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Familial risk plays a significant role in the etiology of schizophrenia (SZ). Many studies
using neuroimaging have demonstrated structural and functional alterations in relatives
of SZ patients, with significant results found in diverse brain regions involving the
anterior cingulate cortex (ACC), caudate, dorsolateral prefrontal cortex (DLPFC), and
hippocampus. This study investigated whether unaffected relatives of first episode SZ
differ from healthy controls (HCs) in effective connectivity measures among these regions.
Forty-six unaffected first-degree relatives of first episode SZ patients—according to the
DSM-IV—were studied. Fifty HCs were included for comparison. All subjects underwent
resting state functional magnetic resonance imaging (fMRI). We used stochastic dynamic
causal modeling (sDCM) to estimate the directed connections between the left ACC, right
ACC, left caudate, right caudate, left DLPFC, left hippocampus, and right hippocampus.
We used Bayesian parameter averaging (BPA) to characterize the differences. The
BPA results showed hyperconnectivity from the left ACC to right hippocampus and
hypoconnectivity from the right ACC to right hippocampus in SZ relatives compared
to HCs. The pattern of anterior cingulate cortico-hippocampal connectivity in SZ relatives
may be a familial feature of SZ risk, appearing to reflect familial susceptibility for SZ.

Keywords: schizophrenia, first-degree relatives, functional magnetic resonance imaging, effective connectivity,
stochastic dynamic causal modeling

INTRODUCTION

It is well established that familial risk plays a significant role in the etiology of schizophrenia (SZ)
through family, adoption, twin, and sibling studies. SZ as a hereditary component affects 0.3%
to 0.7% of the general population globally according to American Psychiatric Association (APA,
2013), whereas first-degree relatives have a higher risk of developing SZ, with an actual prevalence of
approximate 10% (Lim and Sim, 1992). In genetic epidemiology studies, a 31% to 58% concordance
rate of SZ exists in monozygotic twins (Tsuang, 2000). It has been demonstrated that genetic
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liability to SZ was 81% (95% confidence interval (CI): 73%,
90%) based on results from 12 twin studies of SZ (Sullivan
et al., 2003). The individual’s heritability in liability just partly
mediates family history of SZ (Agerbo et al., 2015). Furthermore,
brain structural deficits in twins discordant for SZ were more
pronounced in monozygotic than in dizygotic twins (Baare et al.,
2001; Hulshoff Pol et al., 2004, 2006), suggesting association
of cerebral abnormalities with genetic factors for SZ. In our
previous studies, we have detected altered brain structure and
function in first episode drug-naïve SZ patients (Chang et al.,
2015; Cui et al., 2015, 2016; Huang et al., 2015). Thus the question
is whether their first-degree relatives present specific alterations
of the brain.

During the past 5 years, many structural magnetic resonance
imaging (MRI) studies have revealed that gray matter volume,
cortical morphological features, and white matter integrity in
individuals at high risk of SZ differ from controls, but usually
to a lesser extent than in SZ patients, indicating that structural
aberrancies may form markers of susceptibility and transition
to this disease (Bois et al., 2015b), despite not absolutely
consistent findings. For the cerebral morphology, an interrupted
cingulate sulcus pattern and paracingulate morphology are
associated with increased genetic risk of SZ (Meredith et al.,
2012). In the Edinburgh High Risk Study by Lawrie et al.
cortical thinning pronounced in the left middle temporal gyrus
(Sprooten et al., 2013), as well as longitudinal reductions
for volume of the whole brain and bilateral prefrontal and
temporal lobes (McIntosh et al., 2011) and cortical surface
area prominently in the frontal, cingulate, and occipital lobes
(Bois et al., 2015a) were detected in individuals at familial
high risk of SZ compared with controls. Also, young relatives
of SZ patients showed reduced bilateral hippocampal volume
(Thermenos et al., 2013). As reported in a meta-analysis
by Cooper et al. (2014), the gray matter volume increased
in the left middle frontal gyrus, and decreased in the left
thalamus/putamen, insula, and right superior frontal gyrus in
high-risk individuals.

