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Biological motion perception (BMP) refers to the ability to perceive the moving form

of a human figure from a limited amount of stimuli, such as from a few point lights

located on the joints of a moving body. BMP is commonplace and important, but

there is great inter-individual variability in this ability. This study used multiple regression

model analysis to explore the association between BMP performance and intrinsic

brain activity, in order to investigate the neural substrates underlying inter-individual

variability of BMP performance. The resting-state functional magnetic resonance imaging

(rs-fMRI) and BMP performance data were collected from 24 healthy participants, for

whom intrinsic brain networks were constructed, and a graph-based network efficiency

metric was measured. Then, a multiple linear regression model was used to explore

the association between network regional efficiency and BMP performance. We found

that the local and global network efficiency of many regions was significantly correlated

with BMP performance. Further analysis showed that the local efficiency rather than

global efficiency could be used to explain most of the BMP inter-individual variability, and

the regions involved were predominately located in the Default Mode Network (DMN).

Additionally, discrimination analysis showed that the local efficiency of certain regions

such as the thalamus could be used to classify BMP performance across participants.

Notably, the association pattern between network nodal efficiency and BMPwas different

from the association pattern of static directional/gender information perception. Overall,

these findings show that intrinsic brain network efficiency may be considered a neural

factor that explains BMP inter-individual variability.

Keywords: biological motion, resting-state network, network efficiency, multiple linear regression model, brain-

behavior analysis

INTRODUCTION

Biological motion perception (BMP) is the ability of the visual system to perceive movement from
a limited amount of visual stimuli (Blake and Shiffrar, 2007). Individuals can effortlessly extract
social information from human movements, even from only a small selection of cues indicating
movement (Johansson, 1973; Troje, 2002). Johansson (1973)showed that when human motion is
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represented by point light displays (PLD) that consist of 10–
13 points of light attached to the major joints of the body,
human observers could easily identify the moving human form
despite only seeing the moving lights. BMP with PLDs is still
robust when the local motions are masked by noise (Cutting
et al., 1988; Bertenthal and Pinto, 1994), and even inversion
(Pavlova and Sokolov, 2000). BMP with point-light displays can
also convey a range of socially relevant information, including
gender (Mather and Murdoch, 1994), affect (Pollick et al., 2001),
personality traits such as trustworthiness (Heberlein et al., 2004),
and identity (Troje et al., 2005; Jokisch et al., 2006). BMP
has high inter-individual variability based on many different
factors such as development conditions (Pavlova et al., 2001;
Carter and Pelphrey, 2006), gender effect (Anderson et al.,
2013; Pavlova et al., 2014), social cognition and motor imagery
abilities (Miller and Saygin, 2013). In a recent study, Gilaie-
Dotan et al. (2013) found that the neuroanatomical structures
of the posterior superior temporal sulcus and ventral medial
prefrontal cortex were linked with biological motion detection
performance. However, the underlying neural substrate is still not
fully understood.

A number of factors, such as aging (Pilz et al., 2010; Legault
et al., 2012), experience (Grossman et al., 2004; Calvo-Merino
et al., 2010; Hohmann et al., 2011), and certain diseases (Pavlova
et al., 2006; Klin et al., 2009) have been shown to influence
individual BMP performance. Previous studies have found that
these above factors could also modulate individuals’ spontaneous
brain activity (Lewis et al., 2009; Dosenbach et al., 2010; Rosazza
andMinati, 2011; Taubert et al., 2011). Additionally, spontaneous
brain activity could also predict subsequent behavior and mental
states (Greicius et al., 2003; Fox et al., 2006; Boly et al., 2007;
Northoff et al., 2010). For example, Dosenbach et al. (2010)
used functional connectivity of spontaneous brain activity to
predict individual brain maturity; Wei et al. (2012) found that
spontaneous neuronal activity of the left middle temporal gyrus
could predict conceptual processing capacity; and Hashmi et al.
(2014) found that spontaneous functional network architecture
could predict psychologically mediated analgesia related to
treatment in chronic knee pain patients. These results suggest
that spontaneous brain activity may be a “source” that is not
only modified by traces of past brain activity but also influences
present and future brain activity (Hasler and Northoff, 2011;
Sadaghiani and Kleinschmidt, 2013; Gess et al., 2014). Thus,
the exploration of spontaneous brain activity provides potential
opportunities to investigate the neural substrate underlying inter-
individual variability in BMP.

In particular, many studies have shown that spontaneous
brain activity is interconnected within a network, which can
be depicted using graph-based network analysis (Bullmore and
Sporns, 2009; Huang et al., 2012). Brain network properties are
shown to be largely responsible for cognitive performance, such
as working memory (Stevens et al., 2012), intellectual ability
(van den Heuvel et al., 2009), and the mediated analgesia effect
(Hashmi et al., 2014). These observations provide evidence that
the intrinsic topological organization of brain activity determines
the actual detailed properties characteristic of perceptual and
cognitive processes.

This study attempted to explore the link between the
topological organization of the intrinsic brain network and
BMP performance. For this purpose, resting-state functional
magnetic resonance imaging (rs-fMRI) data were collected
from 24 healthy students, and a functional brain network was
constructed for each individual participant.Wemodeled network
efficiency (i.e., the global efficiency and local efficiency) based
on graph-based models to quantify the topological organization
of the brain network and applied multiple linear regression
methods to explore the link between network efficiency and BMP
performance.

MATERIALS AND METHODS

Participants
A total of 24 healthy, right-handed participants (11 males,
mean age of 20.63 ± 3.20 years) were recruited from South
China Normal University, Guangzhou, China. All of them had
normal or corrected-to-normal vision, and none had a history
of neurological or psychiatric disease or head injury or used
medication for anxiety or depression. The protocol was approved
by the Research Ethics Review Board of South China Normal
University, and written informed consent was provided by each
participant before the experiment.

Image Acquisition
All MRI data were obtained on a 3 T Siemens Trio Tim MR
scanner with a 12-channel phased array head coil at South
China Normal University. The fMRI data were acquired using
a gradient-echo echo-planar imaging (EPI) sequence with the
following parameters: TR = 2000 ms, TE = 30 ms, flip angle
= 90◦, data matrix = 64 × 64, field of view (FOV) = 224 ×

224mm2, slice thickness/inter-slice gap = 3.5/0.8mm, and 32
axial slices covering the whole brain. In total, 240 volumes were
obtained, and the acquisition time was approximately 8 min for
the rs-fMRI scan. In addition, we also obtained high-resolution
brain structural images by using a T1-weighted 3D MP-RAGE
sequence with the following parameters: TR = 1900 ms, TE =

2.52 ms, flip angle = 9◦, data matrix = 256 × 256, FOV =

230 × 230mm2, thickness = 1.0mm, and 176 sagittal slices
covering the whole brain. For each participant, both the rs-fMRI
data and the brain structural images were acquired in the same
session.

