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We are frequently exposed to hand written digits 0–9 in today’s modern life. Success in

decoding-classification of hand written digits helps us understand the corresponding

brain mechanisms and processes and assists seriously in designing more efficient

brain–computer interfaces. However, all digits belong to the same semantic category

and similarity in appearance of hand written digits makes this decoding-classification a

challenging problem. In present study, for the first time, augmented naïve Bayes classifier

is used for classification of functional Magnetic Resonance Imaging (fMRI) measurements

to decode the hand written digits which took advantage of brain connectivity information

in decoding-classification. fMRI was recorded from three healthy participants, with an age

range of 25–30. Results in different brain lobes (frontal, occipital, parietal, and temporal)

show that utilizing connectivity information significantly improves decoding-classification

and capability of different brain lobes in decoding-classification of hand written digits

were compared to each other. In addition, in each lobe the most contributing areas and

brain connectivities were determined and connectivities with short distances between

their endpoints were recognized to be more efficient. Moreover, data driven method

was applied to investigate the similarity of brain areas in responding to stimuli and

this revealed both similarly active areas and active mechanisms during this experiment.

Interesting finding was that during the experiment of watching hand written digits, there

were some active networks (visual, working memory, motor, and language processing),

but the most relevant one to the task was language processing network according to the

voxel selection.

Keywords: Brain decoding-classification, brain connectivity, object representation in the brain, Bayesian network

classifiers, similarity analysis

INTRODUCTION

The latest advancements in cognitive science point out that distinct activities of the brain might be
recognized using neuroimaging data. This attempt for designating brain activities to the recoded
brain data is called “brain decoding.”

Brain decoding might be utilized to assist physically handicapped individuals (with motor or
speech difficulties) along with enhanced brain–computer interface for brain reading, studying
brain activity in non-communicative brain injured patients, and detecting the presence of
awareness in these patients (Haynes and Rees, 2006; Boly et al., 2007; Sitaram et al., 2008).
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Examining the variations in people’s perception, learning
differences in brain operations such as attention, accessing visual
items/materials of dreams, or imaginations along with realizing
the brain representation of sensory data are usual purposes of
brain decoding (Haynes and Rees, 2006; Thirion et al., 2006; Kay
et al., 2008).

Decoding-classification decides which category of stimuli
evoked the recorded brain activity. Most decoding-classification
studies tried for decoding visual stimulus images of some
categories like faces, houses, cats, etc. (Haxby et al., 2001;
Carlson et al., 2003; Cox and Savoy, 2003; Hanson et al.,
2004; Kamitani and Tang, 2005; O’Toole et al., 2005;
Polyn et al., 2005; Ng et al., 2012; Varoquaux et al., 2012).
They have applied a restricted variety of stimulus classes
with substantial between-class differences and still some
decoding performances are certainly not good enough. As
a case in point, Eger et al. (2009) performed decoding-
classification of computer digits 2, 4, 6, and 8 and obtained
a precision of <60%. van Gerven et al. (2010) obtained a
discrimination accuracy of more than 70% for decoding-
classification of hand written digits 6 and 9. Damarla
and Just (2013) achieved a precision of 66% in decoding-
classification of computer digit-picture stimuli 1, 3, and 5.
Therefore, enhancing decoding-classification continues to be a
demanding problem, and it is the target of the current research
as well.

In present study, we aimed at decoding classification of
hand written digits 0–9. This is a challenging set of stimuli
for decoding-classification since all stimuli belong to a single
semantic category (Eger et al., 2009) and they are also similar
in appearance (similarity exists between some prototypes of the
digits like 1 and 7, 5 and 6, 3 and 8, 9 and 8, etc.). For this
set of stimuli, it seems that similar looking stimuli will activate
same regions/networks of the brain which respond to low level
features. Having found an efficient and effective approach for
this tough decoding-classification, we might improve decoding-
classification generally and employ gained experience in other
decoding-classification cases.

Conceptually, brain connectivity is a key feature of each
brain state and may be used for brain decoding. A review of
brain decoding studies shows that brain connectivity information
have been merely utilized as distinguishing features (as inputs
for different classifiers, not in determining the classifier itself)
in procedures of decoding-classification (Richiardi et al., 2010,
2011; Shirer et al., 2012; Mokhtari and Hossein-Zadeh, 2013).
However, several experiments have established the significance
of activation correlation between brain locations (Averbeck
et al., 2006; Chen et al., 2006). Taking into consideration
the brain connectivity, in a recent investigation Yargholi
and Hossein-Zadeh (2016) made an effort in hiring brain
connectivity information in decoding-reconstruction of two
hand written digits 6 and 9. They picked Bayesian networks
because these models take advantage of connectivity to
spell out probabilistic distributions effectively and provide
facilities to exploit probability theory in numerous difficult
problems. In this paper, we take the advantages of Bayesian
networks for decoding-classification. Additionally, employing

the Bayesian network classifiers (other than naïve Bayes
classifiers) in brain decoding is a novel application of
this tool.

Naïve Bayes is the most basic Bayesian network classifier.
This classifier has an assumption of feature independence,
far away from some real world circumstances. However,
researches in machine learning has found out that more
complex Bayesian network classifiers without assumption of
independence may result in accuracy increase. So far naive Bayes
has been the only Bayesian network classifier used in brain
decoding-classification. Following the assumption of feature
independence, brain connectivity information are ignored.
Therefore, to investigating the effect of brain connectivity on the
efficiency of decoding-classification, more complicated Bayesian
network classifiers are required. In this way, the enhancement
of decoding-classification was studied, exploiting brain
connectivity information in the form of dependence between
features.

As a way to investigate the accuracy of suggested strategy,
whole head functional Magnetic Resonance Imaging (fMRI) was
acquired, and decoding-classification was performed on the brain
activity (fMRI data) while pictures of hand written digits 0–9
were shown to the subjects.