With the exception of diverse structural abnormalities,
overall, a series of studies have demonstrated functional
alterations in relatives of SZ patients at resting state (McIntosh
et al., 2006; Hao et al., 2009; Jang et al., 2011; Liao et al., 2012; Su
et al., 2013; Zhou et al., 2015) or task state (Whitfield-Gabrieli
et al., 2009; Woodward et al., 2009; Rasetti et al., 2011; Stolz
et al., 2012), with significant results found in several specific brain
regions involving the dorsolateral prefrontal cortex (DLPFC),
anterior cingulate cortex (ACC), caudate, and hippocampus.

Notably, the left DLPFC is a featured brain area in SZ
relatives. It has been found that familial liability to SZ
was associated with decreased gray matter volume of the
left DLPFC (McIntosh et al., 2006). Furthermore, healthy
siblings of SZ patients showed reduced white matter fractional
anisotropy (FA) in the left DLPFC, without significant difference
between SZ patients and their siblings (Hao et al., 2009).
DLPFC dysfunction has been implicated in the familial
susceptibility for SZ (Li and Funahashi, 2015). Aberrant
regional function of the left DLPFC was detected by a resting
state MRI study on the first-degree relatives of SZ patients

(Liao et al., 2012). When identifying familial vulnerability
markers by examining default mode network (DMN)
connectivity, posterior cingulate cortex (PCC) seed region
connectivity analysis showed reduced functional connectivity in
the bilateral DLPFC of relatives (Jang et al., 2011). Unaffected
relatives also had impaired connectivity from the left DLPFC
to its coordinated regions, distributed in the bilateral caudate,
left middle frontal gyrus, and right cerebellum (Su et al., 2013).
However, few studies examined connectivity between some of
these brain regions in unaffected relatives of SZ patients (Meda
et al., 2012; Su et al., 2013), to date, leaving the open question
of brain connectivity among these areas in familial high risk
individuals.

Although previous studies have identified brain structural
and functional abnormalities in frontal and temporal regions,
it is still unclear how these regions interacts with each other
differently in relatives of SZ patients compared with healthy
controls (HCs). In the current study, we used stochastic
dynamic causal modeling (sDCM) to investigate directed
brain connectivity within a brain network encompasses ACC,
caudate, DLPFC and hippocampus. DCM is a technique to
investigate brain effective connectivity which refers to the
causal influence of one brain region exerts over another
or itself (Friston et al., 2003). Compared with functional
connectivity analysis which simply measures the correlations
between the blood-oxygen-level-dependent (BOLD) signals
of different brain regions, effective connectivity analysis is
able to further provide us information on how the signals
are propagated within a brain network. Understanding the
information flow within a brain network is crucial for
understanding the neural mechanism of familial susceptibility
for SZ. DCM was first invented to model the interactions
between brain regions during task performance (Friston et al.,
2003). Dauvermann et al. (2013) found decreased thalamo-
cortical connectivity in first- or second-degree relatives of
SZ patients using nonlinear deterministic DCM during verbal
fluency processing. Recently, traditional deterministic DCM has
been extended to stochastic DCM (Daunizeau et al., 2009;
Li et al., 2011, 2014) which is also able to model brain
effective connectivity at rest (Li et al., 2012). Here we used
sDCM to identify changes in brain effective connectivity in
unaffected first-degree relatives of SZ patients using resting-
state fMRI (rsfMRI) data. On the basis of existing evidence
that familial risk for SZ appears along with aberrant brain
structural and functional alterations involving DLPFC, ACC,
caudate, and hippocampus, we hypothesized that effective
connectivity among them would also be disrupted in relatives,
and provide more accurate parameter estimates (Li et al.,
2011) compared with conventional deterministic DCM.