Behavioral Experiment
Experimental Material
In this study, the BMP performance of each individual
participant was assessed using FASTSTONE software (http://
www.faststone.org/FSCaptureDetail.htm) on the well-known
point-light biological motion stimuli captured from the
BIO MOTION LAB (http://www.biomotionlab.ca/Demos/
BMLwalker.html). More detailed information has been described
in previous studies (Troje, 2002; Perry et al., 2010; Saunders
et al., 2010). The 15 virtual markers were located at the joints
of the ankles, knees, hips, wrists, elbows, and shoulders, as
well as at the center of the pelvis, on the sternum, and on the
center of the head. The experimental stimuli included two
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independent dimensions of biological motion (i.e., gender and
walking direction) and no other masks were used. Stationary
walking (as on a treadmill) at normal speed in a frontal view (for
gender perception) or profile view (for direction perception) was
presented.

The gender dimension was set in terms of the linear
discriminant function that could separate the male and female
walkers (Troje, 2002). Maleness was generated by adding to
the average walker a vector pointing in the direction of this
discriminant function. The length of this vector was set to
represent a rather exaggerated male walking style. For a female
walker, the same vector was subtracted from the average walker.
For the direction dimension, the walkers were facing left or
right. The other properties (i.e., heavy/light, nervous/relaxed, and
happy/sad) were controlled in average values (Figure 1A). Both
dimensions were manipulated independently. For example, a
PLD could represent both a woman walking toward the observer
and a walker facing left.

All of the stimuli were presented as video clips, and
each stimulus presentation lasted 3000 ms. The clips were
presented on a CRT monitor 70 cm away from the participant’s
eyes. In addition, two types of static figures with the
same gender/directional information were used as the control
condition. The example videos of the PLDs were in the
Supplementary Materials.

Experimental Procedure
The stimuli were presented as 4 blocks (Figure 1B) in an AABB
design paradigm. The biological motion gender/direction blocks
and static picture gender /direction blocks were balanced across
participants, i.e., the biological motion blocks were presented
followed by the static figure blocks or vice versa. A total of
30 trials were included in each block. Before each block, a
short slide instruction about the following task was presented,
telling the subjects to judge the gender or direction of the
human figures or static pictures. The participants were asked
to press the “Q” button to continue once they understood the
instructions.

In the biological motion tasks, the gender and direction
perception blocks were also balanced between subjects in AB
design paradigm. Each trial in a block started with a fixation
cross appearing for 500 ms on the center of the screen, after
which the point-light stimulus appeared for 3000 ms. During
this period, the participants were instructed to make a decision
about the point-light information. For example, in the biological
motion gender perception task, participants were asked to press
“F” button for male figures and female “J”; in the direction blocks,
press “F” button for the left walking direction and right “J.”
A complete practice manipulation was implemented to ensure
the participants fully understood and were proficient at the
tasks.

The control experiment was the same as the main experiment
except for the stimuli (i.e., static figures). The stimulus
presentation and control experiment were performed using
E-Prime (http://www.pstnet.com/eprime.cfm). Only 16
participants completed the control task due to time conflicts. All
the trials were completed 1 month following their fMRI scan.

Brain-Behavior Analysis
Behavioral Data Analysis
The inverse efficiency (IE) measure (i.e., the average response
time of correct trials divided by their accuracies) was used to
characterize behavioral performance in biological perception and
to correct for the speed-accuracy trade-off effect (Townsend and
Ashby, 1983; Falter et al., 2006; Chica et al., 2011; Wei et al.,
2012). For the IE calculation, we extracted the average response
time and the accuracy ratio in each condition for each individual
participant. The accuracy was the ratio between the number of
correct responses and the total number of trials (Wei et al., 2012).
Then, the average response time of correct trials was divided by
the related accuracy ratio to obtain the IE index.

Rs-fMRI Data Preprocessing
The rs-fMRI data preprocessing was performed with the
GRETNA toolbox (http://www.nitrc.org/projects/gretna/) based
on SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/). After removal of the first 5 volumes, the functional
images were first corrected for time offsets between slices
and geometrical displacements due to head movement. None
of the participants was excluded based on the criterion of a
displacement <1 mm in any plane or <1◦ in any direction.
All of the corrected functional data were then spatially
normalized to the Montreal Neurological Institute (MNI)
space using an optimal 12-parameter affine transformation and
nonlinear deformations. Then, the normalized rs-fMRI data were
resampled to a 3-mm isotropic resolution and smoothed using a
4-mm isotropic kernel and further temporally band-pass filtered
(0.01–0.08Hz) to reduce the effects of low-frequency drift and
high-frequency physiological noise. Finally, the linear trend was
also removed, and several nuisance signals were regressed out
from each voxel’s time series, including 24-parameter head-
motion profiles (Friston et al., 1996; Yan et al., 2013), mean white
matter (WM) and cerebrospinal fluid (CSF) time series.

Brain Network Construction
The functional weighted networks were constructed with the
nodes corresponding to brain regions and the edges to inter-
nodal functional connectivity for each participant. Figure 2

shows the whole process of network construction. A functional
template (i.e., 160 regions of interest) from a previous meta-
analysis study (Dosenbach et al., 2010) was used to define the
nodes of the functional network. The template covers the cerebral
cortex, subcortical structures, and the cerebellum, and has been
widely used in previous studies (Xue et al., 2011; Hwang et al.,
2013; Shen et al., 2015). To define the edge weight of the brain
weighted network, we extracted the time series of all voxels
within each node and then averaged them to obtain the mean
time series. Finally, a 160 × 160 correlation matrix was obtained
by calculating Pearson’s correlation coefficients among these
time series. The analysis was restricted to positive connectivity
within network due to the ambiguous interpretation of negative
functional connections (Murphy et al., 2009; Weissenbacher
et al., 2009). Furthermore, there is still no consensus about
whether the negative correlations are artificially induced by
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FIGURE 1 | Example of stimuli and experimental procedures. (A) Point-light displays of biological motion and static pictures with static gender and directional

information. The point-light biological motion stimuli were modified from the BioMotionLab (http://www.biomotionlab.ca/Demos/BMLwalker.html). (B) Stimulus

paradigm of gender perception of biological motion and static gender perception.

global signal regression (Murphy et al., 2009) or if they have
biological origins (Chai et al., 2011).

