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The non-invasive recording and analysis of human brain activity during active movements
in natural working conditions is a central challenge in Neuroergonomics research.
Existing brain imaging approaches do not allow for an investigation of brain dynamics
during active behavior because their sensors cannot follow the movement of the
signal source. However, movements that require the operator to react fast and to
adapt to a dynamically changing environment occur frequently in working environments
like assembly-line work, construction trade, health care, but also outside the working
environment like in team sports. Overcoming the restrictions of existing imaging methods
would allow for deeper insights into neurocognitive processes at workplaces that
require physical interactions and thus could help to adapt work settings to the user.
To investigate the brain dynamics accompanying rapid volatile movements we used
a visual oddball paradigm where participants had to react to color changes either
with a simple button press or by physically pointing towards a moving target. Using a
mobile brain/body imaging approach (MoBI) including independent component analysis
(ICA) with subsequent backprojection of cluster activity allowed for systematically
describing the contribution of brain and non-brain sources to the sensor signal. The
results demonstrate that visual event-related potentials (ERPs) can be analyzed for
simple button presses and physical pointing responses and that it is possible to
quantify the contribution of brain processes, muscle activity and eye movements to the
signal recorded at the sensor level even for fast volatile arm movements with strong
jerks. Using MoBI in naturalistic working environments can thus help to analyze brain
dynamics in natural working conditions and help improving unhealthy or inefficient work
settings.

Keywords: mobile brain/body imaging, EEG, embodied cognition, independent component analysis, P300, oddball
paradigm, MoBI

INTRODUCTION

Studying human brain dynamics accompanying natural cognition (Gramann et al., 2014) works
best by studying the brain under naturalistic conditions. The embodied cognition paradigm claims
that the body’s interactions with the world are an essential root of cognitive processes (Wilson,
2002). Thus it appears that perception and action should both be considered when studying
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cognitive processes and their neural basis. However,
conventional neuroimaging studies consider electrical
potentials generated by eye movement or muscle activity during
physical movements as artifacts that have to be avoided not to
contaminate the signal of interest. This view led to experimental
setups that restrict participants’ mobility and require them
to sit still or lie even in tasks that would require standing or
moving (Makeig et al., 2009; Gramann et al., 2011, 2014). These
constraints are changing the way information is perceived
and processed by the human agent as becomes obvious, for
example, with respect to the integration of proprioceptive and
vestibular information (Gramann, 2013). This kind of idiothetic
information is absent when movement is restricted or altered
in case the body orientation differs from its natural state for
a particular task. Following the embodied cognition approach
those alterations will change the concurring cognitive processes
and thereby lead to different brain activity.

Neuroergonomics as the scientific study of the human brain
in relation to performance at work and everyday settings
(Parasuraman, 2003) is faced with the challenge to investigate
the brain dynamics in environments that require physical
interaction of the operator with a system. New insights into brain
activity during physical human-machine interaction allow for the
improvement of systems to adapt to the operators’ physical and
cognitive resources (see e.g., Wascher et al., 2016; Mijovic et al.,
2016). However, traditional brain imaging approaches do not
allow for any kind of movement (Makeig et al., 2009; Gramann
et al., 2011). Mobile brain/body imaging (MoBI), in contrast, is
a general research approach that embraces a variety of (the best
fitting) hardware and software solutions to record and analyze
brain dynamics in actively behaving participants. Lightweight
and mobile sensors like electroencephalography (EEG) or
near infrared spectroscopy (fNIRS) agree with experimental
paradigms using a MoBI approach to study the brain and
body dynamics that accompany natural cognition and behaviors
including physical interaction with an environment (Mehta
and Parasuraman, 2013; Gramann et al., 2014). While fNIRS
provides relatively high spatial resolution of a restricted cortical
surface, this methods lacks the high temporal resolution that
is desirable when investigating fast cognitive processes. EEG
provides the necessary temporal resolution but has only limited
spatial resolution. However, recent investigations using MoBI
have demonstrated that equivalent dipole reconstruction of
independent components (ICs) as decomposed by independent
component analysis (ICA) allow for reconstructing the origin
of EEG activity with reasonable spatial accuracy (Gramann
et al., 2010a; Acar and Makeig, 2013). In conclusion, mobile
EEG allows for an investigation of cognitive processes in
working environments with high temporal resolution and with
sufficient spatial resolution to allow for conclusions regarding
the underlying cortical sources and their neuroanatomical
function. Such a MoBI approach no longer considers eye
movements and muscle activity as artifacts but as aspects
of cognitive activity associated with the accomplishment of
a task (Gramann et al., 2010a). By using high density EEG
recordings synchronized with motion tracking of participant’s
movements and data-driven analyses methods it overcomes

existing imaging restrictions and enables participants to behave
more naturally (Makeig et al., 2009; Gramann et al., 2011,
2014).

First MoBI studies investigated participants walking and
running on a treadmill and clearly demonstrated that brain
activity can be analyzed under such conditions (Gramann
et al., 2010a; Gwin et al., 2010, 2011). However, walking is
a highly symmetric recurrent behavior that does not include
fast movements associated with jerk. Stereotyped movements
like walking further allow for extracting templates of artifacts
based on recurrent movement patterns (Gwin et al., 2010). It
is important to investigate to what extent MoBI can be used to
measure and analyze brain dynamics during nonstereotyped and
aperiodic behaviors that include sudden orientation movements
or manual interaction with dynamic systems. First, such an
approach could be used to determine how much traditional
brain imaging results restricting participants’ movements deviate
from results in actively moving, more naturally behaving
participants. Secondly, if feasible, such an approach would
significantly increase the number of conceivable neurocognitive
studies especially in the fields of physical ergonomics and in
human-machine interaction that require physical manipulation.
Insights gained from MoBI studies comprising natural recurrent
and non-stereotyped movements would thus open up new
vistas for investigating cognition and action within the field of
Neuroergonomics and beyond.

This study investigated the feasibility of MoBI during
physical interaction with a dynamic system based on non-
stereotypical fast movements. The setup mimicked real-world
working environments that require physical interaction in a
dynamically changing system. Dynamic changes in the system
were simulated using a three-stimulus visual oddball paradigm
(Grillon et al., 1990) with participants reacting either by simple
button presses or by pointing at the moving stimulus. We
examined whether it is possible to record and analyze an event-
related P3 component during rapid pointing movements that
include strong eye movement and neck muscle activities. To this
end we compared event-related potentials (ERPs) at the sensor
level with ERPs back projected from ICs that decomposed the
sensor data into maximally statistically independent time source
series using ICA. By separating brain processes from activity
generated by muscles and eye movement and comparing these
to the scalp recorded potential allowed for a direct comparison
and evaluation of the feasibility of standard sensor based analyses
approaches during active pointing movements. In addition,
isolation of brain related activity patterns and their contribution
to the surface signal allowed for a quantification of how much
certain ICs representing brain processes contributed to the
surface signal.