Another specification of present study is that whole brain
fMRI was recorded and the majority of anatomically defined
areas from all the lobes were analyzed so there was an
opportunity to compare their performance in the same task.
Besides, it is possible to compare obtained results with
some previous studies which used fMRI data of specific
lobes; Eger et al. (2009), and Damarla and Just (2013) used
fMRI data of parietal lobe for decoding-classification and
van Gerven et al. (2010) performed classification based on
fMRI data of occipital lobe. However, in most brain decoding
researches, partial brain fMRI data has been employed in
the analysis. Even decoding of complex visual stimuli have
employed brain activity in early visual regions. Cowen et al.
(2014) reported visual stimuli reconstruction based on brain
activity outside the occipital lobe. They reconstructed stimuli
of face images accurately even when excluding occipital
lobe.

In addition to classification, similarity of brain areas in
responding to stimuli was also investigated applying data driven
exploratory method; hierarchical agglomerative clustering. This
similarity analysis unfolded areas responding the same to
the stimuli. Another interesting finding of this analysis was
determining ongoing mechanism during the experiment. It
was fortunate that recoding whole brain images brought
us the opportunity of not missing active brain areas or
mechanisms.

Next section deals with fMRI data, the theory of Bayesian
networks, Bayesian network classifiers, and the procedure of
current study for decoding-classification and similarity analysis
in details. Section Results contains the results obtained by
the proposed method. After that, the Section Discussion and
Conclusions presents discussion and conclusions of the results.
Besides, some suggestions are brought up to develop brain
decoding.
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FIGURE 1 | Examples of stimulus images (hand written digits).

METHODS

The specification of subjects and recorded fMRI data are
present in Sections Subjects and MRI data. In order to employ
Bayesian network classifiers for decoding-classification, naïve
Bayes classifier, and an augmented version of that were selected.
In the augmented naïve Bayes classifier, the structure of Bayesian
network (edges between features) were extracted using structure
learning algorithms and added to the structure of naïve Bayes
classifier. In this regard, the Bayesian networks, their parameter
and structure learning and Bayesian network classifiers (naïve
Bayes classifier and augmented naïve Bayes classifier) are
discussed in the following. Then the decoding-classification
procedure (including cross validation, voxel selection, and
classification) and similarity analysis are explained. Readers
familiar with Bayesian networks (BN) may skip Section Bayesian
networks since it includes some theories on BNs. While, their
application in this research is explained in Section Decoding-
Classification.

Subjects
Three right-handed healthy participants, mean age 28 years (SD
= 2.65; range = 25–30 years), took part in the study and gave
written informed consent approved by Review Board of Tehran
University. The participants were not paid for participation.

Magnetic Resonance Imaging Data
The stimuli consisted of 1000 hand written gray-scale digits
at a 28 × 28 pixels resolution. For each digit (0–9), 100
unique instances were randomly chosen from the MNIST
database (http://yann.lecun.com/exdb/mnist). Figure 1 shows
some examples of these stimulus images. The stimuli were
presented using Psychtoolbox-3 (Brainard, 1997). The stimulus
presentations were scaled and centered to fill the full visual field
(9◦ degrees of visual angle). A central red fixation dot (0.3◦ of
visual angle) was shown during the whole experiments. In each
run, after an initial 10 s fixation period, each stimulus was shown
for 1 s, followed by 9 s of black background (in each trial, a hand
written digit was presented).

The stimuli were presented to subjects through front
projection. A screen was made in-house from wood and other
non-magnetic materials. During front projection, the projector is
mounted in the control room and projects into the scan room
through the window, while the screen is floor mounted at the
end of the patient bed. The subject lies down on their back inside

the scanner and can view front projected images by the use of a
mirror inside the scanner.

To ensure continuous and complete attention of participants
throughout the entire recording sessions, they were asked to
focus on red fixation dot at the center of the screen and
detect brief (50ms) appearance of a green dot at random
distinct peripheral locations (Figure 2). Detection was reported
by pressing a response box button as fast as possible. The green
dot appeared three times randomly during each trial with at
least 2 s time period between two consecutive appearances. The
digits were presented in pseudo-random order where instances
of all 10 digits were shown in each 10-consecutive-trial to avoid
repetitions of the same digit. The experiment was held in four
sessions and each session lasted almost 40min partitioned into
four runs interspersed with 5min rest periods. Structural scans
were also performed in one of the sessions.

Magnetic Resonance Images (MRIs) were collected at the
Medical Imaging Center of Imam Khomeini Hospital Complex
(Tehran, Iran) with a Siemens 3T MRI system using a 32 channel
head coil. Blood oxygenation level dependent (BOLD) functional
images were acquired using a single-shot gradient EPI sequence;
with repetition time (TR) of 2.5 s, echo time (TE) of 30ms,
GRAPPA acceleration factor of 4, 83◦ flip angle, 46 oblique-axial
slices, isotropic voxel size 2.2 × 2.2 × 2.2mm, FoV = 222mm).
Moreover, a whole-brain anatomical image was also recorded
with the same MR sequence (with the same parameters but more
slices) as a whole brain EPI data, to assist the registration. One
structural image was also acquired using an MPRAGE sequence
(TR= 2.3 s, TE = 3.03ms, isotropic voxel size 1× 1× 1mm, 176
sagittal slices, FoV = 256mm). Putting foam cushions around the
head during scans, it was attempted to reduce the subject’s head
motion as much as possible.

fMRI data were analyzed using fMRI Expert Analyzing Tool
(FEAT) version 6.00, part of FMRIB Software Library (FSL,
version 5.0.7, www.fmrib.ox.ac.uk/fsl). To reach the steady state
in the image weights, the first four volumes from the beginning of
the data were removed. Then, data were preprocessed including:
prewhitening using FILM; motion correction using MCFLIRT
(Jenkinson et al., 2002); BET brain extraction; slice timing
correction; high pass filtering with a cutoff of 100 s; and no
spatial smoothing. Thereafter, a standard general linear model
(GLM) was applied to derive the response of voxels to each
unique stimulus. There was a set of 16 runs with almost the
same duration and GLM was applied to the data of each run
independently. The GLM design matrix consisted of regressors
each corresponding to one stimulus representation (1 s) and six
nuisance regressors encoding movement parameters. Contrast
definition also included one contrast for each stimulus to
provide us with t-statistic. Then computed response (t-value)
for each stimulus was used for pattern analysis. The motivation
to use t-statistic instead of beta is to exclude noisy voxels by
incorporating the standard deviation.