Brain Network Analysis
The functional weighted networks were further fed into the
graph-based network analyses. The networks differed in the
number of edges (i.e., correlation matrix) (Wen et al., 2011; Shen
et al., 2015). Thus, we applied a range of sparsity thresholds,
defined as the fraction of the total number of edges remaining
in a network, so every graph had the same number of edges
(Watts and Strogatz, 1998; Wen et al., 2011; Shen et al., 2015;
Suo et al., 2015). The minimum sparsity was set so that the
averaged node degree of the network with threshold was 2log(N),
where N was the number of nodes, and the small-worldness
scalar of the network was >1.1 (Wen et al., 2011; Shen et al.,
2015; Suo et al., 2015). This thresholding strategy produced
networks that could be used to estimate small-worldness with
sparse properties and the minimum possible number of spurious
edges (Wen et al., 2011; Shen et al., 2015; Suo et al., 2015). The
subsequent network analyses were repeatedly performed in the
small-world regime of 0.03–0.51 in 0.02 increments, which was
based on the series of weighted connectivity matrices for each
participant.

We used six global parameters, the clustering coefficient (Cw),
characteristic path length (Lw), normalized weighted clustering
coefficient (γ), normalized weighted characteristic path length
(λ), global efficiency ( Eglob ), and local efficiency (Eloc), to
characterize the global properties of the brain’s functional
networks. The above global properties have been widely used in
previous studies (Liu et al., 2008; Zhao et al., 2012; Jiang et al.,

2013; Wang et al., 2014), and have been defined in Rubinov and
Sporns (2010).

Global efficiency
Global efficiency is a measure of a network’s capacity for
parallel information transfer between nodes via multiple series
of edges. Mathematically, the global efficiency for a network G is
defined as:

Eglob(G) =
1

N(N − 1)

∑

i6= j∈G

1

dij
, (1)

where dij is the shortest path length between node i and j inG and
is calculated as the smallest sum of edge lengths among all of the
possible paths from node i to node j.

The global efficiency of a given node, i.e., nodal global
efficiency, is defined as:

Enodalglob (G, i) =
1

(N − 1)

∑

i6= j∈G

1

dwij
, (2)

where N is the number of nodes in the network G. dwij is the

shortest path, in terms of weighted distance, between nodes i and

j. dwij =
dij
wij

, where wij is the connection strength between nodes

i and j.

Local efficiency
The local efficiency was calculated as the mean of the local
efficiencies across all nodes within a network. The local efficiency
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FIGURE 2 | Flowchart of the network construction. (A) Acquiring resting-state fMRI data. All the fMRI data were preprocessed using SPM8 software (http://www.

fil.ion.ucl.ac.uk/spm/software/spm8/). (B) Two brain templates, Dosenbach-160 and AAL-90 atlas were used. (C) Time courses extraction from each brain region. (D)

Computing Pearson correlation of each region with the other regions and transformed it into fisher z value. (E) Constructing weighted networks using GRETNA (Wang

et al., 2015). (F) Using multiple regression model to explore the association between global and local network efficiency with the IE (i.e., the average response time of

correct trials was divided by the related accuracy ratio) of gender and direction perception from biological motion and static pictures.

of G is defined as:

Eloc(G) =
1

N

∑

i∈ G

Eglob(Gi), (3)

where Eglob(Gi) is the global efficiency of Gi, the sub-graph
composed of the neighbors of node i. In parallel, the local
efficiency of a given node, i.e., nodal local efficiency, is defined as:

Enodalloc (G, i) =
1

NGi (NGi − 1)

∑

k 6= j∈ Gi

(
1

dw
jk

wijwik)
1/3, (4)

where NGi is the number of nodes in the subgraph Gi consisting
of all the neighbors of i. dw

jk
is the shortest path, in terms

of weighted distance, between nodes j and k. wij and wik are
the connection strength between nodes i and j, and i and k,
respectively.

Network characterization
The clustering coefficient, Cw, is defined as:

Cw =
1

N

∑

i∈N

∑
j,h∈N

(WijWihWjh)
1/3

Ki(Ki − 1)
, (5)

where Nij is the weight between node i and j in a network,
and Ki is the degree of node i. Cw is the mean of the weighted
clustering coefficients of all nodes in a network. It indicates the
extent of local interconnectivity or cliquishness in a network. The
characteristic path length Lw is defined as:

Lw =
1

1/(N(N − 1))
N∑

i = 1

N∑
j 6=i

1/Lij

(6)

where Lij is the characteristic path length between nodes i and j. It
measures a harmonic mean length between pairs and quantifies
the ability for information propagation in parallel.

The small-world properties of the network were characterized
by the normalized clustering coefficient (γ= Creal

w /Crand
w ) and the

normalized characteristic path length (λ = Lrealw /Lrandw ) (Watts
and Strogatz, 1998), where Crand

w and Lrandw are the averaged
weighted clustering coefficient and characteristic path length of
100 matched random networks that keep the same number of
nodes, edges, and degree distributions as the actual network.
Typically, a small-world network should meet the following
criteria: γ ≫ 1 and λ ≈ 1 (Watts and Strogatz, 1998).
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Network-Behavior Association Analysis
A multiple linear regression with least squares estimation was
used to explore the association between BMP performance
(i.e., the inverse efficiency, the dependent variable) and the
network efficiency (i.e., the global and local efficiency, the
independent variables). To this end, the integrated value under
all of the sparsities of the selected metrics was calculated for
each participant. Then, the metrics of each node was divided
by the averaged values over all nodes within each subject for
normalization. The BMP performance was characterized using
the IE metric, which was calculated for the performance on
the two conditions: direction and gender discrimination. Next,
a multiple linear regression model was applied to capture the
link between the network global and local efficiency and the
BMP performance. For our calculations, a feature selection
step was used to reduce the data dimension. After the feature
selection step, the significant correlation between global and local
efficiency of those nodes, and the BMP performance (all p< 0.05,
Pearson correlation, uncorrected) were entered into a multiple
linear regression analysis. The feature selection procedure has
been used in our previous work (Zhang et al., 2015).

