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Temporal regularities in speech, such as interdependencies in the timing of speech

events, are thought to scaffold early acquisition of the building blocks in speech. By

providing on-line clues to the location and duration of upcoming syllables, temporal

structure may aid segmentation and clustering of continuous speech into separable

units. This hypothesis tacitly assumes that learners exploit predictability in the temporal

structure of speech. Existing measures of speech timing tend to focus on first-order

regularities among adjacent units, and are overly sensitive to idiosyncrasies in the

data they describe. Here, we compare several statistical methods on a sample of 18

languages, testing whether syllable occurrence is predictable over time. Rather than

looking for differences between languages, we aim to find across languages (using

clearly defined acoustic, rather than orthographic, measures), temporal predictability

in the speech signal which could be exploited by a language learner. First, we

analyse distributional regularities using two novel techniques: a Bayesian ideal learner

analysis, and a simple distributional measure. Second, we model higher-order temporal

structure—regularities arising in an ordered series of syllable timings—testing the

hypothesis that non-adjacent temporal structures may explain the gap between

subjectively-perceived temporal regularities, and the absence of universally-accepted

lower-order objective measures. Together, our analyses provide limited evidence for

predictability at different time scales, though higher-order predictability is difficult to

reliably infer. We conclude that temporal predictability in speech may well arise from

a combination of individually weak perceptual cues at multiple structural levels, but is

challenging to pinpoint.

Keywords: speech perception, temporal structure, rhythm, Bayesian, time series, autoregressive models, nPVI,

timing

INTRODUCTION

To acquire a language, human infants must solve a range of intertwined inductive problems which,
taken together, represent one of the most demanding computational challenges a child will ever
face. One of the earliest and most basic of these component problems is to segment continuous
speech into distinct units, such as words, syllables or phonemes. Segmentation problems recur at
multiple levels of linguistic structure, and must be solved either before or in tandem with higher-
level inferences or generalizations that are defined over these units (e.g., syntactic, morphosyntactic,
and phonotactic rules). However, it is at present unclear—both theoretically and in terms of
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building speech technologies—which properties of speech allow
this highly underconstrained inductive problem to be solved.

In this paper, we test whether this problem might be made
more tractable by predictability in the temporal structure of
speech. The key idea is that, if the timing of syllables follows
any kind of pattern, this temporal pattern might be helpful for
infants acquiring speech (Bialek et al., 2001; Nazzi and Ramus,
2003; Saffran et al., 2006) by providing infants with clues to
predict where units begin and end (Trehub and Thorpe, 1989;
Trainor and Adams, 2000). This hypothesis is corroborated by
experimental evidence with adults: experiments in which simple
artificial signals were taught to participants showed that when
there was no temporal structure at all to the signals (i.e., signals
just changed continuously over time), participants had a hard
time learning to reproduce them (de Boer and Verhoef, 2012).
This was true, even though the signals were based on vowels,
and thus were recognizably speech-like. In an otherwise identical
experiment, where signals did have clear temporal structure
(i.e., there were regularly spaced building blocks separated by
drops in volume), learning was much better even though the
signals themselves were less speech-like (being produced with
a slide whistle, Verhoef et al., 2014). Here we investigate the
predictability of temporal structure of speech in a sample of 18
languages using three different statistical approaches. Specifically,
we explore how well the occurrence of an upcoming syllable
nucleus can be predicted on the basis of the times at which
previous syllables occurred. In one of the three statistical models,
we also test whether the previous syllable’s intensity helps in
predicting the time of occurrence of the next syllable.

We emphatically do not want to enter the debate about
rhythmic classes of languages (stress-timed, syllable-timed, or
mora-timed) and the ways to measure them. Much research
has classified languages based on their temporal structure (Pike,
1945; Rubach and Booij, 1985; Port et al., 1987; Bertinetto, 1989;
Fabb and Halle, 2012), reporting multiple acoustic correlates for
language rhythmic class (Ramus et al., 1999; Patel and Daniele,
2003). Arvaniti (2012) has shown that many of the proposed
measures are very sensitive to speaker, sentence type and
elicitationmethod. In addition, she finds that groups of languages
are classified differently by differentmeasures, concluding that (p.
351) “any cross-linguistic differences captured by metrics are not
robust [. . . ] making cross-linguistic comparisons and rhythmic
classifications based on metrics unsafe at best.” Here, we
investigate how durations and intensities of preceding syllables
can help to predict the position and duration of a subsequent
syllable, and whether more complex patterns than a simple fixed
average duration play a role. Though to our knowledge there
has been little investigation of higher-order timing structures in
speech, it is clear that structure in higher-order timing patterns
(e.g., at the sentence level) can influence processing of smaller
units (e.g., syllables) in speech: for example, Reinisch et al. (2011)
show that the timing of a preceding sentence can influence how
people interpret stress in a subsequent word. Results like this
suggest that complex timing patterns at multiple levels in speech
are salient to listeners and influence processing, motivating our
analysis of these patterns.