To improve the registration, the whole brain EPI volume
was used and a three-stage registration was performed using
linear registration (FLIRT: Jenkinson and Smith, 2001; Jenkinson
et al., 2002); 1. Partial Brain to Full Brain EPI (six degrees
of freedom), 2. Full Brain EPI to Structural (seven degrees of
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FIGURE 2 | Paradigm of visual stimulation for recording fMRI data.

freedom), 3. Structural to Standard MNI152-T1-2mm (twelve
degrees of freedom). The resulted transformations were applied
to transform EPI volumes from subject space to standard MNI
2mm space.

Besides, gray-matter masks of frontal, occipital, parietal, and
temporal lobe in MNI space were produced using Wake Forest
University PickAtlas (http://fmri.wfubmc.edu/cms/software) to
parcellate the response volumes and the pattern analysis
procedures were applied using responses from only one lobe at
a time.

The rest of the analyses were performed using MATLAB (The
MathWorks, Natick, MA, USA).

Bayesian Networks
Readers familiar with Bayesian networks (BNs) may skip Section
Bayesian networks since it includes some theories on BNs.
While, their application in this research is explained in Section
Decoding-classification. Bayesian networks are directed acyclic
graphs (DAGs) that provide an efficient representation of the
joint probability distribution for a set of random variables.
Essentially, a Bayesian network consists of two components
(G,2). G is a DAG with vertices corresponding to the random
variables X1, . . . , Xn and edges showing direct dependencies
between them. 2 is the set of parameters quantifying the
network. 2 includes a parameter θxi|5xi

= P(xi|5xi ) for each
possible value xi of Xi and 5xi of 5Xi (5Xi is the set of
parents of Xi in G). Parameters are usually shown in tables or
functions, one for each variable, in the form of local conditional
distributions of a variable given its parents. G expresses the
independence assumptions: each variable Xi is independent of
its non-descendants given its parents in G. Based on these
independencies, the joint probability distribution is broken down
to local conditional distributions (Bishop, 2006; Koller and
Friedman, 2009):

P(X1, . . . , Xn) =
∏n

i = 1
P

(

Xi|5Xi

)

=
∏n

i = 1
θXi|5Xi

. (1)

Therefore, the number of parameters required to specify
a probability distribution is decreased and the posterior
probabilities, given evidences are efficiently estimated.

Parameter Learning in Bayesian Networks
Having the structure of a BN determined, parameter estimation
methods such as Maximum Likelihood Estimation (MLE) or
Bayesian Parameter Estimation are applied on dataset to compute
the parameters of local conditional distributions, 2.

Suppose that D = {x1, x2, . . . , xn} is a sample set
of independent and identically distributed (IID) observations
coming from a distribution with an unknown probability density
function f = f (θ) that belongs to a given family of distributions,
where θ is a vector of parameters for this family. The goal of MLE
is to find θ that predicts D well (Koller and Friedman, 2009).
Formally, the goal ofMLE is tomaximize the following likelihood
function:

L (θ : D) = f (D|θ) = f (x1, . . . , xn|θ) =
∏n

i = 1
f (xi|θ). (2)

In general, likelihood function for m nodes X1, . . . , Xm of a
given BN structure is

L (θ : D) =
∏n

i = 1
P(xi : θ) =

∏n

i = 1

∏m

j = 1
P(xij |yij : θj)

=
∏m

j = 1
Lj(D : θj), (3)

where xi = (xi1, . . . , xmi), xji is ith sample of random variable Xj

and Yj is the parent of Xj (Koller and Friedman, 2009).

Structure Learning in Bayesian Networks
The structure of a Bayesian network is either determined by an
expert based on his knowledge of the problem or it is extracted by
the application of structural learning algorithms on the data set.

Our goal is to impose structure (edges) on naïve Bayesian
structure to model the interactions between attributes.
There are two different procedures for structure learning:
constraint-based and search-and-score (Jordan, 1999).
A constraint-based approach starts with a graph with all
possible edges. Then, using the available dataset, conditional
independencies between variables are investigated to delete
some edges. Frequent use of independence tests is the
disadvantage of this approach which leads to loss of
statistical power. Search-and-score methods rank network
structures according to a goodness-of-fit index and perform a
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heuristic optimization for the best DAG’s structures (Murphy,
2004).

Until now, the search-and-score has been mostly preferred
to constraint-based approach. The number of DAGs is a
super-exponential function of the number of nodes (variables),
therefore the full search of DAGs’ space is impossible. To tackle
with this problem global searches such as Markov Chain Monte
Carlo or local searches such as greedy hill climbing are employed
(Wesley, 1994).

To extract the structure, in this study, Hill Climbing Greedy
Search approach from search-and-score category (Li and Dai,
2005; Russell and Norvig, 2009; Korb and Nicholson, 2010) is
used. An empty graph is the start point of the search and the
score is computed for all graphs in the neighborhood of the initial
graph. Then, the neighbor graph with maximum score is selected
for the next step. The neighborhood of a Bayesian network
includes graphs that differ only by one insertion, reversion
or deletion of an edge from the main graph. This procedure
terminates when no better structure is found after a specified
number of steps or when the whole structure space is searched.