Similarly, we performed a multiple regression analysis
between the global and local efficiency values, and the static
picture perception performance (i.e., Static-Direction and Static-
Gender).

Discrimination Analysis
All participants were sorted by the inverse efficiency (i.e., IE
index, the average response time of correct trials divided by
their accuracies), and then divided into high and low groups
at the median split of the IE values (Hashmi et al., 2014). We
then implemented the receiver operating characteristic (ROC)
analysis to explore whether the network efficiency could clearly
distinguish the high inverse efficiency group from low inverse
efficiency group. The ROC curve, which is widely used in medical
science (Missonnier et al., 2007; Chen et al., 2010; Liu and Zhou,
2013), is a fundamental plot in signal detection theory (Cardillo,
2008). More specifically, the ROC is a scatter plot showing the
relationship between false alarm rates and correct rates, and
describes the relationship between the underlying distribution
of the places where signals were absent and places where signals
were present. This analysis was performed using publicMATLAB
codes (http://www.mathworks.com/matlabcentral/fileexchange/
19950; by Giuseppe Cardillo).

Validation Analysis
First, the results of the multiple linear regression analysis
between the network efficiency and BMP performance
were validated. For this purpose, we shuffled the order of
the IE index across the participants to disorganize their
correspondences with the network properties. Then, the
multiple linear regression procedure was repeated using the
selected global and local efficiency and the random IE index.
Second, this study also explored whether the network efficiency
of those regions that did not have a high correlation with
BMP performance could also be used to explain the inter-
individual variability of BMP performance. The same number

of un-correlated regions with the correlated regions were
randomly selected and used as the independent variables in
the regression model. Finally, all of the main findings of the
brain-behavior analysis with the network of the Dosenbach-
160 template were validated using the network constructed
with the Automated Anatomical Labeling brain template
of 90 cerebral regions (AAL-90) (Tzourio-Mazoyer et al.,
2002).

RESULTS

Behavioral Performance
The accuracy ratios of the two BMP tasks (i.e., BMP-Direction
and BMP-Gender) were high (both over 95%). The mean
response times, accuracies, and inverse efficiencies (i.e., IE index,
the average response time of correct trials divided by their
accuracies) of the tasks are shown in Table 1. The inverse
efficiency from each participant is shown in Figure 3A. When
subjects were divided into two groups (i.e., the high and low IE
index groups) based on a median split of their IE index, two
sample t-test showed significant inter-individual variability on
perception task performance [BMP-Direction, t(22) = 6.14, p <

0.0001; BMP-Gender, t(22) = 6.08, p < 0.0001].

Network Topological Organization
The brain functional weighted networks satisfy small-world
organization (λ ≈ 1 and γ > 1) (Figure 4). However, the
global and local efficiency of whole brain were not significantly
correlated with BMP performance (Pearson correlation, BMP-
Direction: global efficiency, r = 0.04, p = 0.84; local efficiency:
r = 0.22, p = 0.31; BMP-Gender: global efficiency, r = 0.09, p =
0.67; local efficiency, r = 0.27, p= 0.21).

Multiple Linear Regressions
Biological Motion Perception
In order to reduce the data dimension, the feature selection
procedure was applied. In the feature selection procedure, we
first computed the Pearson correlation coefficients between the
nodal network efficiency (nodal global and local efficiency) with
the behavior performance (BMP and static pictures perception
performance). Then we selected the significantly correlated
regions with threshold of p < 0.05 as independent variables for
our multiple regression analysis.

TABLE 1 | Behavior performance of the participants in this study.

Response time (ms) Accuracy ration Inverse efficiency

Mean (SD) Mean (SD) Mean (SD)

Gendera 753.40 (138.10) 0.95 (0.03) 794.38 (147.05)

Directiona 505.63 (74.11) 0.96 (0.02) 533.35 (85.93)

Genderb 452.46 (85.64) 0.96 (0.03) 470.07 (82.93)

Directionb 355.83 (55.09) 0.99 (0.02) 360.71 (52.26)

aBiological motion information.
bStatic information.
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FIGURE 3 | Individual IE of biological motion perception and individual BMP-Direction correlated nodal local efficiency. (A) IE of biological motion

perception from each participant. The red square indicates the individual’s IE (i.e., the average response time of correct trials divided by their accuracies) of gender

perception from biological motion; the blue diamond indicates the individual’s inverse efficiency of direction perception of biological motion. The error bar is the

standard deviation. (B) Region label of nodal local efficiency. The regions of which nodal local efficiency showed significant Pearson correlation (uncorrected, p < 0.05)

with IE of BMP-Direction were showed in different size and colors. The colors indicate the sub-network involved. The size of the spheres is the absolute value of nodal

local efficiency. (C) Individual BMP-Direction correlated nodal local efficiency. Abbreviations: BMP, biological motion perception; BMP-Direction, direction perception of

biological motion; BMP-Gender, gender perception of biological motion.

We found that the nodal local efficiency of some regions
showed significant correlations with IE index of BMP
performance (for details see Table 2 and Figure 5). These
regions were predominately distributed across the default

mode network (DMN), cingulo-opercular, fronto-parietal and
vision-related networks (Table 2). The nodal local efficiency of
these regions from each participant was showed in Figure 3.
We also performed multiple linear regression analysis to
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FIGURE 4 | Global properties of the whole-brain functional network. (A) Small-worldness properties. In the range of 0.03≤ sparsity ≤ 0.52, the functional

networks exhibited γ > 1 and λ ≈ 1, indicating prominent small-world properties of the brain functional networks corresponding to the Dosenbach-160 and AAL-90

brain templates. (B) Clustering coefficient (left) and characteristic path length (right) changing with sparsities. (C) Global and local efficiency changing with sparsities.

Blue indicates network constructed based on Dosenbach-160 and red based on AAL-90 brain template. Abbreviations: γ, normalized weighted clustering coefficient;

λ, normalized weighted characteristic path length; Cw, weighted clustering coefficient; Lw, weighted characteristic path length; Eglob, global efficiency, Eloc, local

efficiency. Error bars correspond to the standard error.

evaluate the contributions of all these regions in predicting BMP
performance. We found that the nodal local efficiency of all these
regions could explain 88% of the inter-individual variability of
BMP-Direction [F(12, 11) = 6.52, p = 1.99e-3, R2 = 0.88] and
91% of BMP-Gender [F(14, 9) = 6.85, p = 3.26e-3, R2 = 0.91].
Despite this, the regression coefficient between the nodal local
efficiency of each region with the IE index of BMP-Direction
and BMP-Gender performance did not survive the threshold
of p < 0.05.