Rhythm in language is obviously more complex than
just temporal predictability of syllables (e.g., involving the
way stressed and unstressed syllables are grouped into feet,
Goedemans and Van der Hulst, 2005). However, most of the
existing notions of rhythm in speech depend on already having
some knowledge of the sound system of the language. Our
notion of predictability is therefore somewhat more basic than
most notions of rhythm in the phonological literature. Going
back to the origins of rhythm research in psychology (Bolton,
1894), we call rhythmic the temporal regularities in sound
sequences and rhythmical those patterns of temporal intervals
also containing variation in loudness. Bolton’s very influential
work (Bolton, 1894) has, on the one hand triggered much
developmental work (e.g., Thorpe and Trehub, 1989; Trehub
and Thorpe, 1989; Trainor and Adams, 2000), while on the
other promoted empirical research on the relative importance
of duration and intensity in segmenting general auditory input
(Povel, 1984; Trainor and Adams, 2000; de la Mora et al.,
2013; Toro and Nespor, 2015). Here, we put the emphasis
on speech rhythmicity, rather than rhythmicality, hence testing
the importance of durational information (rather than fine-
grained spectral characteristics) in predicting future temporal
regularities. In particular, we test whether the occurrence of
syllable nuclei (characterized by peaks in intensity and maximum
harmonics-to-noise ratio, i.e., voicedness) can be predicted from
the (regularities in the) durations of the intervals between them.
Therefore, we use only data about the syllable nuclei in our
analysis.

In order to quantify the predictability of temporal structure
in language, we investigated a small corpus of texts in 18
typologically and geographically diverse languages (listed in
Table 1). We use a typologically and geographically diverse
sample to exclude the possibility that temporal structure would
somehow be an areal feature of Western European languages.
As we are interested in the temporal structure of real speech,
using word lists would not be useful, and therefore we use
short stories. The example stories used in the illustrations of
the IPA (International Phonetic Association, 1999) are ideal
for this purpose. These are very short stories, either read
from a text or spontaneously (but fluently) told. Although the
stories are short this should not matter, because if rhythmic
structure is to be of any use in acquisition, it should already
be apparent from relatively short passages (Nazzi et al., 2000).
Herein lies another difference with most existing literature on
rhythmic measures: previous methods have been developed and
used to quantify differences in rhythm between languages and
hypothesized rhythmic classes (e.g., Arvaniti, 2012). Conversely,
we are interested in the amount of temporal predictability that is
present across languages, providing a set of clues to support the
language learning process.

Story reading generally has a speaking style of its own.
Analyses of Dutch (Theune et al., 2006), French (Doukhan et al.,
2011), and Spanish (Montaño et al., 2013) show that compared
to every-day speech, narrative speech tends to: (i) have more
exaggerated pitch and intensity contours, (ii) be slower, (iii)
have more pauses, (iv) include words with exaggerated pitch
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and intensity. Confusingly, in the literature this is often referred
to as storytelling, but in fact most research is about stories
that are read aloud from a prepared text. Spontaneously told
stories have similar features, but more pauses and hesitations,
and tend to have slower speaking rate (Levin et al., 1982). The
features of story reading and storytelling are comparable to
those of infant-directed speech (Fernald and Kuhl, 1987; Fernald
et al., 1989), which facilitates word learning (Fernald andMazzie,
1991; Filippi et al., 2014). Although story reading/telling style is
therefore different from adult-adult dialog style, it may be more
representative of the language intake (i.e., that part of the input
that infants actually use in acquiring speech; Corder, 1967).

