significant change
in session 2. Detailed post-hoc results could be found in the
Supplementary Figure S3.

To better reveal the mental fatigue related topography
alterations of brain network, we further investigated the
connectivity difference between T4 and T1 in both sessions (see
Figure 4). The left column in Figure 4 depicts the betweenness
centrality (BC) difference between T4 and T1 and black

dots highlight those nodes that showed both significant block
effect (LMM analysis) and significant difference between T4
and T1 (post-hoc analysis). For better illustrative purposes,
dominantly different connections that belonged to the top
30% of connections in difference between T4 and T1 and
shared with at least half of all subjects were shown in
the right column of Figure 4. The width of lines indicates
difference strength. Solid red lines indicate that the strength of
connections in T4 was greater than that in T1, while dotted
blue lines show the opposite case. As shown in the connectivity
topographies, connectivity edges with dominant difference for
session 1 were largely localized in the frontal cortex, while the
distribution of dominantly different edges for session 2 was
more widespread and those edges were distributed over the
entire cortex. The distribution patterns of dominant connections
were matched with that of betweenness centrality, exhibiting
consistent localization in frontal cortex in session 1 and no
obvious localization in session 2.

4. DISCUSSIONS

In this study, we utilized the graph theoretical analyses to
investigate brain connectivity topology alterations caused by
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FIGURE 2 | Behavioral data. Inverse efficiency score is derived from that average reaction time within a task block is divided by response accuracy of that task

block, which was calculated for each subject. Red bars represent average behavioral measures across subjects for session 1, while blue bars are for session 2 (light

colors indicate the first task block and dark colors indicate the fourth task block). Gray error bars represent standard errors. Asterisks at the top indicate those pairs

with statistically significant difference by the post-hoc t-test (*p < 0.05, **p < 0.005, ***p < 0.0005). The table at the bottom lists means and standard errors (SEM) of

inverse efficiency score.

TABLE 2 | Statistical analyses results of graph theoretical metrics.

Metrics Block effect Session effect Interaction

F(1, 57)[p-value] F(1, 57)[p-value] F(1, 57)[p-value]

C 9.806 [0.003]N 3.645 [0.061] 3.109 [0.083]

L 8.600 [0.005]N 7.394 [0.009]↓ 4.324 [0.042]

σ 2.081 [0.155] 0.743 [0.392] 5.219 [0.026]

El 8.283 [0.006]N 1.979 [0.165] 1.784 [0.187]

Eg 8.916 [0.004]H 6.928 [0.011]↑ 4.695 [0.034]

Boldface indicates that there is a statistical significance in a comparison. N T1 < T4; H

T1 > T4; ↑ Session1 < Session2; ↓ Session1 > Session2.

fatigue and the effect of a mid-task break on the fatigue-related
changes in connectivity topology. A block effect was observed on
inverse efficiency score, indicating the effect of TOT. Moreover,
there was a significant interaction effect on the inverse efficiency
score, reflecting that a mid-task break played a role on mitigation
of the effect of TOT. According to the results of global metrics,
fatigue led to a more segregated and less integrated connectivity
network and this alteration in the network can be reduced by
the mid-task break. Betweenness centrality results showed that
important nodes were localized in frontal cortex under fatigue
state whereas this localization was not appeared when the mid-
task break interrupted the task blocks.

4.1. Effect of Mid-task Break on Behavior
We found a significant main block effect on the inverse efficiency
score, showing that there was significant effect of the TOT.
Significant interaction was also found, which reflected that the
change of inverse efficiency score from T1 to T4 depended
on the setting of session. This revealed that a mid-task break
had significant effect on performance. The post-hoc analyses
showed that the inverse efficiency score was elevated from T1
to T4, implying a decline in the performance. We observed
significant increasing in reaction time and non-significant change
in response accuracy from T1 to T4. The significant increasing

in reaction time without significant increasing in response
accuracy suggests a genuine reduction in the capacity for timely
responding as opposed to a speed-accuracy tradeoff. With the
mid-task break, the inverse efficiency score was still significantly
elevated from T1 to T4, but the increasing extent between means
of T1 and T4 was shrunk in comparison with that in session 1
(no mid-task break). This might be attributed to short duration
of break. The effect caused by the task was not completely
eliminated within this short break. An fMRI study concluded
that the effect caused by a task can be still observed after 12
min of the task completion for some participants (Breckel et al.,
2013). Longer break could further counteract task effect and
eliminate the difference between T1 and T4. There was evidence
showing that rest duration was closely related to physical fatigue
recovery and the recovery percentage of people was increased
with the increase of rest time (Chan et al., 2012). Another possible
cause resulting in significantly different reaction time may be due
to variance between subjects. Individual differences in response
to the break has been previously reported in an experiment of
auditory oddball task (Lim et al., 2013). Inter-subject difference
could be derived from differences in the rate of resource recovery,
possibly due to the engagement of different cognitive processes
during the break (e.g., rumination). When the resources engaged
during the rest periods overlaps with resource requirement in the
task block, rest may be less effective in counteracting the fatiguing
effects of task performance (Helton and Russell, 2015).