Next we assessed the contributions of the regions that
belonged to the same sub-network in BMP performance
predictions using linear regression models. The regression
coefficients between sub-network regions and IE indices of
BMP performance were also shown in Table 2. Of these sub-
networks, the nodal local efficiency of each region in DMN
showed significant regression coefficient with BMP-Direction
and BMP-Gender performance. These regression coefficients also
survived after false discovery rate (FDR) correction, p < 0.05.

The nodal local efficiency of regions in DMN explained 68% of
the inter-individual variance of BMP-Direction [F(3, 20) = 13.85,
p < 0.0001, R2 = 0.68] and 57% of the variance of BMP-Gender
[F(4, 19) = 6.40, p =1.94e−3, R2 = 0.57]. Such high explanatory
power was not observed in the other sub-networks (Figure 5B).

Regarding nodal global efficiency, a number of regions in
DMN, fronto-parietal network, cingulo-opercular network,
sensorimotor, and vision-related sub-networks exhibited
significant correlations between nodal global efficiency with
IE indices of BMP-Direction and BMP-Gender performance
(Table 2). The nodal global efficiency of these regions could
predict 60% of the inter-individual variability of BMP-Gender
performance [F(6, 17) = 4.17, p = 0.02, R2 = 0.60] but failed to
predict the variability in BMP-Direction performance [F(9, 14) =
2.37, p= 0.07]. In addition, all the regression coefficients of these
regions did not survive at the threshold of p < 0.05.

However, among these sub-networks, the nodal global
efficiency of regions in DMN explained 38% of BMP-Direction
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TABLE 2 | Regions of nodal local and global efficiency showed significant correlation with inverse efficiency of biological motion perception (BMP).

Peak MNI coordinates Pearson correlation coefficients Regression coefficients

Brain regions X Y Z Sub−network BDa BGa BDb BGb BDa BGa BDb BGb

vmPFC_R 8 42 −5 Default −0.54 −0.53** − − −0.40** −0.37* − −

PCC_R 10 −55 17 Default − − −0.46* − − − −0.07

PCC_L −11 −58 17 Default − − −0.46* −0.50* − − −0.24 −0.50*

PCC_L −5 −43 25 Default − −0.51* − − − −0.36* − −

PCC_L −8 −41 3 Default −0.62** −0.49* − − −0.42** −0.34* − −

Fusiform_R 28 −37 −15 Default −0.54** −0.41* −0.55** − −0.37* − −0.42

vent aPFC_L −43 47 2 Fronto-parietal 0.44* − − − 0.32 − − −

vent aPFC_R 42 48 −3 Fronto-parietal − 0.44* − − − 0.34 − −

vlPFC_R 39 42 16 Fronto-parietal − − − 0.45* − − − 0.32

dFC_L 44 8 34 Fronto-parietal 0.47* − − − 0.3 − −

dlPFC_L −44 27 33 Fronto-parietal − − 0.42* − − − 0.35

IPL_R 54 −44 43 Fronto-parietal − − − 0.42* − − 0.37 0.25

IPS_L −32 −58 46 Fronto-parietal 0.42* 0.43* − − 0.27 0.33 − −

Thalamus_L −12 −3 13 Cingulo-opercular −0.51* −0.55** − − −0.37 −0.1 − −

Fusiform_R 54 −31 −18 Cingulo-opercular 0.46* − − − 0.27 − −

Basal ganglia_R 14 6 7 Cingulo-opercular − −0.46* − − − −0.47 − −

TPJ_L −52 −63 15 Cingulo-opercular − − −0.42* − − − −0.42*

Middle insula_R 37 −2 −3 Cingulo-opercular − − − 0.49* − − − 0.49*

vFC_R 43 1 12 Sensorimotor − 0.46* − − − 0.24 − −

Middle insula_L −42 −3 11 Sensorimotor 0.48* 0.53** − − 0.48* 0.42* − −

Precentral gyrus_L −44 −6 49 Sensorimotor − 0.45* − − − 0.22 − −

Parietal_L −38 −15 59 Sensorimotor − − −0.48* −0.43* − − −0.39* −0.41

Precentral gyrus_L −54 −22 22 Sensorimotor − − −0.41* − − − −0.31

Parietal_L −24 −30 64 Sensorimotor − − − 0.42* − − − 0.41

Occipital_L −34 −60 −5 Occipital −0.43* −0.47* − − −0.21 −0.30 − −

Occipital_R 39 −71 13 Occipital −0.52** −0.47* − − −0.41 −0.30 − −

Temporal_R 46 −62 5 Occipital − −0.41* − − − −0.02 − −

Occipital_L −16 −76 33 Occipital − − −0.44* − − − −0.44** −

Inferior cerebellum_L −25 −60 −34 Cerebellum 0.45* − − − 0.45* − − −

aNodal local efficiency.
bNodal global efficiency; BD, direction perception of biological motion; BG, gender perception of biological motion; R, right hemisphere; L, left hemisphere. Pearson correlation

coefficients: **p < 0.01, *p < 0.05, uncorrected. Regression coefficients: **p < 0.01, *p < 0.05, FDR corrected. vmPFC, ventral medial prefrontal cortex; PCC, post-cingulate cortex;

vent aPFC, ventral anterior prefrontal cortex; vlPFC, ventral lateral prefrontal cortex; dFC, dorsal prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; IPL, inferior parietal lobe; IPS,

intra−parietal sulcus; TPJ, temporoparietal junction; vFC, ventral frontal cortex.

[F(3, 20) = 4.04, p = 0.02, R2 = 0.38] and 25% of BMP-Gender
[F(1, 22) = 7.17, p = 0.01, R2 = 0.25]. The regression coefficients
between nodal global efficiency of each region in DMN and BMP-
Gender performance survived after FDR correction (p < 0.05)
and are shown in Table 2.