Friston (2011) defines effective brain connectivity as the
influence that one neural system exerts over another, either at
a synaptic or population level. Dynamic causal modeling and
structural equation modeling are some methods for extracting
effective connectivity. These are confirmatory approaches that
need a priori models (Kim and Horwitz, 2009; Bajaj et al., 2013,
2014, 2015). In contrast, Zheng and Rajapakse (2006), Rajapakse
and Zhou (2007), and Idea et al. (2014) have successfully
used structural learning of BNs to discover the effective brain
connectivities which is an exploratory approach. This is a
remarkable advantage over the above-mentioned conventional
methods for extracting effective brain connectivities.

It should be mentioned that the procedure of structure
learning of Bayesian Networks for extracting effective
connectivity ignores time lags and assumes all effects to be
simultaneous (Friston, 2011).

Bayesian Network Classifier
In a Bayesian network classifier, the set of random variables is
{A1, . . . ,An,C}, where the variablesA1, . . . ,An are the attributes
and C is the class variable. Consider a graph structure where the
class variable is the root (it doesn’t have any parents), 5C = ∅,
and each attribute has a parent set, 5Ai for 1 ≤ i ≤ n. For this
graph structure, Equation (1) yields

P(A1, . . . , An,C) = P(C)
∏n

i = 1
P

(

Ai|5Ai

)

(4)

and applying the definition of conditional probability,

P(C|A1, . . . , An) = α . P(C)
∏n

i = 1
P

(

Ai|5Ai

)

(5)

is derived, where α is a normalization constant (Friedman et al.,
1997).

Naïve Bayesian Classifier
The structure of a naïve Bayes classifier, a simple Bayesian
network classifier, is shown in Figure 3. This network structure

FIGURE 3 | A naïve Bayes classifier; A1, . . . ,An are attribute nodes, C

is the class label node and there are edges between class label node

and each attribute node.

clearly bears the assumption of a naïve Bayesian classifier; every
attribute Ai is independent from other attributes, given the
state of the class variable since the local conditional probabilities
include just an attribute and the class variable:

P(C|A1, . . . , An) = α . P(C)
∏n

i = 1
P

(

Ai|5Ai

)

= α . P(C)
∏n

i = 1
P (Ai|C). (6)

The conditional probability of each attribute Ai given the class
label C is learned from the data. Then, classification is performed
using Bayes rules to estimate the probability of each state for class
variable, given specific values for A1, . . . ,An. Finally, the class
with the highest posterior probability is chosen as the classifier
prediction.

Naïve Bayes classifiers have yielded acceptable results in
different classification tasks. However, its assumption on
attribute independences is unrealistic and it should be noted
that, if two attributes are correlated, then the naive Bayesian
classifier may over-amplify the weight of the evidence of these
two attributes on the class variable just due to the assumption of
attribute independences (Friedman et al., 1997).

Augmented Naïve Bayes Classifier
Naïve Bayes classifier’s assumption on the attribute
independences is undoubtedly unrealistic. To effectively
address this limitation and to improve the performance of the
classification, the independence assumptions were relaxed and
the structure of the Bayesian classifier was learned from the
data. To make sure that all attributes contribute in classification,
class variable has to be a parent for each and every attribute.
Formally, the posterior probability P(C|A1, . . . , An) is required
to involve all attributes (Friedman et al., 1997). Therefore, to
resolve the risk of missing some vital attributes for classification,
here the structure of the classifiers include the structure of
the naïve Bayes as a basis. Then, to include the dependencies
between attributes, more edges are added to the structure of
naïve Bayes classifier. Extracting these additional edges from
data is performed following the structure learning algorithms
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FIGURE 4 | An augmented naïve Bayes classifier; A1, . . . ,An are

attribute nodes, C is the class label node and there are edges

between attribute nodes plus edges between class label node and

each attribute node.

in Bayesian networks. An example of augmented naïve Bayes
classifier is shown in Figure 4.

Decoding-Classification
The present study aims to design classifiers to categorize the brain
responses associated with stimulus classes, i.e., 10 digit classes. To
reach this goal, the response from only one brain lobe (frontal,
occipital, parietal, or temporal) was proceed at a time.

Classifiers were trained to recognize cognitive states associated
with watching hand written digits using the evoked pattern
of functional activity (t-statistic). To assess classification
performance, trials were partitioned into training and test sets
(see cross validation below). To decrease the dimensionality
of data, informative features (voxels) were selected from
the training set before classification. To ensure an unbiased
estimate of classification accuracy, classifiers were trained
using the selected features from training set and evaluated
on the test set. This is then compared to chance level
performance, which in this classification is 10% as there are 10
classes.

Cross Validation
To verify the whole information contained in the dataset,
cross validation is frequently used. Therefore, a 10-fold cross
validation was applied. In a 10-fold cross validation, all dataset
was randomly partitioned to 10-folds with each fold including
equal number of samples from all classes. Each time a different
fold is left out as the test data and the remaining nine-folds set up
the training data. All classification procedure would be repeated
10 times and the mean of the resulted classification accuracies
is reported as the final classification accuracy. Various classifiers
were applied to the same training sets and evaluated on the same
test sets (cross validation folds were the same for all pattern
analysis).

It should be noted that all training process used just the
training data and the test data did not play any role in feature
selection or training classifier.

Voxel Selection
As it is mentioned above, feature selection must be applied
just on the training data. Feature selection is employed
to choose relevant features (voxels) and remove irrelevant
ones (useless features, carry no discriminant information)
to improve the generalization capability/performance of the
classifiers.

Fisher score, a supervised univariate filter method, was
used for voxel selection. A supervised univariate filter method
evaluates individual features according to their separability
power, independently from other features, and without applying
any learning algorithm. Such methods are both computationally
efficient and less prone to overfitting than other strategies for
feature selection like multivariate methods or wrapper and
embedded ones.