4.2. Topological Alterations of Connectivity
Network
Topological properties changed with time engaged in the task.
The clustering coefficient and characteristic path length were
significantly increased over time in session 1, reflecting that
brain regions were more segregated and communicated with
each other less efficiently. This could be derived from the fact
that the interactions in local neural population were enhanced
to resist efficiency decline, but the communications between
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FIGURE 3 | Means and standard errors of graph metrics of functional connectivity. Bars represent means averaged across subjects and error bars indicate

corresponding standard errors. Asterisks are used to mark those pairs with statistically significant difference (*p < 0.05, **p < 0.005).

populations were partially suppressed, requiring longer transits
for information delivery. Mid-task breaks were helpful in
mitigating this effect, with lower increases in both clustering
coefficient and characteristic path length observed in session
2. In the previous study, a significant increase in path length
was reported (Sun et al., 2014), which is in line with the
finding in this study. However, they did not find the significant
change in clustering coefficient. This might be due to different
methodologies employed for constructing connectivity network.
In this study, connectivity network was obtained based on phase
synchronization that measured instantaneous phase difference,
rather than based on partial directed coherence that measured a
ratio of the outflow of node A toward node B to all outflows from
nodeA. Local efficiency and global efficiency are closely related to
clustering coefficient and characteristic path length, respectively
(Latora and Marchiori, 2001). Global efficiency is the average
inverse shortest path length, preferably characterizing integration
of connectivity network. Fatigue gave rise to an increase of
local efficiency and a decrease of global efficiency, implying that
brain resources might be reorganized and the concerted activities
within regions weremore active, but interactions between regions
were inhibited. The disruption of short paths in the functional
connectivity network resulted in lower global efficiency. In order
to compensate for the lack of efficiency, individual cortical
regions would exert a stronger influence, so that local efficiency
was largely improved. However, due to reduced global efficiency,
enhanced local efficiency was not sufficient to maintain optimal
functioning, which presumably accounts for the decline in task
performance.

4.3. Regional Alterations under Mental
Fatigue
Nodes with significant block effect on betweenness centrality
were located in frontal region, suggesting that these nodes exerted
more importantly in brain connectivity network with the state
of fatigue. The connectivity edges that were dominantly different
between T4 and T1 were relatively localized in the frontal region
in session 1, while the edges with dominant difference were

TABLE 3 | Comparison results of the betweenness centrality.

Channel Block effect Session effect Interaction

F(1, 57)[p-value] F(1, 57)[p-value] F(1, 57)[p-value]

Fp1 - 6.628 [0.013]↑ -

Fp2 4.328 [0.042]N - -

F4 - 7.949 [0.007]↓ -

FC1 4.153 [0.046]N - -

FC6 4.017 [0.0498]N - -

O2 - 5.897 [0.018]↓ -

AF3 - 5.738 [0.020]↑ -

F5 5.553 [0.022]N - -

CP4 - 4.490 [0.039]↓ -

P6 - 4.094 [0.048]↓ -

PO8 - - 6.388 [0.014]

The statistical results were obtained by the LMM analyses with main effects of Session

(session 1 and session 2) and Block (T1 and T4), and random effect of subject label. N

T1 < T4; ↑ Session1 < Session2; ↓ Session1 > Session2.

widespread when the mid-task break was introduced at the
middle of the task blocks (see the right column in Figure 4).
A more concentrated distribution under fatigue would lead
to disruption in some inter-regional pathways that functioned
for task execution. This finding is in agreement with the
result that connection disruption was associated with fatigue in
multiple sclerosis disease (Sepulcre et al., 2009). Inter-regional
connections were also necessary in the attention network for
coordinating attention-related subregions, especially the fronto-
parietal synchronization (Clayton et al., 2015). It has been found
that reductions in fronto-parietal functional connectivity were
associated with cognitive fatigue (Liu et al., 2010; Sun et al., 2014).
The widespread distribution of connectivity might be helpful
for task implementation, which may play an important role in
performing a “refresh” of processing modules so as to enhance
sensitivity of processing of a subsequent stimulus (Sadaghiani
et al., 2010). Interestingly, the distribution of nodes with large
change in betweenness centrality was not symmetric between
brain hemispheres. Such asymmetry has also been reported in
other fatigue research (Sun et al., 2014). In addition, the fatigue
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FIGURE 4 | Topographies of betweenness centrality and connectivity

differences between the fourth task block (T4) and the first task block

(T1). The left column of topographies shows the betweenness centrality

differences on each node (T4− T1). Black dots indicate those nodes that have

a significant block effect (LMM at the level of 0.05) and also have a significant

difference between T4 and T1 (post-hoc two-tailed paired t-test at the level of

0.05). The right column shows average differences of synchrony connectivity

between T4 and T1 (T4− T1) over subjects. The connectivity edges shown in

the right topographies are the top 30% differences that present in more than

half number of subjects (> 10). The width of lines encodes connectivity

strength (the wider the line, the stronger the connectivity between them). Solid

red lines indicate that connectivity in T4 was stronger than that in T1, while

dashed blue lines indicate weaker connectivity in T4.

related area observed in our study overlapped the ventrolateral
prefrotal cortex that showed associations with fatigue (Suda et al.,
2009).