MATERIALS AND METHODS

Subjects
We assessed 53 HCs and 48 unaffected first-degree relatives of
patients with first episode SZ (age- and gender-matched to HCs).
The Diagnostic and Statistic Manual of Mental Disorders, 4th
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FIGURE 1 | Steps for data analysis.

edition (DSM-IV), revised criteria (Mittal and Walker, 2011)
consensus diagnoses were established by two trained senior
clinical psychiatrists with all clinical data and Structured
Clinical Interviews for DSM Diagnoses interviews: inter-
rater reliability was higher than 90% among raters. Relatives
of probands were free of Axis 1 psychopathology and not
taking psychoactive medications. Participants were recruited
via word of mouth and advertisements at the Fourth
Military Medical University; all provided written informed
consent approved by the institutional review board of Xijing
Hospital.

Data Acquisition and Preprocessing
The resting state fMRI images were collected on the 3.0-T
Siemens Magnetom Trio Tim scanner. High-resolution
T1-weighted 3D anatomical data were acquired using the
3D magnetization-prepared rapid gradient echo (3D MPRAGE)
sequence (repetition time (TR): 2530 ms; echo time (TE):
3.5 ms; flip angle: 7◦; field of view (FOV): 256 × 256 mm2;
matrix: 256 × 256; slice thickness: 1 mm; section gap:

0 mm; number of slices: 192). The image resolution was
1 mm × 1 mm × 1 mm. The echo planar imaging (EPI)
sequence (TR: 2000 ms; TE: 30 ms; flip angle: 90◦; FOV:
220 × 220 mm2; matrix: 64 × 64; slice thickness: 4 mm;
section gap: 0.6 mm) effectively covered the entire brain. Head
motion was restricted with a custom-built head-coil foam
cushion. During scanning, participants were asked to remain
alert with eyes closed and head still. These instructions aided
reducing head motion and prevented subjects from falling
asleep. All participants were judged as awake and alert at
the start and conclusion of the fMRI session. Figure 1 is the
flowchart for each step. Images were reconstructed offline,
and realigned with statistical parametric mapping (SPM81).
The translation/rotation corrections of each participant were
examined to exclude excessive headmotion (>2.5mm translation
and/or >2.5◦ rotation), resulting in that eventual 46 first-degree
relatives of SZ patients and 50 HCs were included. A mean
functional image volume was constructed for each session from
the realigned image volumes to determine parameters for spatial

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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FIGURE 2 | Locations of the masks. Yellow indicates the left dorsolateral
prefrontal cortex (DLPFC); semitransparent red indicates the left anterior
cingulate cortex (ACC), and blue indicates the right ACC; green indicates the
left caudate, and violet indicates the right caudate; cyan indicates the left
hippocampus, and red indicates the right hippocampus.

normalization into Montreal Neurological Institute standardized
space2. Normalization parameters determined for the mean
functional volume were applied to the corresponding functional
image volumes of each participant, which were smoothed
with an 8 mm full width half maximum (FWHM) Gaussian
kernel.

General Linear Model
In the first-level (within subject) analyses, participant-specific
responses were modeled using a general linear model (GLM).
The six motion parameters were included to model the
movement correlated effects. One constant regressor was used
to model the baseline, and cosine basis functions were included
in the GLM. The resulting contrast images were then used to
constrain the region of interest (ROI) extraction step in the
sDCM.

Stochastic Dynamic Causal Modeling
Regions of Interest
For each subject, we studied the effective connectivity
among seven ROIs including the left DLPFC (consists of
Frontal_Sup_L and Frontal_Sup_Medial_L), and the bilateral

2http://www.mni.mcgill.ca/

ACC (Cingulum_Ant_L and Cingulum_Ant_R), caudate nuclei
(Caudate_L and Caudate_R), and hippocampi (Hippocampus_L
and Hippocampus_R). The left rather than the right DLPFC
showed alterations in most studies of SZ relatives during rest
condition (McIntosh et al., 2006; Hao et al., 2009; Liao et al.,
2012; Su et al., 2013) thereby being chosen as the ROI. For each
region, a ROI mask of that region was created by the WFU
PickAtlas Tool (Version 3.0.43) and the automated anatomical
labeling (AAL) atlas template (Figure 2; Tzourio-Mazoyer et al.,
2002; Maldjian et al., 2003, 2004). Subject-specific time series
were then extracted based on the ROI mask and the contrast
image generated by first-level (within subject) analyses. We
then extracted time series from the voxels within the ROI that
also showed activation in the contrast image. The first principle
component of these time series was finally used to summarize
the BOLD response to the ROI.