Static Direction and Gender Perception
In the feature selection, we found that the nodal local and global
efficiency of several regions were significantly correlated with IE
indices of static direction and gender perception performance
(Table 3). Using a multiple regression model, we found the
inter-individual variability of IE indices of static direction and
gender information perception performance could be effectively
explained by nodal global efficiency of the related regions
[i.e., Static-Direction perception: F(9, 6) = 11.56, p = 3.76e-
3, R2 = 0.95; Static-Gender perception: F(12, 3) = 20.06, p =

0.02, R2 = 0.98]. However, none of the regression coefficients

of nodal local and global efficiency of these regions reached
the threshold of p < 0.05. In the regression model based
on sub-networks, the nodal global efficiency of regions in the
fronto-parietal sub-network had the highest explanatory power
and explained 71% of IE index of Static-Gender information
perception [F(3, 10) = 10.20, p = 1.28e−3, R2 = 0.71] and 71%
of Static-Direction information perception [F(2, 13) = 16.03, p =
3.09e−4, R2 = 0.71].

The nodal local efficiency of all the correlated regions
effectively explained the IE index of Static-Direction performance
[F(12, 3) = 10.79, p= 0.04, R2 = 0.98] and had a significant trend
explaining the Static-Gender performance [F(12, 3) = 8.69, p =

0.05]. In the regression model based on sub-networks, we found
that the nodal local efficiency of regions in occipital sub-network
explained 84% of the variance in Static-Gender perception [F(7, 8)
= 6.02, p = 0.01, R2 = 0.84] and 77% of variance in Static-
Direction perception [F(7, 8) = 3.87, p = 0.04, R2 = 0.77]. The
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FIGURE 5 | Correlation coefficient of each region in the feature selection and independent explanatory power of each sub-network in the multiple

linear regression models for BMP. (A) Absolute correlation coefficient between BMP-Direction and nodal local efficiency. Pearson correlation, p < 0.05,

uncorrected. The size of each region indicates the absolute correlation coefficient. The different colors of the regions indicate different sub-networks. (B) Explanatory

power of nodal local efficiency in each sub-network predicting BMP-Direction. Fronto-parietal sub-network: F (3, 20) = 4.39, p = 0.02, R2 = 0.40; cingulo-opercular

sub-network: F (2, 21) = 4.75, p = 0.02, R2 = 0.31; occipital sub-network: F (1, 21) = 4.55, p = 0.02, R2 = 0.30; sensorimotor sub-network: F (1, 22) = 6.56, p = 0.02,

R2 = 0.23 and cerebellar sub-network: F (1, 22) = 5.70, p = 0.03, R2 = 0.21. (C) Absolute correlation coefficient between BMP-Gender and nodal local efficiency.

Pearson correlation, p < 0.05, uncorrected. The size of each region indicates the absolute correlation coefficient. (D) Explanatory power of nodal local efficiency in

each sub-network predicting BMP-Gender. Sensorimotor sub-network: F (3, 20) = 5.02, p = 0.01, R2 = 0.43; cingulo-opercular sub-network: F (2, 21) = 4.56,

p = 0.02, R2 = 0.30 and front-parietal sub-network: F (2, 21) = 4.24, p = 0.03, R2 = 0.29. Abbreviations: DMN, Default Mode Network; BMP, biological motion

perception; BMP-Direction, direction perception of biological motion; BMP-Gender, gender perception of biological motion.

regression coefficients of the nodal global and local efficiency
of each region based on sub-networks with static information
perception are shown in Table 3.

Discrimination Analysis
In order to further test the association between the nodal local
and global efficiency, and the BMP performance, we divided all
the participants into high and low IE index groups according to
their median IE values. Based on this group-difference, a ROC
analysis was used to explore whether the nodal properties of
the above brain network could effectively discriminate the two
groups. There were some regions whose nodal local efficiencies
could effectively be used to discriminate the high and low IE
groups using ROC analysis (Table 4). Figure 6 presents the ROC
of nodal local efficiency of the left thalamus in the two group’s
discrimination (AUC= 0.82, p= 0.01, 95% CI area= 0.65–0.99)

with a maximum sensitivity of 91.7% and a specificity of 75.0%.
However, the nodal global efficiency was not able to be used to
discriminate the high and low IE groups.

Validation Analysis Findings
In order to validate the results of the multiple linear regression
analysis between the network regional efficiency and BMP
performance, the IE indices of BMP across participants were
shuffled to disorganize their correspondences with the network
properties. We found that significantly correlated regions could
no longer explain the BMP inter-individual variability in nodal
local efficiency [BMP-Direction: F(12, 11) = 1.11, p = 0.45; BMP-
Gender: F(14, 9) = 1.15, p= 0.42] or nodal global efficiency [BMP-
Direction: F(9, 14) = 0.27, p = 0.96; BMP-Gender: F(6, 17) = 0.99,
p= 0.47].
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TABLE 3 | Regions of nodal local and global efficiency showed significant correlation with inverse efficiency of static gender and direction perception.

Peak MNI coordinates Pearson correlation coefficients Regression coefficients

Brain regions x y z Sub−network SDa SGa SDb SGb SDa SGa SDb SGb

vmPFC_L −11 45 17 Default − 0.66** − − − 0.66** − −

vlPFC_R 46 39 −15 Default − − − 0.50* − − − 0.18

Sup frontal_L −16 29 54 Default − − − 0.56* − − − −0.22

Fusiform_R 28 −37 −15 Default − − − −0.57* − − − −0.68**

Precuneus _L −6 −56 29 Default − − − 0.54* − − − 0.27

Inf temporal_L −59 −25 −15 Default − − 0.52* 0.51* − − 0.52* 0.56*

aPFC_L −29 57 10 Fronto-parietal − 0.70** − − − 0.70** − −

vent aPFC_L −43 47 2 Fronto-parietal − − 0.77** 0.75** − − 0.48* 0.39

dlPFC_L −44 27 33 Fronto-parietal − − 0.76** 0.76** − − 0.45* 0.46*

IPL_L −48 −47 49 Fronto-parietal − − − 0.54* − − − 0.15

vPFC_R 34 32 7 Cingulo-opercular − − 0.51* − − − 0.51* −

vFC_L −48 6 1 Cingulo-opercular 0.53* − − − 0.17 − − −

vFC_L −46 10 14 Cingulo-opercular − 0.50* − − − 0.50* − −

Mid insula_L −30 −14 1 Cingulo-opercular − − − −0.53* − − − −0.53*

TPJ_L −52 −63 15 Cingulo-opercular 0.55* − − − 0.27 − − −

Parietal_R 58 −41 20 Cingulo-opercular 0.51* − − − 0.26 − − −

vFC_R 43 1 12 Sensorimotor 0.63** − − − −0.33 − − −

Middle insula_L −42 −3 11 Sensorimotor 0.53* − − − 0.39 − −

Temporal_L −41 −37 16 Sensorimotor − 0.53* −0.51* −0.73** − 0.43* −0.53* −0.73**

Precentral gyrus_L −54 −9 23 Sensorimotor − − −0.52* − − − −0.51* −

Temporal_L −54 −22 9 Sensorimotor − −0.61* − − − −0.54* − −

Occipital_L −34 −60 −5 Occipital − − −0.74** −0.61* − − −0.56 −0.42

Occipital_R 15 −77 32 Occipital − − −0.60* − − − −0.06 −

Occipital_R 39 −71 13 Occipital −0.57* 0.63** −0.50* −0.57* −0.72 −1.39* −0.24 −0.29