4.4. Considerations and Future Work
A few considerations were addressed as follows. Firstly, we did
not find significant correlation between behavioral measures
and network metrics. We speculated that the lack of significant
correlation was probably due to subject variance and the
relatively small sample size. Subjects might experience different
amounts of mental resource depletion in task execution and
might differ in the recovery speed from mental fatigue after the
task due to individual differences in cognitive capacities. This
individual differences was supported by an fMRI study, showing
mental resilience in brain connectivity organization is different
for subjects (Breckel et al., 2013). It can lead to different changes
in network metrics for different subjects. Besides, it was reported
that inter-target interval affected brain activity. The increasing
in inter-target interval led to increasing in brain activity
over widespread cortex (Breckel et al., 2011). These causes

might give rise to an outcome that the changes in behavioral
measures did not well linearly match with the changes in
network metrics. This dramatically reduced correlation between
behavioral measures and network metrics. The relationship
between behavioral measures and network metrics should be
further clarified with more subjects in the future work. Secondly,
statistical analyses revealed that the difference of betweenness
centrality was mainly localized in the frontal cortex, part of which
was close to eyes. EEG signals measured from the area near eyes
are susceptible to electrooculogram (EOG) artifacts generated
from eye movements. Great care was taken to minimize the
influence of EOG on network analysis. Specifically, according
to visual inspection of the cleaned EEG data randomly selected
from half of the subjects, we did not find the sign of EOG
artifacts. Furthermore, we found that the distinct difference of
betweenness centrality appeared in the entire frontal region, and
its distribution was asymmetric. This asymmetric pattern was not
matched with the typical appearance of symmetry resulting from
EOG. In the session 2, we did not observe frontal localization,
which further indicated that the frontal localization in session
1 was not derived from EOG. Thirdly, as our study is an
exploratory investigation of mental fatigue related alterations in
brain networks, an uncorrected p-value of 0.05 was employed
for establishing the significance and presenting the results. It is
possible that some of the regional results may have occurred
by chance and some cautions are needed when interpreting
these results. In the current study, we focused primarily on
the interpretation of the general pattern of the findings. Hence,
we listed all exact statistic values along with the reported
findings and left them for reader’s interpretation. Fourthly,
volume conduction is an issue to sensor-space EEG analysis.
In order to largely exclude impact of volume conduction, the
PLI that is less sensitive to volume conduction was utilized
in this study to estimate connectivity strengths between brain
regions. More recently, a variant of the PLI was developed for
estimating phase synchronization (namely weighted phase lag
index) (Vinck et al., 2011), but it is more conservative than PLI,
andmight underestimate true connectivity strengths by assigning
smaller weights for those genuine connections with low phase
differences. As pointed out in (Hillebrand et al., 2012), weighted
phase lag index introduces an arbitrary bias favoring large phase
differences and mixing of the estimation of consistency of phase
differences with the estimation of the magnitude of the phase
difference. Moreover, graph metrics based on the weighted phase
lag index seem to be slightly less reliable than that of the PLI, and
have a higher inter-subject variability (Hardmeier et al., 2014).
However, the PLI is relatively vulnerable to random disturbance
compared to the weighted phase lag index, so that the latter
method is more suitable for synchronization estimation when
the number of sample segments is not large enough to diminish
the effect from random disturbance. Finally, only EEG data were
used in this paper to explore the mental fatigue related brain
network alteration. Relatively low spatial resolution of the EEG
did not allow us to precisely localize fatigue-related regions.
Most recently, using spontaneous activity of resting-state fMRI
data, Gui et al. (2015) revealed several brain regions in the
default mode network that are vulnerable to mental fatigue.
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The complementary advantages of EEG and fMRI modalities
can be utilized to make joint inferences (Ritter and Villringer,
2006). More importantly, incorporating the explorations of both
fMRI and EEG data would provide added information and more
comprehensive insights into the neurophysiological mechanism
of mental fatigue. The exploratory results in the current work
can render heuristic clues to guide the further investigations in
source space (Vecchio et al., 2015) and cross-modality analyses
in a future work.

5. CONCLUSION

We designed a visual oddball task experiment to investigate
the connectivity topology associated with mental fatigue
and the effect of a mid-task break on topology alteration
of mental fatigue. From our preliminary exploration, brain
connectivity topology was changed as increasing of time-on-
task, exhibiting that the functional connectivity network had
more segregated and less integrated representation under mental
fatigue. This fatigue-related alteration in connectivity topology
can be mitigated by a mid-task break. Betweenness centrality
results showed that important nodes were localized in frontal
cortex under fatigue state. The frontal cortex localization was
diminished when a mid-task break was introduced in the middle
of task blocks. In summary, functional connectivity topology was
altered due to mental fatigue and the mid-task break mitigated
the extent of topology alteration. Our findings might contribute

to the understanding of the effect of a mid-task break on
brain topological organization and add to our knowledge of the
cognitive neuroscience of work and rest.
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