Model Specification and Parameter Estimation
In the current study, we aimed to search over all possible
models generated from the connections among the seven
ROIs. In this case, we did not limit our analysis to simply
compare a few competing hypothesis (models). In contrast,
we used a data-driven approach to search over all possible
models. Specifically, a fully connected model (full model) with
bidirectional connections between any pair of regions was
constructed for each subject (Figure 3). Parameter estimates and
model evidence of the full model was obtained using generalized
filtering which is a recently developed scheme for sDCM model
inversion and parameter estimation (Friston et al., 2010). After
the full model was inverted, we employed a network discovery
procedure (Friston et al., 2011) to search for the best reduced
model which has the highest model evidence. A reduced model
has the same group of ROIs as the full model, but only a subgroup
of the connections in the full model (i.e., some of the connections
are absent in the reduced model). The network discovery scheme
provides approximation of the model evidences of all the possible
reduced models without inverting every reduced model. The
reduced models and the full model are then scored according
to their model evidence. Model which has the highest model
evidence was chosen as the winning model. Parameter estimates
of the winning model were also obtained using the network
discovery scheme and used for group analysis and making
inferences on effective connectivity between brain regions.

Group Analysis
On the basis of sDCM analysis, the strength of connection
described the coupling strength according to the rate at which
neuronal responses were triggered in the target area (connection
strengths are effectively rate constants in 1/s, Hz; Friston et al.,
2003). To see whether these differences could be estimated and
detected reliably, we characterized the differences using Bayesian
parameter averaging (BPA; Friston et al., 2014; Razi et al., 2015).
We used BPA for each group separately after network discovery
procedure. We can then go on to discuss the results based on
largest two or three connection differences, thereby being as a

3http://www.nitrc.org/projects/wfu_pickatlas/
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FIGURE 3 | Fully connected model constructed. The lines with arrowheads between distinct region of interests (ROIs) refer to the connections in the left panel for
relatives of schizophrenia (SZ) patients and right panel for healthy controls (HCs). The color of each node is in line with that of Figure 2. ACC, anterior cingulate
cortex; DLPFC, dorsolateral prefrontal cortex.

TABLE 1 | Demographical data of the participants.

Variables First-degree HCs Statistics P value
relatives of
SZ patients

Age (years) 28 ± 5 27 ± 4 t = −0.35 0.73
Gender (M/F) 22/24 31/19 χ2

= 1.95 0.22
Ethnicity Han (Chinese) Han (Chinese) — —
Handedness (R/L) 46/0 50/0 — —
Education (years) 15 ± 1 15 ± 2 t = 0.23 0.82
Smoking status (S/N) 11/35 18/32 χ2

= 1.66 0.27

M, male; F, female; R, right; L, left; S, smoker; N, nonsmoker.

guiding principle to set the threshold (strength of connections
measured in Hz).

RESULTS

Demographical Characteristics
No significant differences were present between SZ patients’ first-
degree relatives andHCs on any demographic variables (Table 1).

Network Discovery-Based Model Selection
Results
The evidence of all reduced models was compared by the
network discovery procedure for each group (Figure 4). The left
panel is for first-degree relatives of SZ patients and right panel
refers to HCs. The procedure selected the fully connected model
as the best model with a posterior probability of almost 1. The
fully connected model had 49 parameters describing the extrinsic
connections between nodes and the intrinsic (self-connections)
within nodes. In Figure 4, the profiles of model evidences are
shown with the posterior probability for each model. In both

groups, the full model had a log-probability of almost 0 and
probability of 1. Therefore, they shared the identical winning
model.