Occipital_L −34 −60 −5 Occipital −0.74** −0.53* − − −0.81 −0.87* − −

Post-occipital_L −37 −83 −2 Occipital −0.53* −0.62* − − −0.04 0.51 − −

Post-occipital_L −29 −88 8 Occipital −0.50* −0.57* − − −0.08 −1.02 − −

Occipital_R 19 −66 −1 Occipital −0.74** −0.59* − − −0.79 −1.54* − −

Post-occipital_R 33 −81 −2 Occipital −0.67** −0.51* − − 0.58 1.58* − −

Occipital _R 36 −60 −8 Occipital −0.71** −0.60* − − 0.68 1.46* − −

aNodal local efficiency.
bNodal global efficiency; SD, static direction information, SG, static gender information. Pearson correlation coefficients: **p < 0.01, * p < 0.05, uncorrected. Regression coefficients:

**p < 0.01, *p < 0.05, FDR corrected. Inf temporal, inferior temporal; Sup frontal, superior frontal cortex; vlPFC, ventrolateral prefrontal cortex; vmPFC, ventral medial prefrontal cortex;

dlPFC, dorsolateral prefrontal cortex; vent aPFC, ventral anterior prefrontal cortex; IPL, inferior parietal lobe; aPFC, anterior prefrontal cortex; vPFC, ventral prefrontal cortex; vFC, ventral

frontal cortex; TPJ, temporoparietal junction; Post-occipital, posterior occipital.

We also found that the nodal efficiency of the regions without
significant correlations (Pearson correlation, p > 0.05) with IE
index of BMP could not effectively explain BMP performance in
nodal local efficiency [BMP-Direction: F(12, 11) = 0.56, p = 0.84;
BMP-Gender: F(14, 9) = 0.59; p = 0.75] or nodal global efficiency
[BMP-Direction: F(9, 14) = 1.88, p = 0.16; BMP-Gender: F(6, 17)
= 0.79, p= 0.61].

The functional weighted brain network related to AAL-
90 brain template was also small-world organized (Figure 4).
The results showed that nodal local efficiency (Table S1)
could effectively predict the participants’ IE indices of BMP
performance [BMP-Direction: F(6, 17) = 7.24, p < 0.0001, R2 =

0.72; BMP-Gender: F(4, 19) = 7.54, p < 0.0001, R2 = 0.61]. The
key regions with high explanatory power were also located at
the DMN modules (e.g., BMP-Direction: anterior cingulate and

post-cingulate gyrus; BMP-Gender: the orbital and medial parts
of the superior frontal gyrus). By contrast, nodal global efficiency
failed to explain either BMP-Direction [F(8, 15) = 2.57, p = 0.05]
or BMP-Gender [F(9, 14) = 1.95, p = 0.13]. For the perception
of static information, nodal global efficiency could effectively
predict static information perception [Static-Direction: F(11, 4)
= 7.45, p = 0.03, R2 = 0.95; Static-Gender, F(9, 6) = 4.31, p =

0.04, R2 = 0.86], whereas nodal local efficiency could effectively
explain Static-Direction [F(7, 8) = 6.67, p = 7.89e-3, R2 = 0.85]
but failed to explain Static-Gender [F(9, 6) = 2.72, p= 0.14].

DISCUSSION

The present study explored the association between intrinsic
functional brain network activity and BMP performance. The

Frontiers in Human Neuroscience | www.frontiersin.org 11 November 2016 | Volume 10 | Article 552

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wang et al. Brain Network Predicting Biological Motion

TABLE 4 | ROC classification of high and low inverse efficiency groups of biological motion perception based on nodal local efficiency.

Peak MNI coordinates Classification

Brain regions x y z Hemisphere AUCa pa AUCb pb

Post-cingulate cortex −8 −41 3 L 0.74 0.03 0.74 0.02

IPS −32 −58 46 L 0.75 0.02 0.75 0.03

Thalamus cortex −12 −3 13 L 0.82 0.01 − −

Fusiform gyrus 54 −31 −18 R 0.78 0.01 − −

vaPFC 42 48 −3 R − − 0.78 0.03

Occipital lobe −34 −60 −5 L 0.76 0.03 0.73 0.04

aDirection perception of biological motion.
bGender perception of biological motion; R, right hemisphere; L, left hemisphere. Abbreviations: ROC, receiver operating characteristic; AUC, area under the ROC; IPS, intra-parietal

sulcus; vaPFC, ventral anterior prefrontal cortex.

main findings can be summarized as follows: (i) there exist
linear associations between intrinsic brain network efficiencies
and BMP performance, which could be measured using a
multiple linear regression model; (ii) the nodal local efficiency
rather than the nodal global efficiency could account for
individual variance in BMP performance; and (iii) the nodal local
efficiencies of the DMN explain most of the variation in BMP
performance.

As a central component of our perception system, BMP
assists in interaction with the dynamic natural environment
(Beauchamp et al., 2003; Kilts et al., 2003; Peelen et al., 2006).
BMP processes are dissociated from processes of static form
perception (Hiris, 2007; Thirkettle et al., 2009; Roché et al.,
2013; Fraiman et al., 2014). Many previous studies have shown
that observers can correctly identify the gender and direction
(Mather and Murdoch, 1994; Troje, 2002; Pollick et al., 2005;
Blake and Shiffrar, 2007) of a walking figure based on dynamic
cues in biological motion presented by point-light displays. Even
though the detection of motion is an intrinsic capacity of the
visual system, the perception of motion varies across individuals
(Langer et al., 2011; Sala-Llonch et al., 2012; Stevens et al., 2012;
Pamplona et al., 2015a). However, few studies have explored
the neural substrates underlying inter-individual variability in
BMP performance (Gilaie-Dotan et al., 2013; Pavlova et al.,
2014).