We use three increasingly sophisticated statistical techniques
to quantify the predictability of syllable durations in our speech
samples. The techniques make predictions based on increasingly
long sequences, namely:

• Length 0: global distributional properties of the language
determine when the next syllable will occur,

• Length 1: the time of occurrence of the next syllable is based on
the previous syllable, i.e., there is a non-random distribution of
relative duration of adjacent elements, or

• Length >1: when the next syllable will occur is based on the
duration of multiple previous elements.

If temporal structure of speech is indeed predictable, this should
be reflected in the outcome of our analyses. Our story-reading
dataset might not be fully representative of ordinary adult-
directed speech. However, the dataset is appropriate to look
for temporal predictability, given the net-content of exaggerated
features and comparability with infant-directed speech. If there is
no structure at all to be found in this kind of speech, then there
would be no reason to expect it in normal, less-controlled setting.

MATERIALS AND METHODS

Materials: Corpus
The audio files were recordings of the narrative texts used in
various publications of the international phonetic association,
used as illustrations of the sound systems of different languages.
Most often Aesop’s fable “The North Wind and the Sun” is
used for this purpose, but sometimes other (native) stories are
used. Crucially, all of these transcriptions and recordings have
been published in the Journal of the International Phonetic
Association as part of the series of “Illustrations of the IPA” and
a number are also available in the IPA handbook (International
Phonetic Association, 1999). Sources per language are indicated
in Table 1. The story consists of 177190159 (median, first and third
quartile) syllables divided over 5–13 sentences.

Methods: Annotations
The automatic methods for finding syllable centers we had
available (Mermelstein, 1975; de Jong and Wempe, 2009) did
not yield satisfactory results for the range of languages, speakers,
speaking rates and speaking volumes that were in our sample,
Hence we proceeded to annotate the sample manually. This
has the advantage that our annotations represent the human-
perceived syllable centers instead of computer-extracted data

based on a predetermined set of features. Moreover, fine-tuning
the parameters of automatic methods (Mermelstein, 1975; de
Jong and Wempe, 2009) for each passage would introduce
at least as much variability and subjectiveness as annotating
the syllable centers manually. The centers of syllables were
identified by ear, and their precise location was identified as
the position where amplitude was highest and the harmonic
structure was clearest (Figure 1). The transcriptions in the IPA
articles were used to indicate phrase and sentence breaks, so
that we could identify chunks of speech with uninterrupted
rhythm. In addition, we indicated other points where the
speaker paused and interrupted the rhythm. YJ re-checked all
the cases where a break might have been forgotten, in order
to have a more consistent dataset. Annotations were made in
PRAAT versions 5.3.49–6.0.11 (Boersma and Weenink, 2013).
Consistency between raters was ensured by having four of the
considered languages annotated by two raters. The pairwise
distance between all annotations was computed using Dynamic
TimeWarping (Sakoe and Chiba, 1978), a widely-used algorithm
for aligning temporal sequences, where we use absolute time
difference between two annotated nuclei as the distance metric.
The sum of squared errors (i.e., sum of squared differences of
matched annotated nuclei timings) between annotators for the
same language was at least 10 times lower than the sum of
squared errors between different languages or between real and
randomly-generated annotations.

Methods: Mapping Languages to Durations
Having this set of annotated points in time for all languages,
we then calculated the time distance between nuclei of adjacent
syllables, i.e., the inter-nucleus-interval durations (INI), and the
difference in intensity between those nuclei. Hence each language

FIGURE 1 | Nuclei annotation methods. The nuclei of each syllable

(denoted by the corresponding syllable number 1,2,3,...) were annotated using

acoustic information and visual information from the sound wave (top), the

spectrogram (bottom, Fourier’s window length equals 0.05 s), and the signal

intensity (yellow curve). Distances between adjacent nuclei are denoted by ds
and is are the corresponding differences between intensities of adjacent nuclei.
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corresponds to two vectors D = (d1,d2,...,dn) and I = (i1,i2,...,in)
where ds is the INI and is is the difference in intensity between
syllables s+ 1 and s, for s< n (Figure 1). Moreover, the indicated
phrase breaks and pauses are used to discard the associated INIs.
Note that these intervals are not removed from the time series,
but replaced by amissing value (NA) that can be handled properly
by each analysis.