MATERIALS AND METHODS

Participants
Data was collected from 15 healthy right-handed adult volunteers
(7 females, 8 males) with a mean age of 26.1 years (σ = 2.9).
All participants had normal or corrected to normal vision,
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FIGURE 1 | (A) Experimental setup: top view of a participant standing in front of the screen. The setup comprised a motion capture system with six cameras (black
rectangles) and 16 emitters (red dots), an EEG system with 156 wireless actively amplified electrodes (black dots), and the transmission system placed in a backpack
(gray). (B) Task design. Top row: a black sphere moved over the projection screen and bounced off the walls of the screen. After changes to the target color
participants responded according to the response condition either with a button press (button press condition) or a pointing movement towards the sphere (physical
pointing condition). After a response or 4 s after a color change the sphere stopped and remained on the screen for 500 ms. Subsequently the next trial started.
Bottom row: example of a trajectory of the sphere changing to the target color.

none reported a history of neurological disease and all provided
written informed consent before the experiment in compliance
with the standards as defined in the Declaration of Helsinki.
The study was approved by the local ethics committee of the
Institute of Psychology and Ergonomics of the Berlin Institute
of Technology according to the guidelines of the German
Psychological Society. Volunteers were compensated 12 e/h for
their participation. Due to technical issues the behavioral data of
three participants had to be excluded from further analysis and all
results reported are based on the final group of 12 participants.

Experimental Design and Procedure
Participants stood in front of a projection screen (W × H: 1.2
m × 1.0 m) with a light gray background placed one arm length
in front of them (Figure 1). Participants had to attend to a three-
stimulus visual oddball paradigm and were asked to react to color
changes of a moving sphere by either pointing to the stimulus
with their right index finger (physical pointing condition)
or pressing a response button (button press condition) on a
Bluetooth remote (Logitech wireless presenter R400, Logitech,
Apples, Switzerland). The response conditions were blocked
and block order was counterbalanced across participants. Each
response condition consisted of five blocks with 50 trials each.

Breaks between blocks within each response condition were
adapted to the participants needs.

Every trial began with a black sphere (ø14 cm) moving from
the middle of the screen in a randomly chosen direction and
being reflected from the borders of the projection screen. Color
changes took place uniformly randomized between 1 and 5 s after
onset of a trial. A change from black to blue indicated a target
stimulus (15%), a change to green indicated a distractor stimulus
(15%), and a change to yellow indicated a standard stimulus
(70%). Participants were instructed to react as fast and correct as
possible to the onset of the target color. After a response, or after
4 s in case no response was given, the sphere stopped moving
and remained on the screen for 500 ms. Thus, the trial duration
for correct non-target trials ranged from 5.5 to 9.5 s with an
average duration of 7.5 s. For target trials the mean trial duration
was shorter because button presses or pointing movements were
executed before the 4 s time window closed. Thus, the duration
of target trials depended on the response onset, movement speed
and movement path. Altogether the experiment lasted about 1 h.

EEG Recording
The EEG was recorded from 156 active electrodes referenced
to Cz with a sampling rate of 500 Hz and band-passed from
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0.016 Hz to 250 Hz (BrainAmps and Move System, Brain
Products, Gilching, Germany). To allow for recording of neck
muscle activity resulting from participants’ head movements, 28
electrodes were placed around the neck using a custom neck
band (EASYCAP, Herrsching, Germany). The remaining 128
electrodes were placed on the head using an elastic cap with
a custom design (EASYCAP, Herrsching, Germany). Electrode
impedances were brought below 7 kΩ. Due to a technical
problem the neck EEG data of one participant was not recorded.
Individual electrode locations were recorded using an optical
tracking system (Polaris Vicra, NDI, Waterloo, ON, Canada).

Motion Capture Recordings
Motion was captured using six cameras tracking the position of
16 red active LEDs (Impulse X2 System, PhaseSpace Inc., San
Leandro, CA, USA) placed on the shoulders, the chest, and the
right arm as well as the right index finger of the participants.
The motion tracking system generated a data stream containing
x, y, and z location and a reliability value for each LED with a
sampling rate of 480 Hz. Before each data acquisition the screen
position and orientation was calibrated to align with the motion
capture coordinate system.

All data streams, namely EEG, motion capture, events
from the experimental protocol, and behavioral data, were
synchronized and recorded using the Lab Streaming Layer
Software (Kothe, 2014).

Behavioral Analysis
In the physical pointing condition, online tracking of the LED
on the participants’ right index finger allowed to stop sphere
movement as soon as the distance between the LED and
the projection screen was smaller than 10 cm (labeled ‘‘hot
zone’’ in Figure 1). This information was also used to create
corresponding event markers. The LED was placed 5 cm apart
from the fingertip approximately over the proximal phalanx
of the index finger. The distance of 10 cm was chosen to
avoid damage to the setup due to impact of the participants’
finger with the screen. Because of occlusions the position of
the finger LED was not recorded correctly in some trials
and event markers were generated that did not match the
movement profile of the participant. For the statistical analyses
only trials with consistent event markers and motion tracking
data of the right index finger were considered. This led to the
exclusion of about 34.4% of the trials per participant in the
physical pointing condition (range: 5.2–69.9%, σ = 21.7%) with
the highest percentage of removals in standard (x̄ = 38.0%)
and distractor trials (x̄ = 38.3%) that required no response.
In these cases event markers indicated a movement even
though in most cases the velocity profile did not indicate a
response. In case of target trials on average only 13.1% were
rejected.

To calculate velocity profiles from the motion capture data
the MATLAB toolbox MoBILAB (Ojeda, 2011) was used.
Occluded samples for each LED were interpolated by using spline
interpolation and the data stream was smoothed by applying a 6
Hz low-pass zero phase distortion FIR filter before computing

the velocity data. Subsequently the velocity profiles in the
z-dimension of the LED placed on the index finger were analyzed
with custom MATLAB scripts detecting pointing movements in
the physical pointing condition on the basis of velocity peaks.
To identify response movements, only the z-axis of the motion
capture data was used indicating motions towards or away from
the screen. This excluded smaller movements not related to the
response. Based on velocity peaks defined as maximum positive
deflections preceding and being followed by lower values, the
onset, and offset of the corresponding movement were defined.
For each color change the time window from 200 to 1800 ms
after stimulus onset was selected to exclude movements unrelated
to the stimulus response. As estimated from visual inspection
only peaks with a velocity of at least 22% of the participants’
maximum finger velocity in the physical pointing condition were
regarded. This excluded smaller jerks and other movements not
related to the pointing behavior. The definition of the movement
onset is important in this context since its time-lag to the color
change was taken as response time and used for further statistical
analysis. The earliest movement onset was defined as the time
point with a velocity of 5% of the subsequent peak velocity.
To allow for a more conservative comparison of response times
in the physical pointing condition with response times in the
button press condition, increasing percentage values (>5%) of
the subsequent maximum peak velocity were analyzed. The
resulting movement onset distributions were then compared
to response time distributions in the button press condition
where no velocity profiles or force time-series could be derived.
Response time statistics were calculated by means of a one-
way analysis of variance (ANOVA) with subsequent correction
for multiple comparisons using honestly significant difference
(HSD) contrasts (Tukey, 1949).