Fisher score is designed to optimize sample separability (Zhao
et al., 2013). Fisher score chooses features which have the similar
values for samples drawn from the same class and different values
for samples from different classes (Duda et al., 2001) with the
following formulation

Fisher score
(

fi
)

=

∑c
j = 1 nj(µi,j − µi)

2

∑c
j = 1 njσ

2
i,j

. (7)

In Equation (7) c is the number of classes, µi is the mean of the
feature fi, nj is the number of samples in the jth class, andµi,j and
σ 2
i,j are the mean and the variance of fi on class j, respectively.

The selected voxels are then given as input to the classifiers.

Classification
After voxel selection, naïve Bayes and augmented naïve Bayes
classifiers from the family of Bayesian network classifiers were
used for classification. Learning Bayesian network classifiers
includes two stages; structure learning and parameter learning.
For the naïve Bayes classifier the structure is defined so
learning includes just the parameter estimation and it was
done through MLE procedure. For augmented naïve Bayes, at
first structural learning is required. To specify the structure,
effective connectivies between voxels were extracted by applying
the Hill Climbing Greedy Search algorithm with an initial
empty graph and the score of Bayesian information criteria.
Then, corresponding edges to the obtained brain effective
connectivities were added to the structure of naïve Bayes
classifier to complete the structure of an augmented naïve
Bayes classifier. At the end, MLE was employed for parameter
learning. In this way by including brain effective connectivities,
the main concern about the naïve Bayes classifiers is addressed;
the bias induced by the independence assumption no longer
exists.

Similarity Analysis
Various brain regions were used in decoding-classification
of hand written digits. Here is the question; which brain
regions have similar responses to the stimuli? Or which brain
regions were evoked by similar aspects of the stimuli? And
what were those aspects? These questions were addressed
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FIGURE 5 | The accuracy of decoding-classification (mean accuracy ± SEM) vs. number of voxels 50–550 (horizontal axis) used for classification in

different lobes for all subjects.

for Brodmann areas (BAs) of the brain (Brodmann and
Garey, 2005; Clark et al., 2010). The reason for choosing
Brodmann partitioning of brain is that during the past century
clinical findings and neurophysiological studies have shown the
agreement between micro structural differences and cortical
function specialization for these areas (Zilles and Amunts,
2010).

In this study, responses of active voxels in every BA to
each stimulus were averaged resulting in one response vector
containing 1000 elements (number of stimuli) for each BA. It
should be noticed that active voxels don’t cover all BAs. In
this step, to visualize BAs similarly responding to the stimuli,
a data driven exploratory method (hierarchical agglomerative
clustering) was applied on the average BAs’ responses for all
subjects.

Hierarchical agglomerative clustering assumes that some
categorical structure exist, but it does not consider any
assumption on grouping of BAs into categories. It tries to
discover the categorical divisions of BAs and reveal them in
hierarchical cluster trees (Hastie et al., 2009).

RESULTS

Decoding-Classification
In order to perform decoding-classification of hand written
digits in different brain lobes (frontal, occipital, parietal, and
temporal), after partitioning the data to the train and test sets
and voxel selection, naïve Bayes and augmented naïve Bayes
classifiers were used and classification accuracy was obtained for
each cross-validation. Figure 5 shows the accuracy of decoding-
classification, mean accuracy ± standard error of mean (SEM),
vs. the number of voxels used for classification (50–550) in
different lobes for all subjects.

In all brain lobes performance of naïve Bayes and augmented

naïve Bayes classifiers were significantly above chance level

[Kolmogorov–Smirnov (KS) test with significance level of 0.01].

As it is shown in Figure 5, augmented naïve Bayes classifier

produces more accurate decoding (KS test with significance level
of 0.01).

When using naïve Bayes classifier, the accuracy of decoding-
classification was significantly different in different brain lobes
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TABLE 1 | BAs with contribution of more than 15% in different brain lobes

for each subject.

Subject1 Subject2 Subject3

Frontal lobe BA6 (28%) BA6 (29%) BA6 (26%)

Occipital lobe BA18 (48%) BA18 (54%) BA18 (40%)

BA19 (31%) BA19 (27%) BA19 (28%)

Parietal lobe BA40 (36%) BA40 (31%) BA40 (30%)

BA7 (31%) BA7 (29%) BA7 (30%)

Temporal lobe BA21 (21%) BA21 (22%) BA21 (18%)

BA22 (17%) BA22 (18%) BA22 (18%)

For example the 29% contribution of BA6 in subject 2 means that 29% of the 300 best

selected voxels of frontal lobe were from voxels of BA6.

TABLE 2 | BAs including more than 15% of common voxels in different

brain lobes for all subjects.

Subject1 Subject2 Subject3

Frontal lobe BA6 (30%) BA6 (29%) BA6 (24%)

Occipital lobe BA18 (47%) BA18 (49%) BA18 (43%)

BA19 (31%) BA19 (30%) BA19 (27%)

Parietal lobe BA40 (36%) BA40 (32%) BA40 (31%)

BA7 (31%) BA7 (26%) BA7 (29%)

Temporal lobe BA22 (19%) BA22 (19%) BA22 (20%)

For example the contribution of 30% for BA6 of subject 1 means that 30% of all common

voxels in frontal lobe were from voxels of BA6.

(KS test with significance level of 0.01). However, applying
the augmented naïve Bayes classifier, there wasn’t a significant
difference in the accuracy of decoding-classification for different
brain lobes (KS test with significance level of 0.01).

Since selecting approximately 300 voxels for decoding-
classification results in accuracy levels of more than 99% (as
Figure 5 shows), in the following, the distribution of these
selected voxels and effective connectivities among them were
investigated in Brodmann areas (BA) of each brain lobe.

Average contribution of voxels from BAs of each brain lobe
in 10-fold classifications was studied. Table 1 shows BAs with a
contribution of more than 15% in different brain lobes for all
subjects.

To determine the most important BAs in decoding-
classification of hand written digits selected voxels were
investigated from another point of view; voxels commonly
selected in more than five-folds from all 10-folds (common
voxels) were looked for. Common voxels from BAs of each
brain lobe were determined. Table 2 shows BAs including more
than 15% of common voxels in different brain lobes for all
subjects.