It is mathematically convenient and cognitively plausible
(Grondin, 2010; McAuley, 2010) to work with the logarithm
of duration. This is cognitively plausible given Weber’s (1834)
law that the perceived differences between signals depend on
the magnitude of the signals. It is mathematically convenient,
because the difference between the logarithms is proportional
to the ratio of the original numbers. The logarithm of the
INIs therefore abstracts over absolute duration, accounting
for variability in speed between speakers and over time: for
example, for both fast and slow speakers, adjacent syllables with
equivalent durations would lead to a difference of zero for the
logarithms.

ANALYSIS AND RESULTS: SIMPLE
DISTRIBUTIONAL MEASURES (ORDER 0)

We started by investigating distributional predictability in
languages, namely whether information on presence and
frequency of INIs provides information on the temporal
organization of that language. We calculated the Kolmogorov-
Smirnov D (Kolmogorov, 1933; Smirnov, 1948) statistic to
quantify normality for each language. The D for each
language is calculated as the difference between the empirical
INI distribution for that language and a theoretical normal
distribution with the same mean and standard deviation. We
then tested how this measure relates to temporal variability by
comparing it with a common measure of speech rhythm, the
normalized pairwise variability index (nPVI, Grabe and Low,
2002). The nPVI is a measure of variability between adjacent
durations, calculated as

nPVI =
100

n− 1

n−1
∑

t= 1

|(dt − dt+ 1)/0.5(dt + dt+ 1)|,

where n is the number of syllables, and the factor 100 normalizes
the number to be between 0 and 100 (Patel and Daniele, 2003). A
“metronomic language” composed of a series of similar INI will
have a low nPVI (tending to zero as the INIs become identical).
A language with strong temporal variability in INI, composed for
instance of alternating short-long INI, will have high nPVI. Note
that the nPVI measure here is calculated in a slightly different
way than usually, based on INI lengths instead of the lengths of
syllables.

We found a significant correlation between Kolmogorov-
Smirnov D and nPVI (Spearman rank correlation = 0.60,
p < 0.01, Figure 2). This high and positive correlation
between our simple measure of normality (of order 0) and
the more complex nPVI (which takes into account order 1
difference between syllables) shows that they both capture

FIGURE 2 | Two ways of measuring rhythm variability. For each

language, the nPVI is plotted against our non-uniformity measure, showing a

good correlation between the two (linear fit in gray).

some common aspects of temporal structure of the signal.
Our measure is possibly the simplest metric for temporal
structure, suggesting that the complexity of nPVI adds little
explanatory power to straightforward distributional measures.
This analysis implies that most of temporal structure in a
language as captured by a common measure of rhythmicity
can be equally well judged by assessing whether syllable nuclei
occur at normally distributed durations. Far from proposing
one additional metric to quantify structural regularities in
speech, we instead suggest that many existing metrics should
be used carefully and critically, as they may embody very
superficial features of speech (Loukina et al., 2011; Arvaniti,
2012).

For some languages, such as Thai, metrics are very different
from those published in previous reports: the nPVI ranges
between 55 and 60 in Romano et al. (2011) vs. our 41. In other
languages, predictions are close: in Arrente one can compare
our 35.4 with the range 39.6–51.2 found in Rickard (2006).
Finally, for some languages we get almost identical numbers
as in previous studies: for Italian, both our data and Romano
et al.’s (2011) show nPVIs at 40 ± 1. Some issues about
nPVI comparisons should be kept in mind. First, we purposely
focussed on less-studied languages, and only some languages
considered here had been analyzed at the level of rhythm and
nPVI elsewhere.Moreover, for some languages several discordant
measures of nPVI are available from different studies, making
the selection of one previously-published nPVI per language
quite arbitrary. In general, we do not find a strong association
with previous studies probably because, as previously remarked
(Arvaniti, 2012), values for the same rhythm metric applied
to different corpora of the same language can vary a lot by
study.
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ANALYSIS AND RESULTS:
DISTRIBUTIONAL STATISTICS OF
TEMPORAL STRUCTURE (ORDER 1)

Why Use Distributional Methods?
We can make baseline inferences about temporal structure by
quantifying the distribution of the logarithms of the ratio of
adjacent INIs (i.e., the difference of the logarithm of adjacent
INIs) observable among the languages in our sample. In the most
temporally regular language, all adjacent syllables would have
equal durations (i.e., equal INIs), and this distribution would
be a point mass on 0 (the ratio between equal-length INIs is
1, whose logarithm is 0). In a language that has completely
unpredictable temporal structure at this level, the duration of the
preceding syllable provides no information about the duration of
the following syllable, so this distribution would be uniform over
a sensible range.