EEG Analysis
EEG Data Preprocessing
Data analysis was done by custom Matlab scripts based on the
open source EEGLAB toolbox1 (Delorme and Makeig, 2004) .
Figure 2 shows a flow chart explaining the whole data processing
pipeline. The data was filtered using a high-pass filter (1 Hz)
and a low-pass filter (120 Hz) and subsequently down sampled
to 250 Hz. Single channels and time periods containing artifacts
were removed by visual inspection of the data. Eye movements
were not considered as artifacts. Artifact rejection was performed
with an EEGLAB function automatically removing channels in
case they contained zero activity for more than 5 s or revealed a
correlation value below 0.6 with neighboring channels and time
windows containing more than 30% noisy channels. On average,
132 EEG channels remained for further analyses (range: 114–142;
σ = 8.1).

In a next step the data was re-referenced to an average
reference and then parsed into maximally temporally
independent and spatially fixed components (ICs; Makeig
et al., 1996) using an adaptive ICA mixture model
algorithm (AMICA; Palmer et al., 2006, 2008) which is a

1http://www.sccn.ucsd.edu/eeglab
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FIGURE 2 | Flow chart explaining the data processing pipeline.

generalization of former ICA approaches as the infomax
(Bell and Sejnowski, 1995; Lee et al., 1999a) and the
multiple mixture approach (Lee et al., 1999b; Lewicki
and Sejnowski, 2000). After the first iteration the model

was trained for 10 iterations rejecting time windows with
a likelihood below 4 standard deviations (SDs). For the
remaining parameters the default settings were used (Palmer,
2016).
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For each IC an equivalent dipole model was computed
using a boundary element head model (BEM) based on the
MNI brain (Montreal Neurological Institute, MNI, Montreal,
QC, Canada) as implemented by DIPFIT routines (Oostenveld
and Oostendorp, 2002). To this end corresponding landmarks
(nasion, ion, vertex and ears) were aligned by rotating and
rescaling each individually measured electrode montage. The
use of an average head model decreases the accuracy of
source localization and thus we refer to the approximation
of the spatial origin of surface activity using the description
‘‘in or near’’ a specific structure. ICs primarily accounting
for brain, eye or neck muscle activity were selected for
further analysis based on their time courses, spectra, and scalp
topographies as well as the location and residual variance
of their corresponding dipoles. Dipoles placed outside of the
head model were not further considered. This resulted in 594
remaining ICs for all participants with an average of 49.5
ICs per subject (range: 31–92, σ = 17.3,

∑
= 594). The

weights and spheres returned from the AMICA decomposition
were copied to the down sampled, high- and low-pass filtered
continuous EEG data excluding the same channels that were
excluded for ICA decomposition. Missing channels were
interpolated.

EEG Group Level Analyses
The continuous data was epoched into 3 s long epochs
with onset of a color change including a 1 s pre-stimulus
baseline. Only epochs with correct responses were included
in the study. Artifactual epochs containing fluctuations above
1000 µV or data values outside of 5 SDs on the sensor level
were rejected in an iterative fashion keeping at least 95% of
the total trial numbers per iteration. The remaining epochs
( x̄ = 370.5 per participant, σ = 53.1) were subsequently
combined into a study. The study comprised a 2 (response
condition) × 3 (stimulus type) factorial design providing main
effects for the two independent variables as well as their
interaction.

Distances between all ICs were calculated with the weighted
measures of ERP, power spectrum (for a frequency range of
3–75 Hz), event-related spectral perturbations (ERSPs), inter-
trial coherences (ITCs), the components’ scalp maps and
their equivalent dipole model locations using the EEGLAB
preclustering function. For all measures (except dipole location
with only three dimensions) a principal component analysis
(PCA) reduced the dimensionality to the first 10 principle
components. The resulting measures were normalized, weighted
and combined into cluster position vectors. Dipole locations
were weighted by a factor of 25 to promote spatially
tight clusters and to compensate for its low dimensionality.
ERSPs were weighted with a factor of 10 as they were
assumed to express the most relevant time-varying information
regarding the task. All other measures were weighted with
the standard weighting of 1. Subsequently a PCA restricted
the resulting cluster position vectors to a 10-dimensional
subspace.

Clustering was done via a K-means algorithm implemented
in EEGLAB with the number of clusters set to 36. By default,

ICs with a distance of more than 3 SDs to the mean of
any cluster centroid in joint measure space were assigned to
an outlier cluster. The same was done manually for ICs if a
cluster contained more than one IC of a participant relying
on the same measures as for the calculation of the cluster
position vectors. The residual variance of the equivalent dipole
models of the remaining ICs was about 10.5% for all ICs
representing brain processes (range: 1.3–47.7%, σ = 7.4%) and
about 23.7% for all other ICs (range: 2.8–69.1%, σ = 14.3%).
Overall, 302 ICs were assigned to the outlier cluster and
292 ICs were assigned to the other clusters (range: 20–30,
x̄ = 24.3, σ = 2.6 ICs per participant). Of those 292 ICs, 106
ICs revealed equivalent dipole locations within the gray matter
of the head model (range: 7–11, x̄ = 8.8, σ = 1.4 ICs per
participant).

RESULTS

Behavioral Data
An exemplary velocity profile for one physical pointing response
with corresponding events derived from the velocity profile and
the system generated markers is displayed in Figure 3 illustrating
a typical pointing movement. In most cases, movements towards
the screen were faster than the subsequent backward movements
to the initial position.