After decoding-classification, brain connectivities were
investigated to determine highly connected BAs in the visual
experiment of watching hand written digits. Connectivities

FIGURE 6 | BAs mostly contributed in decoding-classification of hand

written digits (red boxes) and common connectivities among all

subjects (green connections).

FIGURE 7 | Percentage of edges with Euclidean distance of 0−80

between endpoints.

with a frequency of more than 5% of their total population are
reported in Table 3. It is clear that these frequent connectivities
are mostly common among all subjects in current experiment
(Figure 6).

Looking more closely at Table 3, it can be seen that
the frequency of connectivities within BAs (connectivities
with both endpoints in the same BA) is considerable. This
impelled us to investigate distribution of the distances
between endpoints of connectivities. Figure 7 shows the
edge percentages with Euclidean distance of 0–80 between
endpoints. As Figure 7 shows percentages of edges with shorter
distance is higher in all brain lobes, particularly occipital and
parietal.

Similarity Analysis
Hierarchical agglomerative clustering was applied on the average
BAs’ responses for all subjects to discover the similarities in
responding to the stimuli. The distance matrix for BAs’ responses
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TABLE 3 | Connectivities with a frequency of more than 5% from the total

connectivities (common connectivities among all subjects are printed in

bold).

Subjects1 Subjects2 Subjects3

Frontal lobe {BA6,BA6} 10% {BA6,BA6} 9% {BA6,BA6} 7%

{BA6,BA9} 7% {BA6,BA9} 9% {BA6,BA10} 6%

{BA6,BA10} 7% {BA6,BA10} 7%

{BA6,BA8} 6% {BA9,BA10} 6%

{BA6,BA8} 5%

Occipital lobe {BA18,BA19} 27% {BA18,BA18} 36% {BA18,BA19} 19%

{BA18,BA18} 24% {BA18,BA19} 24% {BA18,BA18} 16%

{BA19,BA19} 11% {BA17,BA18} 10% {BA17,BA18} 16%

{BA17,BA18} 11% {BA19,BA19} 8% {BA17,BA17} 12%

{BA17,BA19} 6% {BA17,BA19} 10%

{BA19,BA19} 8%

Parietal lobe {BA7,BA40} 19% {BA7,BA40} 16% {BA7,BA40} 16%

{BA40,BA40} 15% {BA40,BA40}12% {BA40,BA40} 11%

{BA7,BA7} 14% {BA7,BA7} 12% {BA7,BA7} 11%

{BA3,BA40} 5% {BA3,BA40} 6%

{BA3,BA7} 6%

Temporal lobe {BA20,BA21} 7% {BA21,BA22} 7% {BA21,BA22} 6%

{BA21,BA22} 6% {BA21,BA21}5%

{BA21,BA21} 5% {BA20,BA39}5%

{BA20,BA22} 5%

For example a frequency of 7% for connectivity between BA6 and BA10 of subject 1

means that 7% of all extracted connectivities in frontal lobe were between voxels of BA6

and BA10.

employing the correlation distance metric was computed and
Figure 8 shows the cluster trees using the same distance
metric to apply furthest distance algorithm for computing the
distance between clusters. Considering the largest clusters with
a distance between data points less than half of the maximum
distance between data points (12 clusters), some BAs are grouped:
(BA17), (BA3, BA9), (BA2, BA46, BA47), (BA11, BA18), (BA36,
BA40), (BA32, BA39), (BA4), (BA13), (BA25, BA45), (BA5, BA6,
BA7), (BA31, BA20, BA21, BA22), (BA10, BA19, BA44, BA43,
BA1, BA8). Figure 9 shows BAs present on lateral and medial
surfaces of brain with similar responses to the stimuli in the same
color.

DISCUSSION AND CONCLUSIONS

Although the experiment was only a visual task, in all brain
lobes performance of naïve Bayes and augmented naïve Bayes
classifiers was significantly above chance level. It seems that the
information of different brain lobes may be used to successfully
accomplish the decoding-classification of hand written digits due
to the fact that their activity may be associated with different
features of stimulus images including superficial or semantic
features.

Among all classifiers augmented naïve Bayes classifier (which
considers the brain effective connectivity) produces more

FIGURE 8 | Cluster trees using the correlation distance metric and

furthest distance algorithm for computing the clusters’ distances. Red

horizontal line depicts the half of the maximum distance between data points

and red vertical lines between leaves separate clusters. From left to right

clusters are: (10,19,44,43,1,8), (13), (25,45), (5,6,7), (20,31,21,22), (4), (32,39),

(36,40), (2,46,47), (11,18), (3,9), (17).

TABLE 4 | Functions of mostly active BAs related to the fMRI visual

experiment/task.

Frontal lobe BA6: Response to visual presentation of letters and pseudo-letters

(left) Language processing

Occipital lobe BA18: detection of patterns, word encoding, response to visual

word form (left)

BA19: detection of patterns, word encoding

Parietal lobe BA7: language processing, Semantic categorization tasks

BA40: language processes, semantic processing, writing of single

letters

Temporal lobe BA21: semantic processing (left)

BA22: receptive language, Semantic processing (left)

accurate decoding. Brain connectivities were extracted following
the structure learning methods in Bayesian networks. Employing
connectivity information in decoding-classification of hand
written digits was greatly advantageous and this approach is
most likely to open a way to solve the decoding problem. This
advantage of augmented naïve Bayes or the effect of employing
effective brain connectivities is greater in occipital and parietal
lobes, so decoding-classification is more dependent on effective
brain connectivities in those brain lobes.