Standard tests for normality (D’Agostino and Pearson, 1973)
suggest that we cannot reject the hypothesis that the data
are drawn from an underlying Normal distribution for all 18
languages (at a = 0.05). As such it is reasonable to proceed
under the assumption that the differences of the logarithm of
the INIs are normally distributed. This assumption allows us
to compute measures of predictability associated with normally
distributed data. Many standard tools exist to estimate the shape
of this distribution from a noisy sample, which is what our
annotations represent. We calculated estimates for the mean µ

and variance σ 2 of this distribution for each language. Maximum
a-posteriori (MAP) point-estimates (under an uninformative
prior—see below) for all languages are shown in Table 1. The
mean always centers around 0, and the average variance is around
¼ (0.28), suggesting a moderate level of predictability across
languages.

Bayesian Inference for Distributions of
Speech Timing Events: A Primer
A more satisfying approach—utilizing all the information in
the distribution—is to compute the full posterior distribution
P(µ, σ |R) via Bayesian inference. This approach is useful in
three respects. First, it provides a more complete picture of
the structure in our data at this level. Second, experiments of
perception and estimation of time intervals suggest humans
process temporal regularities in a Bayesian fashion, where
expectations correspond to a-priori probability distributions
affecting top-down perception of incoming stimuli (Rhodes and
Di Luca, 2016). Third, it provides a way to model the judgements
of an ideal learner who observes these data: what generalizations
could an ideal learner infer from this evidence base? In intuitive
terms, the posterior distribution represents an ideal observer’s
updated beliefs after observing evidence and combining this
information with the beliefs it entertained before observing
the evidence (prior beliefs). The updated posterior beliefs are
said to be rational or ideal if the particular way in which the
learner combines prior beliefs and observed evidence follows the
principles of conditional probability captured in Bayes’ theorem.
This way of modeling inference aligns with human learning in

many domains (Griffiths et al., 2010), and provides a normative
standard that quantifies how an evidence-base could be exploited
by an ideal observer—which is exactly what we wish to achieve
here. Standard techniques from Bayesian statistics (e.g., Gelman
et al., 2004, p. 78) allow us to formulate an unbiased prior P(µ, σ )
for the inductive problem at hand. Specifically, the Normal-
Inverse-Chi-Square conjugate model (e.g., Gelman et al., 2004),
with k0 = 0, a0 = 0, v0 = −1, for arbitrary µ0, ensures the prior
is uninformative: in other words, the prior expresses uniform
expectations about µ and σ 2, so MAP estimates correspond to
maximum likelihood estimates, and ideal learner predictions are
unbiased.

The posterior P(µ, σ |R) can be derived analytically under
this model. We interrogate this posterior for targeted measures
of predictability. For example, we can quantify the degree of
predictability available to an ideal learner who is exposed to
a temporal sequence of syllables: we model a learner who
encounters these data, induces estimates of µ and σ 2 via
Bayesian inference, and goes on to use those estimates to make
predictions about the time of occurrence of future syllables. In
Bayesian statistics, the distribution describing these predictions
is known as the posterior predictive distribution, and can be
calculated exactly in this model. Our analysis pipeline assumes
the learner induces estimates for µ and σ 2 by drawing a random
sample from their posterior, and makes predictions by drawing
random samples from the Normal distributions defined by those
estimates. To account for the randomness which underpins the
learner’s sampled estimates of µ and σ 2, the model integrates
over the posterior for these parameters, computing predictions
under each parameter setting, and weighting those predictions by
the posterior probability of those parameters given the data (and
the prior). Even under an unbiased prior, this is a meaningful
operation since it takes into account inferential uncertainty
about µ and σ 2, and propagates that uncertainty through to the
model’s predictions. In this respect, the model’s predictions are
conservative by admitting variance in predictions (compared to,
for example, predictions computed under maximum likelihood
estimates of µ and σ 2). The specific form of the posterior
predictive distribution in this model is Student’s t. More formally,
it can be shown that:

p
(

rnew
∣

∣R,F) =

∫∫

p
(

rnew
∣

∣ µ,σ 2)p
(

µ,σ 2
∣

∣R,Φ) dµ dσ

= tn−1(r,s),

where rnew is the new interval to be estimated, n is the
number of data points observed, Φ are the parameters of the
prior specified above, r is the mean of the observed data R,
and s = (1+ n)