In recent years, intrinsic brain activity, especially the
properties of the brain network, was widely used to reveal
the underlying mechanism of mental abilities and mental
states (Latora and Marchiori, 2001; Lewis et al., 2014). The
concept of network efficiency was used to measure how
efficiently information is exchangedwithin a network (Latora and
Marchiori, 2001) both on a global and local scale. The global
efficiency of the network is the efficiency of a parallel system,
where all the nodes in a network concurrently exchange packets
of information. On the other hand, the local efficiency of a
network reveals how much the system is fault tolerant, showing
how efficient the communication across the nearest neighbors of
one node is when this node is removed (Latora and Marchiori,
2001; Bullmore and Sporns, 2009; Rubinov and Sporns, 2010).
A small-worldness network always has high global and local
efficiency (Xue et al., 2011). In our study, we found that the
global and local efficiencies of the network are not significantly

correlated with individual BMP, which indicates that the inter-
variability of BMPmay not be predicted by the overall global and
local efficiencies of the network.

Nodal global and local efficiencies measure the extent to which
each node connects all other nodes of a network, and how well
information propagates through the network (Xue et al., 2011;
Lewis et al., 2014; Zhang et al., 2015). Using Pearson correlation
analysis, we found that nodal global and local efficiencies of some
regions showed significant correlations with BMP and static
pictures perception (Tables 2, 3). In previous studies (Schilbach
et al., 2008; Laird et al., 2011; Zhang et al., 2015) both the nodal
global and local efficiencies have been proven to be linked with
neurodegenerative disease and cognitive abilities. For example,
in our recent study, Zhang et al. (2015) found that the network
nodal local efficiency could effectively discriminate Parkinson’s
disease patients from healthy controls using multivariate pattern
analysis, and could also describe the variability of tremor based
on a multiple linear regression model. In another previous study,
Pamplona et al. (2015b) found that the nodal local efficiency was
associated with verbal comprehension ability.

Notably, using multiple regression analysis, we found that
the nodal local and global efficiencies performed differently
in predicting social information perception performance from
biological motion and static pictures (Tables 2, 3). The nodal
local efficiency explained most of the inter-variability of BMP,
while the nodal global efficiency predicted the performance
of static pictures perception. These observations were highly
independent of network type (i.e., networks constructed by
Dosenbach-160 or AAL-90). The Dosenbach-160 brain template
include 160 spherical regions that were generated based on
a meta-analysis (Dosenbach et al., 2010) which were divided
into six sub-networks: cingulo-opercular, fronto-parietal, default
mode, sensorimotor, occipital, and cerebellar. The AAL-90 atlas
is a widely used manual macroanatomical parcellation of the
single subject MNI-space template brain (Tzourio-Mazoyer et al.,
2002). In our study, the functional networks constructed by
Dosenbach-160 and AAL-90 brain templates were both small-
worldness organized (Figure 4). In the validation analysis, we
also found that those regions that did not correlate with
BMP performance could not explain BMP performance. The
regression model failed to explain BMP performance when the
consistency between network efficiency and BMP performance
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FIGURE 6 | The receiver operating characteristic (ROC) curve for

distinguishing the IE index for each individual. The ROC curve indicates a

function of nodal local efficiency of the left thalamus in dividing high and low IE

groups. A high area under the ROC (AUC) means a higher probability that a

randomly chosen high IE group example is ranked higher than a randomly

chosen low IE example. The maximum sensitivity (the proportion of high IE

group that are correctly identified as high group) of the ROC is 91.7% and a

specificity (the proportion of low IE group that are correctly identified as low

group) of 75.0%. IE, inverse efficiency, the average response time of correct

trials was divided by the related accuracy ratio.

was shuffled. Despite the brain-behavior association analysis,
in the group-discrimination analysis we also found that the
nodal local efficiency instead of the nodal global efficiency
could discriminate the high and low perception groups. All
of these above findings suggest that there might be a local
network efficiency pattern that is functionally associated with
individual BMP performance. By contrast, we found that
nodal global network efficiency predicted the static direction
and gender information perception on functional networks
constructed on Dosenbach-160 and AAL-90 brain templates.
Thus, these findings may collectively suggest the existence of a
specific pattern of connections between individual regions and
adjacent regions within functional brain networks to assist BMP
processes.

In addition, the independent contribution of each sub-
network was further explored in explaining the inter-individual
variability of BMP. Our results showed the importance of
DMN in predicting BMP performance. Previous studies have
demonstrated the involvement of the DMN in many types of
social-cognitive functions (Northoff et al., 2010; Mantini and
Vanduffel, 2013), such as self-referential processing (Frith and
Frith, 2006; Mars et al., 2012), mentalizing and theory of mind
(Raichle et al., 2001; Greicius et al., 2003; Raichle and Snyder,
2007; Buckner et al., 2008). In our study, we found that the
DMN nodes were distributed across the posterior cingulate
cortex, ventral medial prefrontal cortex, and fusiform gyrus.

These regions largely overlap with the DMN regions identified
in previous studies (Blakemore and Decety, 2001; Pelphrey et al.,
2004; Kourtzi et al., 2008). It is very important for people to
understand other’s actions and infer their goals or intentions
during social interaction (Van Overwalle and Baetens, 2009;
Centelles et al., 2011). Our findings provide evidence for a close
association between spontaneous neural activity of the DMN and
BMP.

Different from BMP, we found that nodal global efficiency
of the fronto-parietal network had a high estimation to predict
inter-individual differences of static information perception. In
our study, the regions of the fronto-parietal network included
the dorsolateral prefrontal cortex and anterior prefrontal cortex.
In previous studies (Miller and Cohen, 2001; O’Reilly, 2006,
2010), the fronto-parietal network has long been implicated as
a source of attentional control. The prefrontal cortex is known
to be important for cognitive control, enabling behavior to be at
once flexible yet task-focused. Therefore, in our study, the nodal
global efficiency of the fronto-parietal network could predict
static information perception, which may indicate that attention
and cognitive control play important role in gender and direction
perception of static information.

CONCLUSION

In conclusion, the present study measured inter-individual
variability of BMP and spatial organization of intrinsic brain
networks. We found that the nodal local efficiency could explain
BMP performance using a multiple linear regression model in
which the DMN played an important role. These findings suggest
that the information translation ability of the local circuit (e.g.,
DMN) of the intrinsic brain network may be the neural basis of
BMP performance. This study will help identify the underlying
neural mechanisms of BMP.
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