Effectivity Connectivity
BPA results of the effective connectivity can be seen in Figure 5.
When using BPA, in the context of uncovering the group
differences, as a guiding principle it would be best to choose
top two or three connections and then we set the threshold to
0.06 Hz. SZ patients’ relatives exerted increased connection from
the left ACC to right hippocampus, but decreased connection
from the right ACC to right hippocampus as compared to HCs.

DISCUSSION

Our study presents sDCM-based effective connectivity outcomes
contrasted between first-degree relatives of first episode SZ
patients and HCs. As compared with HCs, first-degree relatives
who did not show any psychiatric symptoms revealed abnormal
connectivity primarily localized to the connections from the
bilateral ACC to right hippocampus.

Cognitive deficits are a core characteristic of SZ (Elvevag
and Goldberg, 2000), which has been previously observed in
biological relatives of SZ patients (Snitz et al., 2006; Bove, 2008;
Keshavan et al., 2010; Liao et al., 2012). As well, impaired neural
circuitry within the emotion processing has been reported in
unaffected siblings of SZ patients (van Buuren et al., 2011;
Hanssen et al., 2015). The neural basis of impaired cognition,
including emotion processing, in SZ patients and their relatives
remains uncertain, thus leaving an open question of whether
presence of cognitive and emotional deficits in unaffected first-
degree relatives at high risk for developing SZ suggests genetic
basis of SZ symptoms. Determining the neural correlates of
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FIGURE 4 | Results of the post hoc optimization. The corresponding conditional parameter estimates were shown over the 49 (extrinsic and intrinsic)
connections in relatives of SZ patients (A) and HCs (B). This figure suggested that the fully connected model was the best explanation for the data.

FIGURE 5 | Significant effective connectivity (between the group level) among ROIs in the first-degree relatives of SZ patients and HCs. Bayesian
parameter averaging (BPA) of the differences for stochastic dynamic causal modeling (sDCM) shows only those edges on the graph that survive the threshold of
0.06 Hz, i.e., the increased (left ACC-right hippocampus) and decreased (right ACC-right hippocampus) connections in relatives compared to HCs (A). Schematic
illustration showing connectivity patterns in first-degree relatives of SZ patients (B). ∗ Indicates self-connection of the left caudate. The slice location (coordinate) is
marked in the upper-left.

familial risk for SZ is essential to elucidate the neurobiology for
SZ that may aid in the development of novel targeted treatment.

For one thing, relatives of SZ patients exhibited bilateral
anterior cingulate cortical dysconnectivity in our present

study. Previous studies have demonstrated the important
role of the dorsal ACC in cognitive control (Carter and
van Veen, 2007) consistently. For these regions, these are
association of aberrant activation patterns with deficient
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behavioral performance in SZ (Minzenberg et al., 2009). Most
recently, we found altered effective connectivity related to
ACC in SZ patients using spectral DCM, indicating anterior
cingulate cortico-prefrontal-hippocampal hyperconnectivity
(Cui et al., 2015). The effective connectivity and white
matter connectivity analysis provides some evidence that
weaker connectivity involved in ACC may be the neural
basis of specific cognitive impairments in SZ (Wagner
et al., 2015). Furthermore, using a regional homogeneity
approach, Liao et al. (2012) reported decreased local neural
activity in ACC in first-degree relatives of SZ patients along
cognitive deficits. When taken with these previous results,
our findings in unaffected relatives point to the possibility of
altered functional interplay between ACC and hippocampus
as the unit responsible for cognition and initial sign for
developing SZ.