∑

(ri − r)2 /n(n − 1). The second line of
this equation reflects a standard result in Bayesian statistics
(see Gelman et al., 2004). We computed these distributions
for each language: Figure 3A shows these predictions,
superimposed on (normalized) histograms of the raw
data R.
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FIGURE 3 | Results of Bayesian and time series analyses. (A) Distributions of the log-ratio of adjacent INIs for all languages: most languages have a wider

spread, indicating less predictability; a few languages show a narrower distribution (e.g., Cantonese), indicating higher predictability at this level. Normalized

histograms show the raw empirical data; Solid lines show the ideal learner predictions; Dashed lines show 95% confidence intervals for the ideal learner predictions.

(B) The proportion of Akaike weights taken up by models that use the ratio between subsequent INI lengths (differencing order d = 1; as opposed to the absolute

lengths, d = 0) shows that, in the vast majority of language samples, the relative length data provide a better ARMA fit (cfr. last column in Table 1, % Akaike weight

taken up by d = 1). (C) The accumulated Akaike weights of all fitted ARMA models for each AR-order p do not show a clear picture of a predominant order of the

ARMA model providing the best fit.
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Bayesian Inference in Our Dataset: Results
and Discussion
The similarities between these distributions across languages
are intuitively clear from Figure 3A. We provide a quantitative
measure of structure. Though various appropriate measures are
available, we report the information-theoretic differential entropy
of these predictive distributions, which is a logarithmic function
of the variance. Differential entropy directly quantifies the
information content of an unbiased, ideal learner’s predictions
in response to distributional information on first-order temporal
regularity. Formally, differential entropy is defined for this
problem as follows:

h
(

rnew
)

=

∫

p
(

rnew|R,Φ
)

log p
(

rnew|R,Φ
)

drnew

Table 1 presents the differential entropy of the posterior
predictive distribution, for each language. Lower values represent
higher predictability: an ideal learner could make reliable
predictions about the time of occurrence of an upcoming syllable
in Cantonese, for example (entropy= 0.35), but would make less
reliable predictions about Georgian (entropy = 0.98). In other
words, in Cantonese more than Georgian, a few relative syllable
durations provide information about the temporal structure of
rest of the language.

We are hesitant to draw strong generalizations about
predictability cross-linguistically from this small dataset.
However, the distribution of predictability across the languages
we have analyzed provides a window onto the variation in
predictability we might expect. For example, the mean entropy
across languages is 0.77; the lowest entropy is 0.3; and the highest
entropy is 1.05. Of the 18 languages, 10 have entropy lower
than this mean, and 14 have entropy lower than 0.9. Intuitively,
this suggests most languages cluster around a moderate level
of predictability at this level of analysis. Few languages are
highly predictable (entropy→0) or effectively unpredictable
(entropy→∞). An ideal learner who pays attention to these
temporal regularities in speech will be better at predicting the
location of the nuclei of an upcoming syllable than a learner who
does not. Obviously, both hypothetical learners will still face
uncertainty.

The ideal-learner analysis provides a range of tools for
exploring learnability and predictability that could be generalized
to more complex notions of temporal structure. The approach
also offers potentially useful connections to language acquisition
and inductive inference more generally. For example, in ideal-
learner models of language acquisition, the prior distribution is
often understood to represent inductive biases. These inductive
biases, either learned or inherent to cognition, are imposed by
the learner on the inferential problem. This perspective provides
a framework to ask and answer questions about perceptual biases
for temporal regularity. For instance, how strong the prior bias
of a learner must be for her to reliably perceive high temporal
regularity – over and above what is actually present in the data
(Thompson et al., 2016). We leave these extensions to future
work, and turn instead to higher-order sequential dependencies.