Response times were significantly faster in the physical
pointing condition (x̄ = 383.1 ms, σ = 40.7 ms) than in the
button press condition (x̄ = 515.8 ms, σ = 52.9 ms) when
response onsets in the physical pointing condition were defined
as starting at 5% of the subsequent peak velocity (p < 0.001).
The means for each condition and participant are shown in
Figure 4. Significant differences in response onsets between the

FIGURE 3 | Pointing movement velocity profile as a function of time
with corresponding markers. The y-axis displays the z-component of the
velocity in m/s with positive values corresponding to motion towards the
screen. The blue vertical line indicates a color change of the moving sphere to
the target color. The green and magenta vertical lines indicate the movement
onset and offset, respectively. The red vertical line indicates the velocity peak.
The black vertical line indicates a distance between LED and projection screen
below 10 cm.
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FIGURE 4 | Mean onset response times (threshold criterion 5% of
subsequent max. velocity) for all participants in the physical pointing
and button press condition. x-axis displays the participant index, y-axis the
response time in ms. Error bars show standard deviation.

two response conditions were observed up to a threshold of
53% of the subsequent peak velocity (p < 0.05; x̄ = 474.3 ms,
σ = 41.5 ms).

Response accuracies were very high with an average
of only 0.24% and 7.99% false alarms to color changes
indicating a standard stimulus in the button press and
physical pointing condition, respectively. Incorrect responses
to distractors revealed comparable tendencies with 1.13% and
7.47% false alarms for button presses and physical pointing
responses, respectively. In cases of color changes indicating
a target stimulus only 0.20% misses were observed for the
button press condition and no incorrect responses at all (0%)
in the physical pointing condition. While for both standard and
distractor stimuli more incorrect responses were observed in the
physical pointing condition, target stimuli were associated with
less incorrect responses when participants had to point at the
moving object. However, only 3 out of 12 participants committed
errors in the physical pointing condition while eight participants
committed errors in the button press condition. Due to the
absence of incorrect responses in the majority of participants no
further statistical analyses was conducted. Table 1 displays mean
and standard deviations of response errors in all conditions.

TABLE 1 | Means and standard deviations of response errors for all
conditions.

Physical pointing Button press

Standard x̄ = 7.99%, σ = 0.2155 x̄ = 0.24%, σ = 0.0036
Distractor x̄ = 7.47%, σ = 0.2407 x̄ = 1.13%, σ = 0.0175
Target x̄ = 0.00%, σ = 0.0000 x̄ = 0.20%, σ = 0.0067

FIGURE 5 | Probability of electrodes to be included in subsequent
analyses as a function of electrode location. Warm (red) colors indicate
higher probabilities.

EEG Data
Rapid volatile pointing movements were associated with
increasing artifactual activity stemming from both physiological
and mechanical sources. To correct for artifactual activity, the
EEG signal was cleaned in the time and channel domain (see
‘‘Materials and Methods’’ Section). Cleaning in the channel
domain revealed a specific topography for channels with a high
probability to be removed. Figure 5 displays the probability for
each channel to be included in the analysis plotted with respect
to its scalp position.

Channels were most likely to be removed in five different
regions of the montage with the highest likelihood of removal for
channels located to the left and right posterio-inferior locations
in the montage. One position over the midline located near
Cz and two lateralized areas around FT7 and TP8 also showed
a high likelihood of channel removal. On average, a subset of
24 channels were removed from the montage before further data
analyses (range: 14–42).

Event-Related Potentials on the Sensor
Level
Changes in the color of the moving sphere were associated
with ERPs including a late positive complex at parietal sensors
in the time range of the P3. Figure 6 displays ERPs with
onset of color changes indicating standard, distractor, and target
stimuli for the button press and the physical pointing condition
for the electrode closest to the parieto-central electrode of the
international 10–20-system (referred to as Pz’ in the following).
To investigate differences in the P3 component measured at
the scalp, mean amplitudes in the time range from 400 to
800 ms after a color change were submitted to a 2 (response
condition) × 3 (stimulus type) repeated measures ANOVA.
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FIGURE 6 | Grand average event-related potential (ERP) at Pz’. Upper
panel displays scalp potentials in the button press condition, lower panel
displays scalp potentials in the physical pointing condition. Blue: standard
stimuli, green: distractor stimuli, magenta: target stimuli. The dark gray area
displays the latency range of the mean topographic EEG maps for the different
stimuli and response conditions.

Greenhouse-Geisser corrected p-values are reported in case of
non-sphericity. The results revealed a significant main effect
of stimulus type (F(2,22) = 8.58, p = 0.010, η2 = 0.343) and a
tendency for the response condition (F(1,11) = 3.32, p = 0.084,
η2 = 0.247) but no interaction effect (F(2,22) = 2.99, p = 0.208,
η2 = 0.133). Post hoc HSD contrasts (Tukey, 1949) revealed
that the P3 amplitude for targets in the pointing condition
was significantly higher than for standards in both response
conditions (all ps < 0.009) as well as distractors in the button
press condition (p = 0.02). Comparing P3 amplitudes for targets
and distractors in the pointing condition revealed only a trend
towards significance (p = 0.09) and there was no significant
difference between targets in the physical pointing and the button
press condition (p = 0.14). There were no significant differences
between any of the stimuli in the button press condition (all
ps> 0.70).

While both response conditions were associated with
increased P3 amplitudes for targets as compared to standard
stimuli and distractors, the physical pointing condition
demonstrated stronger amplitude increases in the time range of
the P3 as compared to the button press condition. The stronger
effect in the pointing condition could have been caused by
increased processing demands or a generally higher alertness in
a condition that required fast responses to a dynamically moving
target. However, because the P3 component was located in a time

FIGURE 7 | (A) Equivalent-dipole locations of neck muscle (dark gray), eye
movement (bright gray) and brain-based independent components (ICs) and
their cluster centroids (large spheres, corresponding color) projected to the
horizontal, sagittal, and coronal views of the standard Montreal Neurological
Institute (MNI) brain. (B) Mean projections to the scalp of brain-based IC
cluster centroids with index (Cls #), number of participants (# Ss), and number
of ICs (# ICs) for each cluster.

window that also comprised participants pointing responses,
increased P3 amplitudes might have been confounded with
non-brain related processes. The rather strong jerks of the rapid
pointing movements could have added mechanical artifacts
induced by the movement. In addition, physical pointing at a
moving target required constant coordination of eye, head, and
arm movements that, due to volume conduction of the corneo-
retinal potential and neck muscle activity, likely contributed to
the P3 component at the sensor level. To further investigate to
what extent signals from brain and non-brain sources like eye
movements or muscle activity contributed to the sensor signal
the correspondent independent component processes were
analyzed.