For another, we detect abnormal connection from ACC to the
right hippocampus in relatives of SZ patients. Reduced bilateral
hippocampal volume has been observed in young relatives of
SZ patients (Keshavan et al., 2002; Thermenos et al., 2013). It
has been found smaller hippocampi in relatives of SZ patients
(Seidman et al., 2002, 2014; Francis et al., 2013). Furthermore,
patients with SZ and their healthy siblings shared disrupted
white matter integrity in the hippocampus that may be related to
higher risk of healthy siblings to develop SZ (Hao et al., 2009).
The hippocampus is part of the hippocampal formation that
is comprised of subfields namely the dentate gyrus, subiculum,
and pre-subiculum. By means of Van Leemput et al. (2009)
method enabling quantification of elusive subfields, reduction
in volume of the left and right subicula was observed in
familial high risk persons with first-degree relatives suffering
from SZ or schizoaffective disorder (Francis et al., 2013). The
subibulum could mediate hippocampal-cortical interaction, and
is purportedly involved in spatial information processing and
memory (O’Mara et al., 2009). In the aforementioned study,
verbal memory was impaired and significantly correlated with
the subicular volume within the relatives of SZ patients (Francis
et al., 2013). Dysconnectivity between DLPFC and hippocampal
formation has also been reported in SZ patients (Liu et al.,
2014). Accordingly, compromised anterior cingulate cortico-
hippocampal connection links with the risk of developing SZ in
individuals at familial high risk.

Moreover, aberrant DLPFC connectivity and familial risk
for SZ are closely related in SZ pathophysiology (Hao et al.,
2009; Whitfield-Gabrieli et al., 2009; Woodward et al., 2009;
Jang et al., 2011; Rasetti et al., 2011; Su et al., 2013). The
prefrontal cortex (PFC) is a compartment of the human brain
involved in highly diverse processes, ranging from cognition,
motivation, emotion, working memory and complex motor
activity to social interactions (Ku et al., 2015; Zhou et al., 2015).
These aforementioned results in SZ patients and their relatives
suggest that neuro-integrative deficits from the DLPFC to other
brain regions are likely to be involved in cognitive function and
the familial risk for SZ. However, we did not detect significantly
different DLPFC-related connectivity in the sample of relatives
of SZ patients in our current study. Last but not least, altered
caudate nucleus-related connections were not observed in SZ

relatives compared to HCs, either. Unaffected relatives from
mixed families (with at least one relative with SZ and one
with bipolar disorder) showed reductions in bilateral caudate
gray matter density (McIntosh et al., 2004). Paradoxically, our
results did not show aberrant connections involving caudate
nucleus in relatives of SZ patients. This divergence in findings
(i.e., the failure to observe anomalies of connections involved
in DLPFC and caudate) could be due to differences in subject
selection. In our present study, individuals at high risk for SZ
were unaffected first-degree relatives of first episode drug-naïve
patients with this illness, rather than mixed first- and second-
degree relatives of treated patients commonly used previously. A
possible interpretation is the heritable characteristics of SZ and
featured effects of facing patients with diverse symptoms before
receiving therapy on these subjects in the current study.

We acknowledge that there were several limitations. First,
we enrolled a not so large sample size of subjects in this study.
Larger sample is desirable to confirm our present findings.
Second, the present study did not involve any behavioral data,
i.e., we did not measure the severity of cognitive impairment
in the relatives. Currently, we are collecting the behavioral data
to clarify the relationship between neuroimaging findings and
altered cognition. Third, although a recent study demonstrated
both noisy and neural effect of head motion on functional
connectivity analysis (Zeng et al., 2014), the current study did
not examine the difference of head motion between these two
groups. This factor should be taken into account in future
research.

Our findings show the pattern of effective connectivity among
DLPFC, ACC, hippocampus, and caudate in the familial high risk
population of SZ patients, which may be tied to a familial risk
of SZ. Specifically, we found that increased effective connectivity
from the left ACC to right hippocampus and decreased effective
connectivity from the right ACC to right hippocampus in
unaffected first-degree relatives of first episode SZ patients.
The anterior cingulate cortico-hippocampal dysconnectivity may
therefore serve as a potential sign of a general vulnerability to
develop SZ.
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