ANALYSIS AND RESULTS: TIME SERIES
ANALYSIS FOR (HIGHER ORDER)
SEQUENTIAL STRUCTURAL
DEPENDENCE

Structure beyond Metrics and Distributions
Our previous analyses, in line with existing research, quantified
rhythmic structure using minimal temporal information: first-
order pairwise temporal regularities between adjacent syllables.
Given the existing metrics and results for structure at this
level (Arvaniti, 2012), and the inconsistency among associated
findings, a natural alternative approach is to search for higher-
order temporal structure, utilizing more features and a more
complex statistical representation of the data. We address the
question: does the preceding sequence of N syllables provide
information about the timing of the upcoming syllable?

Structure at this level cannot be captured by typical first-
order measures (e.g., Chomsky, 1956) employed in the literature
(Arvaniti, 2012). In light of the disparity between intuitive
impressions of rhythm in speech and empirical studies that
fail to recover these intuitions (e.g., Dauer, 1983), perhaps this
gap is made up in part by higher-order structural regularity,
not visible to first-order methods. Specifically, we test whether
sequential information about duration and intensity affects the
predictability of future durational information. In other words:
can we predict when the next syllable nucleus will occur, knowing
the intensity and time of occurrence of the previous nuclei?

ARMA: Timing of Occurrence of Future
Nuclei as Linear Combination of Past
Nuclei Timing
Though there are many ways to model higher-order
dependencies in sequences, a natural starting point is to
approach the question using standard statistical tools from time
series analysis. We model our data using a commonly used
autoregressive moving-average (ARMA) process (Jones, 1980;
Hamilton, 1994). In brief, an ARMA model tries to predict
the next value in a time series from a linear combination of
the previous values (see below for details). As explained in
our introduction, the predictability of these timings may be
beneficial during language acquisition: if the ARMA model is
able to discover predictive regularities at this level, then in theory
so could a language learner. In addition to the preceding INI
lengths, we allow for an extra value (the difference in intensity
of the previous syllable nucleus) to be taken into account in the
prediction. Taking intensity into account in an ARMA model
allows us to include a basic form of stress (in which intensity
plays some role) in the predictions, which may be useful in
languages where stressed and unstressed syllables alternate.
Using this approach, we ask two questions: (i) is temporal
predictability better captured by a linear relation between INIs or
the same relationship between their ratios?; and (ii) is temporal
predictability improved (with respect to zero- and first-order
predictions) by basing predictions on more than just the single
previous INI?
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ARMA for Speech Timing: A Short
Introduction
In statistical terminology, the specific ARMA model we adopt
is known as an ARMA(p, d, q) process, where p, d and q
determine the window length of the time series used to make
predictions. With respect to our purposes, the d parameter
decides whether the ARMA models relations between absolute
INI durations (d = 0) or instead between relative durations
of adjacent INIs (d = 1). This is known as the degree of
differencing in the series: to answer our question (i) above, we
ask whether the model captures the series better with d = 0
or with d = 1. Models with d > 1 are possible, but the
psychological interpretation of higher-order differencing is not
straightforward, so we do not consider those models here. The
parameters p and q determine how far back past the current
to-be-predicted interval the model looks when calculating its
prediction, which corresponds to the order in what we have
been calling “higher-order” structure. The model computes
predictions in two ways: by computing an “autoregressive”
component and a “moving average” component. The standard
technical details of this model are rigorously explained in the
literature (Jones, 1980; Hamilton, 1994); it is sufficient to note
that p and q determine how far back the model looks in these
calculations respectively: the model performs autoregression
on the p previous intervals, and calculates a moving average
component for q previous intervals. Quantifying higher-order
predictability corresponds to asking what combination of p and
q (and d) lead to the most accurate model predictions. If the
model makes better predictions by seeing more steps backward
(controlling for increased model complexity, see below), this
indicates the existence of predictability at higher-order. In
principle p and q can grow unboundedly, but for reasons of
practicality we impose a maximum depth on these parameters:
specifically, the space of models we search is subject to the
constraint p, q ≤ 5 (and d ≤ 1). In other words, we consider
all ARMA models up to an order of five, where the order is
the total number of previous durational observations taken into
account.