Contributions of Brain, Neck Muscle and
Eye Movement Activity Related ICs
Clustering of ICs resulted in 26 clusters with cluster centroids
located to the gray matter of the brain model or in
regions of the model indicating eye movement or neck
muscle activity. Figure 7 displays clusters of IC processes
(smaller spheres) and their respective cluster centroids (larger
spheres) reflecting brain dynamics, eye movement and muscle
activity.
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TABLE 2 | Variance in µV2 in the −200 to 1000 ms time range for the total data and separately for clusters of eye movement, neck muscle, and brain
activity.

Total variance Eye variance (pvaf) Neck variance (pvaf) Brain variance (pvaf)

Standard Physical pointing 2.39 1.58 (82.4%) 0.03 (3.6%) 0.17 (7.4%)
Button press 3.45 2.12 (87.9%) 0.01 (−0.2%) 0.07 (3.8%)

Distractor Physical pointing 4.46 1.26 (38.2%) 0.56 (12.0%) 0.53 (13.8%)
Button press 3.04 2.71 (83.3%) 0.04 (−2.7%) 0.14 (8.2%)

Target Physical pointing 19.32 1.98 (15.3%) 6.09 (56.6%) 1.33 (10.6%)
Button press 3.17 1.62 (63.9%) 0.05 (3.6%) 0.43 (34.3%)

Brackets show the corresponding pvaf in %. Columns are displaying values separately for the cluster combinations and rows display values to standard, distractor and

target stimuli in the physical pointing and button press condition.

Back projection of event-related activity originating from
different clusters to the sensors allowed for quantifying the
contribution of brain and non-brain sources to the sensor P3
component. ERPs of clusters with a centroid located to the gray
matter of the brain as well as clusters representing eye movement
and neck muscle activity were selected for back projection. The
absolute variance and the percent residual variance accounted
for (pvaf) with respect to the P3 envelope was computed for all
clusters for the time interval between 200 ms before stimulus
onset to 1000 ms post stimulus. The pvaf of a specific cluster
is defined as 1 − R where, R is the quotient of the absolute
variance of the remaining clusters (after excluding the considered
one) and the absolute variance of all clusters. The pvaf has an
upper bound of 100% but can be negative if its projection to the
scalp electrode cancels the projected signal of another cluster.
This can happen in case ICs are spatially non-orthogonal. Pvaf
values were used to estimate the relative share of certain clusters
within one condition. Absolute variances, in contrast, allowed
for comparing the contributions of one or more clusters to
the sensor level in different response conditions where relative
values could be misleading due to differences in overall absolute
activity.

Table 2 shows the resulting absolute variances and pvafs.
Here, the total variance refers to all 36 clusters resulting
from the clustering, while neck variance refers to 12 clusters
indicating neck muscle activity, eye variance refers to two clusters
contributing to horizontal and vertical eye movements, and
brain variance to 12 clusters located to the gray matter of the
brain. Figure 8 displays in gray the back-projected summed
sensor signal envelope based on all brain, eye, and neck muscle
clusters and in red from left to right the contribution of clusters
accounting for eye movements, neck muscle activity, and brain
activity, respectively.

Relative Contribution of Clusters to the
Envelope
Button Press Condition
The relative contributions to the ERP envelope for standard
stimuli in the button press condition was high for eye movement
activity, only marginal for neck muscle activity, and low
for brain processes (eye: 87.9%, neck: −0.2%, brain: 3.8%).
Decreasing contribution of eye movement activity and increasing
contributions of brain processes was observed for distractor

stimuli (eye: 83.3%, neck: −2.7%, brain: 8.2%) and target stimuli
(eye: 63.9%, neck: 3.6%, brain: 34.3%).

Physical Pointing Condition
The contributions to the envelope of the ERP for standard
stimuli in the pointing condition (eye: 82.4%, neck: 3.6%, brain:
7.4%) were similar to those in the button press condition with
slightly stronger contributions of neck muscle activity and brain
processes. This trend grew stronger for distractor stimuli (eye:
38.2%, neck: 12.0%, brain: 13.8%) with a pronounced drop in
eye movement contribution. For targets neck muscle activity
exceeded all other processes considerably (eye: 15.3%, neck:
56.6%, brain: 10.6%).

Absolute Contribution of Clusters to the
Envelope
Button Press Condition
In the button press condition the absolute variance of
all non-brain and brain processes was relatively stable for
standard (3.45 µV2), distractor (3.04 µV2) and target stimuli
(3.17 µV2). The absolute contribution of clusters representing
eye movements revealed 2.12 µV2 for standards, 2.71 µV2 for
distractors, and 1.62 µV2 absolute variance for targets. For
clusters with the equivalent dipole model of the cluster centroid
located in or near regions of the head model indicative of
neck muscles the absolute variance increased from standard
(0.01 µV2) to distractor (0.04 µV2) and target stimuli (0.05 µV2).
The same trend was observed for clusters representing brain
activity contributing 0.07, 0.14, and 0.43 µV2 absolute variance
for standard, distractor, and target stimuli, respectively.

Physical Pointing Condition
In the physical pointing condition the absolute variance
of all non-brain and brain processes strongly increased
from standard (2.39 µV2) and distractor (4.46 µV2) to
target stimuli (19.32 µV2). The absolute contribution of
clusters representing eye movements revealed lower values
compared to the button press condition explaining 1.58 µV2

for standards, 1.26 µV2 for distractors, and 1.98 µV2,
for targets. The absolute variance for clusters representing
neck muscle activity increased from standard (0.03 µV2)
to distractor (0.56 µV2) and target stimuli (6.09 µV2). A
comparable pattern was observed for brain activity with
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FIGURE 8 | (A) Bigger spheres represent cluster centroids and smaller spheres display individual ICs representing horizontal and vertical eye movement activity (left),
neck muscle activity (middle) and brain activity (right). The two clusters representing eye activity in the left column consisted of 12 ICs and 11 ICs, respectively. Neck
muscle activity in the middle column is represented by 12 clusters comprising an average of 7.8 ICs (range: 4–10, σ = 1.5). Brain activity is represented in the right
column by 12 clusters comprising on average 8.8 ICs (range: 6–11, σ = 1.5) from 12 participants. Cluster locations are projected onto the standard MNI brain volume
and displayed in sagittal, horizontal, and coronal views. (B) Red: ERP contributions of clusters representing eye movement (left), neck muscle (middle), and brain
(right) activity. Light gray: ERP envelopes of all 36 back-projected clusters. The dark gray area displays the latency range of the P3 component from 400–800 ms
after a color change. The left and right columns display envelopes for the button press and the physical pointing condition, respectively, with rows displaying from top
to bottom the different stimuli (standard, distractor and target).

the lowest absolute variance for standard (0.17 µV2) and
distractor stimuli (0.53 µV2), followed by target stimuli
(1.33 µV2).