When using naïve Bayes classifier, the accuracy of decoding-
classification was significantly different in different brain lobes
and this would be interpreted as lower capability of some
brain lobes in comparison to others in decoding-classification
of hand written digits. However, applying the augmented
naïve Bayes classifier, a more realistic model including the
effective connectivities, there wasn’t a significant difference

Frontiers in Human Neuroscience | www.frontiersin.org 9 July 2016 | Volume 10 | Article 351

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Yargholi and Hossein-Zadeh Brain Decoding of Hand Written Digits

FIGURE 9 | BAs on lateral and medial surfaces of brain. BAs similarly responding to the stimuli are in the same color.

in the accuracy of decoding-classification for different brain
lobes. Therefore, all brain lobes were successful in decoding-
classification of hand written digits while they might have
different mechanisms for this classification (for example using
low/high level features).

One might think the improvement in results using augmented
naïve Bayes (which takes the connectivity into account) is
only due to the increasing complexity of the classifier. To
examine this conjecture, by increasing the number of voxels,
naïve Bayes classifier was used and the results indicated
overfitting. Therefore, the more accurate decoding-classification
of augmented naïve Bayes is not due to the addition of complexity
level, but utilization of connectivity information raises the
accuracy significantly.

Functions of the most contributing BAs in decoding-
classification of hand written digits (Figure 6) related to the
performed visual experiment are listed in Table 4 (Luria, 1976;
Mesulam, 2000; Brodmann and Garey, 2005; Clark et al.,
2010; Trans Cranial Technologies Ltd., 2012). As Table 4

shows these BAs are well-known areas in both language and
semantic processing which is in line with our expectations
about active BAs in watching hand written digits. Since
digits are part of the language aspects and besides, there
were classes of hand written digits with considerable variety
in their visual feature while sharing the same semantic
aspects.

Percentages of edges with shorter distance is higher in all
brain lobes particularly occipital and parietal. Since these two
were brain lobes for which decoding-classification was mostly
improved by employing connectivity information, we conclude
that connectivities with short distances between the endpoints are
more efficient in decoding-classification and local brain networks
might be responsible for this classification of hand written digits
in brain.

This is the first study on the decoding-classification of this
stimulus set, although hand written digits are among the most
frequent stimuli in today’s modern life and present research
successfully performed decoding-classification of hand written

digits 0–9. This success is due to the number of samples, voxel
selection approach, number of chosen voxels and characteristics
of applied classifiers in current research in comparison to
previous studies. We used 100 samples for each hand written
digit, Fisher score for voxel selection, 50–550 chosen voxels and
naïve Bayes or augmented naïve Bayes classifiers.

The closest previous studies are Eger et al. (2009), van Gerven
et al. (2010), and somehow Damarla and Just (2013).

Eger et al. (2009) used eight samples for each stimulus—
computer (not hand written) digits 2, 4, 6, and 8 or images
of 2 dots, 4 dots, 6 dots, and 8 dots, chose 1000 voxels most
significantly activated across all sample stimulus conditions
regardless of their notation (digits or dots), used linear SVM
classifier and gained a discrimination accuracy <60% in
decoding-classification of digits. It is clear that number of
samples in Eger et al. (2009) is much less than the number of
samples in current study (8 vs. 100). Eger et al. (2009) chose
1000 voxels, but there is a drawback with their voxel selection
approach; voxels were chosen regardless of their notation while
comparing the patterns evoked by computer digits and dots,
the format was accurately discriminated with ∼80%. It seems
that to improve the decoding-classification, stimulus formats
should be considered in voxel selection approach. Another weak
point of Eger et al. (2009) in comparison to present research
is their classifier, linear SVM. Linear SVM looks for linear
separators while Bayesian classifiers are non-linear ones and
present probabilistic models of the data instead of separators. It
should be mentioned that at first, decoding-classification for each
digit pair was investigated and application of linear SVM derived
results in accordance with Eger et al. (2009) while results of other
non-linear classifiers were significantly better, hence application
of multiple-class classifiers seemed possible.

van Gerven et al. (2010) used 50 samples for each hand
written digits 6 and 9, used Bayesian multivariate analysis with
sparsifying spatio-temporal prior and obtained a discrimination
accuracymore than 70%. In current study there were 100 samples
for each hand written digit, this is twice the number of samples
in van Gerven et al. (2010). Besides, the decoding-classification
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procedure of present research was applied on the data set of
van Gerven et al. (2010) and just using the information of tens
of voxels in naïve Bayes or augmented naïve Bayes classifiers,
classification accuracies more than 90% were obtained.

Damarla and Just (2013) used 16 samples for each quantity
1, 3, and 5 in two modes (digit-picture and picture), chose
120 voxels whose vector of response intensity to the set of
stimulus items were the most stable, applied naïve Bayes
classifier and gained a discrimination accuracy of 66% in
decoding-classification in digit-picture mode. On one side,
number of samples in Damarla and Just (2013) is much less than
the number of samples in current study (16 vs. 100). One the
other side, Damarla and Just (2013) used 120 most stable voxels
in responding to stimulus set regardless of the stimulus mode;
picture, or digit-picture. It seems that both increasing the number
of voxels and alternative voxel selection approaches (considering
the stimulus mode) could improve their classification
accuracy.

The same decoding-classification approach was applied one
more time just with altering the classifier to linear SVM this time.
Parameters of linear SVM were optimized on the training sets.
Performance of linear SVM was almost always at chance level
except occipital lobe where classification accuracy was somehow
above chance level. This could be due to this fact that linear
SVM looks for linear separators while Bayesian classifiers are
non-linear ones and present probabilistic models of the data
instead of separators. Themain reason for the popularity of linear
SVM in neuroscience studies is due to the usual shortage of
samples available. Non-linear SVM or probabilistic version of
SVM (relevance vector machine) might result in better decoding-
classification of present data set.