In summary, the absolute variance and the increase in
absolute variance for clusters representing brain and neck
muscle activity were more pronounced in the physical pointing
condition, with clusters representing neck muscle activity
explaining by far the highest amount of the sensor envelope
for target stimuli. In contrast, eye movement contributions were
lower for standard and distractor stimuli in the physical pointing
condition.

Compared to neck muscle and eye movement activity, the
contribution of brain processes to the surface potential was
relatively small in both response conditions demonstrating a
prominent role of non-brain sources for sensor based ERP
analyses during active movements of the head and upper torso.

To further investigate the brain dynamics accompanying
target processing in the physical pointing as compared to the
button press condition, all non-brain clusters were excluded and
only brain-related activity was back projected to the sensor level.

Relative Contributions of Brain Activity to
the Sensor Event-Related Potential
Examining the grand average ERP from back-projecting all
clusters representing brain activity revealed which clusters

TABLE 3 | Variance in µV2 in the 400–800 ms time range for all clusters
contributing to brain activity and separately for the parietal and ACC
clusters.

Total Parietal ACC
brain variance variance

variance (pvaf) (pvaf)

Standard Physical pointing 0.32 0.004 (6.2%) 0.098 (68.6%)
Button press 0.14 0.004 (3.6%) 0.055 (72.5%)

Distractor Physical pointing 0.43 0.020 (11.7%) 0.094 (39.5%)
Button press 0.25 0.010 (20.1%) 0.076 (58.8%)

Target Physical pointing 3.11 0.954 (55.4%) 0.486 (0.3%)
Button press 0.87 0.130 (38.2%) 0.084 (1.5%)

Brackets show the corresponding pvaf in %. Columns are displaying values

separately for the cluster combinations and rows display values to standard,

distractor and target stimuli in the physical pointing and button press condition.

contributed most to the sensor level variance in the time window
of the P3 component of the ERP. Table 3 displays the explained
absolute and relative (pvaf) variance for the parietal and anterior
cingulate cortex (ACC) clusters for each condition in the 400–800
ms time window. For pvafs and absolute variances of all brain
clusters, see Supplementary Table 1.

The absolute variance of the sensor ERP explained by brain
processes increased from standard (0.14 µV2) to distractor
(0.25 µV2), and target stimuli (0.87 µV2) in the button press
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FIGURE 9 | (A) Bigger spheres represent cluster centroids and smaller spheres individual ICs with the cluster centroid located in or near the anterior cingulate cortex
(ACC; left) and the dorsal parietal cortex (right). Cluster locations are projected onto the standard MNI brain volume and displayed in sagittal, horizontal, and coronal
views. One cluster, located in the left ventral ACC (talairach coordinates: x = −5, y = 9, z = 34, corresponding to BA 24/BA 32) consisted of nine ICs. A second
cluster located near the right ventral ACC (x = 3, y = 24, z = 6, near to BA 24) comprised eight ICs and a third located near to the right dorsal ACC (x = 12, y = 26,
z = 31, corresponding to BA 9/BA 32) comprised 10 ICs from 12 participants. For the clusters near the parietal cortex, one was located in the left parietal cortex
(talairach coordinates: x = −19, y = −42, z = 39, corresponding to BA 31) and consisted of 11 ICs. A second cluster located in the posterior parietal cortex (x = 11,
y = −66, z = 38, corresponding to BA 7) comprised seven ICs from 12 participants. (B) Red: ERP contributions of the clusters located in or near the ACC and the
parietal cortex, respectively; light gray: ERP envelope computed by back-projecting all clusters located in the gray matter of the brain model. The dark gray area
displays the latency range of the P3 component from 400–800 ms after a color change which was used for calculating corresponding pvafs. The left and right
columns display envelopes for the button press and the physical pointing condition, respectively, with rows displaying from top to bottom the different stimuli
(standard, distractor and target).

condition. The same trend was observed for the physical pointing
condition with lowest absolute variance for standards (0.32 µV2)
and distractor stimuli (0.43 µV2), followed by target stimuli
(3.11 µV2). The amount of variance explained and the increase
in explained variance was stronger in the physical pointing
condition.

The general pattern observed for the contribution of all brain
clusters was also observed for the backprojection of a subset
of clusters with their centroids located in or near the anterior
cingulate and parietal cortex. Three clusters (Cls 5, 21, and
24) representing brain activity in or near the ACC explained
lower absolute variance for standard (0.098 µV2) and distractor
stimuli (0.094 µV2) than for target stimuli (0.486 µV2) in
the physical pointing condition. A different contribution was
observed in the button press condition with increasing absolute

variance for standards (0.055 µV2) to distractors (0.076 µV2),
and targets (0.084 µV2). Because of the general increase in
absolute variance in the target condition the relative contribution
of the ACC clusters was considerably more pronounced for
standard and distractor stimuli than for the target related P3
(see Figure 9). The relative contribution of the ACC clusters
for standard stimuli was 68.6% and 72.5%, for distractor
stimuli 39.5% and 58.8% and for target stimuli 0.3% and
1.5% in the physical pointing and the button press condition,
respectively.

Parietal clusters explained increasing variance with the lowest
contribution for standard stimuli (0.004 µV2), followed by
distractor (0.010 µV2) and target stimuli (0.130 µV2) in the
button press condition. This increase from standard to target
was also observed for the physical pointing condition with 0.004,
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0.020, and 0.954 µV2 for standard, distractor and target stimuli,
respectively. With 55.4% in the physical pointing condition and
38.2% in the button press condition the two parietal clusters
contributed the most to the P3 signal for target stimuli. The
right panel of Figure 9 displays two clusters located in or
near the parietal lobe and their summed backprojected ERP
activity relative to the envelope of all ICs representing brain
activity.

Beyond the contribution of the described clusters located in or
near the ACC and parietal lobe, other clusters also contributed
to the sensor envelope for target stimuli in the P3 time range
in the physical pointing condition. These clusters were located
in or near the junction of the left parietal and occipital cortex
(x = −40, y = −73, z = 27 corresponding to BA 39/BA 19)
explaining 38.3%, the right motor and premotor cortex (x = 40,
y = −6, z = 54, corresponding to BA 6/BA 4) explaining 14.8%,
and the left dorsolateral prefrontal cortex (x = −43, y = 22,
z = 31, corresponding to BA 9) explaining 9.8% of variance of
the sensor envelope (see Supplementary Table 1 for additional
cluster contributions in the button press condition).

The Contribution of Brain Activity to the P3
at Pz’
To analyze the brain dynamic contribution to the maximum
of the P3 at the central parietal electrode, only ICs with their
equivalent dipole model located to the gray matter of the brain
were back projected to Pz’ (see Figure 10). The resulting summed
activity was analyzed with respect to the response condition and
stimulus type. To this end mean ERP amplitudes at Pz’ were
calculated for a time window ranging from 400 to 800 ms after
a color change of the sphere and tested for statistical differences
using a 2 × 3 repeated measures ANOVA with the factors
response condition (physical pointing vs. button press) and

FIGURE 10 | Grand average ERP at Pz’ based on backprojection of
clusters representing brain activity. Upper row displays scalp potentials for
the button press condition, the lower row for the physical pointing condition.
Blue: standard stimuli, green: distractor stimuli, magenta: target stimuli.

stimulus type (standard, distractor, target). Greenhouse–Geisser
correction was performed in cases where the assumption of
sphericity was violated.

The analysis revealed a significant main effect of the response
condition (F(1,11) = 11.70; p = 0.006; η2 = 0.515) and stimulus
type (F(2,22) = 16.04; p = 0.001; η2 = 0.593). The interaction
of both factors was also significant (F(2,22) = 12.47; p = 0.003;
η2 = 0.531). Post hoc HSD contrasts revealed that P3 amplitudes
were significantly higher for targets in the pointing condition as
compared to standards and distractors in the pointing condition
(all ps < 0.001) as well as for standards, targets, and distractors
in the button press condition (all ps< 0.001). In the button press
condition the P3 amplitude was significantly higher for targets
than for standard stimuli (p < 0.02) but did not differ from
distractor stimuli (p> 0.19).

DISCUSSION

In the present study, a visual oddball paradigm was used
to investigate the feasibility of MoBI during volatile rapid
movements. The systematic manipulation of response
requirements to color changes of a dynamically moving object
allowed for a direct comparison of ERPs during simple button
presses and active physical pointing. Whereas earlier studies
demonstrated that treadmill walking introduces comparatively
more eye movements than neck muscle activity (Gramann
et al., 2010a) the impact of neck muscle activity was much
stronger in the present study with non-stereotyped pointing
movements accompanying a wide range of different velocities
and movement directions. To react properly in the physical
pointing condition participants were requested to move fast
and accurately requiring continuous tracking of the stimulus
accompanied by eye and head movements and, whenever a target
appeared, rapid arm and head movements integrating visual
information from the dynamically moving object to intercept
the target. This mimicked the fundamental difference between
traditional imaging approaches using simple button responses
and the MoBI approach allowing for natural interaction with the
environment.

The present study revealed important new insights into
the brain dynamics accompanying physical interaction with
a moving object. Firstly, the study clearly demonstrated that
MoBI is feasible for recording and analyzing embodied cognitive
processes and the accompanying brain/body dynamics during
volatile rapid movements in a realistic 3-D environment.
Secondly, applying blind source separation methods to the EEG
signals recorded during the visual oddball paradigm allowed
for separating and clustering ICs corresponding to neck muscle
activity, eye movements or brain processes. This way it was
possible to analyze the contribution of different clusters to the
scalp signal revealing strong activity of neck muscles during
the physical pointing response resulting from head orientation
changes and compensation of shoulder and arm movements
during pointing. Thirdly, movement onsets and corresponding
reaction times in the physical pointing condition demonstrated
significantly faster response onsets as compared to the button
press condition. Fourthly, analysis of the data in the time range
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of the P3 component revealed a clear P3 in both response
conditions at the sensor level as well as the level of cluster
activity. This manifested in significantly higher mean ERP
amplitudes for target stimuli as compared to standard stimuli as
well as increasing absolute variance for standard, to distractor,
and target stimuli in both response conditions. Finally, back-
projecting all brain-related clusters to the centro-parietal sensor
showed significantly higher P3 amplitudes for target stimuli in
the physical pointing condition compared to the button press
condition. This finding indicates different brain dynamics for
different behavioral states and has far-reaching implications in
the field of Neuroergonomics.

Natural Cognition and the Contribution of
Brain and Non-Brain Sources
During physical interaction with a dynamically moving object,
non-brain sources stemming mainly from eye movements and
neck muscle activity as well as mechanical artifacts strongly
diminished the observable fraction of brain activity recorded
on the scalp and avoided meaningful analysis of sensor-based
potentials without further preprocessing. However removing all
ICs not associated with brain activity allowed for analyzing the P3
component and the contribution of different clusters to its time
course revealing the following findings.

Clusters contributing to the sensor P3 component were
mostly in line with the results of previous studies. As in Makeig
et al. (2004), central parietal, motor and occipital processes
contributed to the P3 with the largest contribution of parietal
clusters to the onset of target stimuli. The contribution of brain
processes located near or in the ACC was in line with previous
findings using an oddball paradigm during treadmill walking
(Gramann et al., 2010a).

The explained variance of brain related sources increasing
from standard, to distractor, and target stimuli were found in
both response conditions, with a stronger effect in the physical
pointing condition. This is consistent with the assumption
that a potential physical interaction with the environment
requires additional cognitive and motor processes and thus
leads to higher computational effort. In the present study it
was necessary to track the position and movement direction
of the relevant object and body parts required for orienting
to and interacting with the stimulus. Physical interaction with
target stimuli required action planning, execution, and control.
Those processes were not required for frequent standard and
rare distractor stimuli reflected in smaller amplitudes and
lower variance in clusters reflecting brain processes. However,
distractors attracted more attention and potentially triggered an
initial response. This response had to be suppressed resulting in
additional inhibitory processes and accompanying brain activity
as indicated by higher variance for distractor stimuli than for
standard stimuli.

Clusters representing neck muscle activity also accounted
for increasing variance from standard, to distractor and target
stimuli in both conditions. The increase was stronger in the
physical pointing condition where a correct response to the target
required a pointing movement comprising movement of the
head, shoulder and arm. Those movements were accompanied

by strong neck muscle activity as observed for target stimuli
in the physical pointing condition. Since the readiness to act
was very high, as indicated by faster response times and the
absence of any misses, it is likely that rare distractor stimuli
caused the initiation of response movements. Even in case
the response was subsequently inhibited for distractor stimuli,
response initiation would be reflected in higher neck muscle
contribution to distractor than to standard stimuli.

Finally, clusters representing eye movements explained more
variance in the sensor signal in the button press as compared
to the physical pointing condition for standard and distractor
stimuli. One possible explanation is that in the physical pointing
condition head alignment to the stimulus position facilitated
physical movements in that direction. As a consequence of
increasing head movements during stimulus tracking, less eye
movements were required for keeping the moving stimulus
in the visual field. However, since the sphere kept moving
after the color change, successful pointing movements to
targets required an ongoing prediction of its future position.
This caused extended coordination of eye and arm movement
resulting in an increase of variance explained by eye movements.
In the button press condition a simple button press was
sufficient to respond to a color change requiring no further
coordination of eye movement and physical response. In
addition, the visual stimulus stopped moving after response
execution rendering stimulus tracking unnecessary. This would
have resulted in a decrease of corresponding variance for
target trials compared to distractor and standard trials in both
conditions.