To increase the confidence in the results some regions
were used as control regions to re-run the analysis. Brodmann
area 2 (BA2) was one of the control regions. It is a primary
somatosensory area that localizes touch, temperature, vibration,
and pain. BA2 is also responsible for movement organization and
voluntary hand/tongue movement (Luria, 1976; Mesulam, 2000;
Brodmann and Garey, 2005; Clark et al., 2010; Trans Cranial
Technologies Ltd., 2012). Therefore, there is no expectation
to have the capability of decoding-classification and there is
no significant, both anatomical and functional connections
between BA2 and some areas that had high responses. The
decoding-classification procedure of current study was applied
on BA2, however this attempt was not successful and resulted in
accuracies not significantly different (p = 0.95) from the chance
level (p < 0.05).

It was preferred to use a greedy search approach to estimate
the structure of the Bayesian Network compared to Tree
Augmented Naive Bayes due to following reasons:

1. The major motivation for the application of tree augmented
naïve Bayes is the computational efficiency, not the better
performance (Friedman et al., 1997).

2. The brain is a highly complex set of connected functional
regions. Therefore, a simple tree-structure is not expected to
be a perfect model of connectivities covering its detail (Smith
et al., 2009).

3. Since we were interested in studying the distribution of
connections, it was not acceptable to impose extra condition
of having a tree-structured network.

Another outstanding characteristic of the current research is
investigating the whole brain, rarely done in previous decoding
studies. This brought us the opportunity of determining efficient
areas of different brain lobes for decoding-classification of hand
written digits and comparing the capability of brain lobes in
this experiment. The experiment included watching hand written
digits. According to the literature, if just the visual aspect of
stimuli was considered, occipital lobe would have been used; if
the quantity aspect of stimuli was the focus, parietal lobe would
have been applied and if only the language aspect of stimuli was
considered, frontal and temporal lobe would have been used.
Since the paradigm of the experiment didn’t try to focus on either
aspects, it was not clear that for the task of watching hand written
digits which aspect is themost efficient in decoding-classification.
Therefore, digits were classified using different lobes and they
were compared in regard of classification accuracy.

Different mechanisms and functions for BAs were evidenced
so far, however various BAs were actively participating in
decoding-classification of hand written digits. To investigate this
observation, BAs similarly responding to each stimulus were
determined. Hierarchical agglomerative clustering was applied
on the average BAs’ responses for all subjects to discover the
similarities.

According to the literature, BAs 17–19 are active in visual
processing, working memory, and language (response to visual
word forms; Trans Cranial Technologies Ltd., 2012). BA17,
BA18, and BA19, all three deal with visual processing, BA17
is considered as primary or projection visual cortex, while BAs
18 and 19 are secondary or association cortex. They were not
grouped together, and they were grouped in three different
clusters; (BA17), (BA11, BA18), (BA10, BA19, BA44, BA43, BA1,
BA8). It can be seen that BA17 built a cluster individually, while
BA18 and BA19 shared their clusters with areas not active in
visual processing. It could be understood that they followed
different mechanisms in responding to the same stimulus set
and they responded to different aspects of them. Based on
this observation, it looked like that visual processing was the
dominant mechanism just in BA17 and not the other two areas
during the experiment of watching hand written digits.

BA11 was in the same group with BA18. Besides, BA11
is a part of dorsolateral prefrontal cortex (DL-PFC) involved
in motor tasks (planning, organization, or regulation) and
working memory (working memory is involved in diversity of
cognitive process including language; Luria, 1976; Mesulam,
2000; Brodmann and Garey, 2005; Clark et al., 2010; Trans
Cranial Technologies Ltd., 2012). Therefore, according to the
recognized functions of BA18, it seems that workingmemory was
the main task of these both areas.

BA19 was not in the same group with BA17 and BA18 which
were recognized to be responsible for visual processing and
working memory, respectively. Therefore, it looked like that
BA19 deals mostly with language aspects of the experiment.
Moreover, language processing is a common function of all
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other BAs sharing the same group with BA19 i.e., BA8, BA10,
BA43–44.

BA2 and BA3 are responsible for movement organization and
voluntary hand/tongue movement (Luria, 1976; Mesulam, 2000;
Brodmann and Garey, 2005; Clark et al., 2010; Trans Cranial
Technologies Ltd., 2012) and BA9, BA46, and BA47 are parts
of dorsolateral prefrontal cortex (DL-PFC), as mentioned above,
involved in motor tasks and working memory. Therefore, having
the clusters (BA3, BA9), (BA2, BA46, BA47) shows that motor
organization was their dominant activity.

BA31, BA20, BA21, and BA22 also built a cluster and
language processing is the recognized function of all these
areas (Luria, 1976; Mesulam, 2000; Brodmann and Garey, 2005;
Clark et al., 2010; Trans Cranial Technologies Ltd., 2012).
Hence, they were commonly active in language processing
in this experiment. Moreover, according to BAs’ functions in
literature, (BA36, BA40), (BA32, BA39) were two more clusters
with identified mechanism of working memory and language
processing respectively, (Trans Cranial Technologies Ltd., 2012).

Therefore, during our experiment of watching hand written
digits there were active networks; visual, working memory,
motor and language processing, and performing voxel selection,
language processing areas were chosen to participate in
decoding-classification not the motor processing ones.

The results of decoding-classification (the proposed
classifiers) could be efficiently employed in brain–computer
interfaces. Besides, the results of decoding-classification and
similarity analysis may assist us to detect malfunction areas or

mechanisms and consider them in proposing brain–computer
interfaces or therapeutic procedures. As a case in point, in
designing neuro-feedback systems, it determines the mechanism
to be improved. Also, in rehabilitation procedures, transcranial

magnetic stimulation could be applied to areas with similar
activity to gain more and faster improvement.

It is noteworthy that there were no assumptions on the
stimulus sets or the experiment conditions. Hence, there won’t
be any limitations in generalizing applied approach to other
decoding-classification tasks. In this way, satisfactory results of
present study may promise success in separating representations
of other challenging stimulus classes.

To improve the quality and precision of obtained results,
including more subjects will be useful. Another suggestion is to
employ structural connectivity along with effective connectivity
information. Decoding-classification of other stimulus families,
using connectivity informed classifiers will also be the direction
of further studies.
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