Limits of MoBI
The present study required continuous head and eye movements
during stimulus tracking causing electrical potentials on
the surface electrodes superposing the EEG signal. This
happened especially for target stimuli in the physical pointing
condition where a correct response demanded arm movements
accompanied by strong jerks associated with increased neck
muscle activity. Subsequently no significant mean ERP difference
was found on the scalp electrodes in the P3 time range between
physical pointing and button press for target stimuli. Volume
conducted non-brain activity in the recorded EEG signal is an
inevitable consequence of active movements of the participants.
Using ICA for separating brain related from non-brain related
activity and back projecting the former to the Pz’ revealed
the expected differences between those conditions. Thus, MoBI
proved feasible for analyzing event-related EEG dynamics of
participants performing rapid pointing movements in a realistic
3-D environment.

However some caveats were identified in this study indicating
potential constraints of the MoBI approach for investigating
natural movements. These included an increase of artifact
contaminated trials and channels as well as higher residual
variances compared to EEG studies with stationary participants
that are not allowed to move their heads.

A relatively high number of trials had to be removed
due to inconsistencies between markers written online
during the experiment and those derived afterwards from
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the velocity profiles. Thus the amount of considered data
was decreased impeding statistical analysis especially in the
physical pointing condition. Future MoBI experiments will
need a setup fully covered with fixed cameras minimizing the
risk of LED occlusions and camera movement causing such
inconsistencies.

Related to the reduced number of trials due to technical
problems, the impact of movement-related mechanical artifacts
like cable sway was reflected in a specific distribution of
the probabilities for channels to be removed. Jerks and
micromovements of the electrodes over the skin surface
associated with fast response movements led to impedance
changes with strong artifactual activity affecting the outmost
neck electrodes in the posterio-inferior regions. The central
midline area as well as the two lateral regions over the scalp
in contrast were most likely affected by cable pull during head
movements due to the cable routing over the scalp to the back.
This is one likely explanation for the high rejection rate of
those electrodes. The lateral regions near the mastoid processes
were predestined for bad contact with high impedance leading
to artifactual activity due to the fit of the cap. For further
MoBI experiments a redesign of electrode attachment or cable-
free electrodes has to be considered to increase the number of
channels that can be analyzed.

Finally, in contrast to non-MoBI studies the ICA results
revealed many ICs with large residual variances that would
not be included into the clustering process applying standard
selection criteria (e.g., Gramann et al., 2010b). However muscle
activity and eye movements originate in regions of the head
that are usually not included in the head model for source
reconstructions rendering it difficult to calculate suitable dipole
models. Moreover, muscle contraction causes tissue movements
which could result in dipole displacement. Thus, although in
general higher residual variance is associated with decreased
result accuracy, dipoles with relatively large residual variances
were included in the analysis. A future improvement would be
the introduction of forward models including neck muscles and
their contraction profiles as additional parameter for the inverse
solution.

Implications on Neuroergonomics
Research
The faster response onsets in the physical pointing condition
might be the consequence of another brain dynamic state caused
by the need of physical interaction with the stimulus. In addition,
the physical pointing condition might have led to increased
motivation and more fun for this response format as reported by
the participants after the experiment. However, using movement
and velocity profiles for the purpose of additional brain activity
analysis requires the definition of corresponding features that
are widely used and accepted. Defining the movement onset
as a fixed percentage of the corresponding maximum velocity
as in this study was only one possible solution. Other criteria
might be useful in different contexts like a fixed absolute
velocity or acceleration value which would be independent of
individual movement differences. A general definition should
be discussed and established to increase comparability of

experimental results in the field of Neuroergonomics and for
MoBI research in general. Importantly, comparing different
onset criteria starting from 5% of the corresponding peak velocity
up to 53% of the corresponding peak velocity still indicated
faster responses in the physical pointing condition as compared
to button presses. Whether this was simply due to the fact that
participants enjoyed the physical response format or whether
interception of a dynamically moving objects was associated
with a generally different behavioral and brain dynamic state
will have to be investigated in future experiments. There are
clear arguments in favor of state differences in brain dynamics
depending on the behavioral state. Introducing a task that
requires large volatile movements not only produces muscle
activity and eye movements but also requires additional processes
that allow for movement planning, control and execution.
This additional processes will be reflected in changes in brain
dynamics. Moreover, the oddball paradigm required constant
attention directed towards a sphere that moved within the
borders of a large screen in front of participants. In addition,
the physical pointing condition necessitated the prediction
of the targets’ movement to integrate this information with
proprioceptive information about position and orientation of
the arm and hand for concurrent dynamic motor planning
and execution. Continuous observation and integration of
environmental aspects with complex motor programs causes
higher computational effort and can be assumed to lead to
different brain dynamic states compared to passive observation.
This is indicated by the significantly increased amplitude of the
P3 and faster response onsets in the physical pointing condition
compared to the button press condition. It would be important
for future investigations to analyze the impact of stimulus speed
on the brain dynamic state since higher speeds increase task
difficulty and thus affect head and eye movement velocities.

This has significant implications for Neuroergonomics
investigating the brain at work, especially in case the working
environment requires physical interaction with a dynamic
system. The physical pointing task required the participants
to actively interact with their environment using fast, precise
movements of the upper torso and the arm and hand. This
generalizes to a wide range of working tasks where people
have to manipulate objects as, for example, in assembly-line
work or construction trade. Future studies might investigate the
brain dynamics underlying spatially extended movements with
different velocities including team sports or spatial orientation
with or without navigation assistance. Studying the brain activity
in the described work settings could provide valuable insights
into the cognitive processes and the limits of the cognitive
system and thus allow for suggestions how to increase system
safety. For example, the degree of interaction seems to be
one factor improving working environments by influencing
motivation, reaction time and task complexity. Another factor
to be considered is the body posture since active movement is
naturally associated with an upright posture whereas cognitive
neuroscientists still investigate sitting or lying participants.
Changes in brain dynamics due to different body postures could
have an impact on result quality and information processing
speed.
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Investigating the human brain dynamics accompanying
physical interaction with dynamically moving objects for the first
time, this study clearly demonstrated that it is possible to record
and analyze EEG activity during volatile rapid movements.
Thus, future MoBI studies examining the mentioned aspects will
have an important impact on Neuroergonomics specifically and
cognitive neuroscience in general.
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