Akaike Weights: Ranking Models Based on
Their Parsimony and Fit to the Data
We use the R library “forecast” (Hyndman and Khandakar, 2008;
R Core Team, 2013) to fit the ARMA models to our data. This
library can handle the missing INIs across phrase breaks, and
does so by maximizing the likelihood of the model given all data
that is present. Additionally, the preceding difference in intensity
was fit by the ARMA model as an external regressor, adding
this first-order intensity difference to the linear model. Then,
for each language, we identified the model with the lowest AICc
value (Akaike Information Criterion, Burnham and Anderson,
2002) as the one that fit our data the best. The AIC is the
most common criterion to perform model selection in ARMA
models (Brockwell and Davis, 1991): intuitively, AIC provides
a score that reflects how well a model captures the data, whilst
also penalizing model complexity. AICc corrects this measure for
small sample sizes.

While AICc scores correct for model complexity, more
complex operations such as addition, taking a mean or
comparison of groups of models cannot be performed
meaningfully using these values alone. Wagenmakers and
Farrell (2004) describe how to calculate Akaike weights, which
allow for a more advanced quantitative comparison between
models. More specifically, the Akaike weights wi are a measure
of a model’s predictive power relative to the combined predictive
power of all models considered, and can be calculated over a
collection of AICc scores AICcj as follows:

ŵi = exp(−
1

2
(AICci −minj(AICcj)))

wi =
ŵi

∑

j ŵj

Using these weights (which sum up to a total of 1), we identified
the Akaike set: the set of all highest-ranked models summing
up to a cumulative Akaike weight of at least 0.95 (Johnson and
Omland, 2004; Ravignani et al., 2015), in order to provide a view
on the robustness of the best-fitting model. By aggregating the
Akaike weights in this way, we (i) gain the combined explanatory
power of multiple models instead of just the best one, and (ii)
counteract the volatility of the analysis: i.e., if there are relatively
fewmodels with a highAkaike weight in this Akaike set, andmost
of them share a particular feature, we havemore confidence in the
importance of this feature than by just exploring the single best
model.

In our particular analysis, we can test the hypotheses above
by observing how Akaike weight is spread across the 72 different
model variants: the larger the weight taken up by the relevant
subset of models (i.e., with p above zero, or with d = 1) in the
Akaike set, the stronger the support for the hypothesis. In sum,
these techniques allow us to judge the features of models that
explain the data well, while favoring simpler models, and without
the need to choose a single best candidate.

Inference in time-series analysis is notoriously volatile,
especially for small sample sizes and for series that include
missing values. In our case, these missing values are derived from
phrase and sentence breaks and other disruptions to the speech
rhythm. This was clear in our results: although the range of
ARMA-based analyses we pursued did consistently outperform
baseline random-noise based alternatives, it did not lead to strong
inferences: even the best-fitting ARMA models explained only
a small portion of the data. Figures 4A,B respectively show
examples of bad and good fit to our data. We therefore report
results over a variety of possible models, an approach known as
multi-model inference which smoothes over uncertainty in model
selection.

Results of the Time Series Analysis on
Nuclei Timing
First, to address question (i) above, we compared the combined
Akaike weight, for each language, of models which represented
the data as relative durations vs. absolute durations. Relative
durations models (i.e., d = 1) have a notably high sum of Akaike
weights, for almost all languages (see Table 1 and Figure 3B).
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FIGURE 4 | Examples of model predictions for two languages. Fitted

model predictions for (A) Japanese and (B) Dutch, showing that even one of

the best fits amongst all languages, Dutch, only captures a limited amount of

temporal structure. For some other languages (such as Japanese) ARMA does

not manage to make better predictions than values slightly varying around the

mean INI. Actual data points (logarithms of INI durations) on the x-axis, vs.

predictions of the fitted model on the y-axis; perfect predictions would

correspond to a diagonal (45◦) line.

This suggests that themodel is most powerful when looking at the
data as (the logarithms of the) relative durations. This is intuitive
from a psychological perspective, both in terms of the log-scaling,
and in terms of the focus on relative durations rather than
absolute temporal duration (Grondin, 2010; McAuley, 2010).

Second, we accumulated the Akaike weights of all models with
the same value for p; we then compared these marginal Akaike
sums over q and d between p, as a way of investigating the
importance of the autoregressive component’s order. The higher
p is, the more time-steps backwards the AR component of the
ARMA model can use in order to predict where the next syllable
nucleus will occur. As such, the extent to which the combined
Akaike weights for larger values of p exceed the equivalent
weights for p = 0 or p = 1 provides a window onto higher-order
structure: more specifically, an indication of how well higher-
order regularities and patterns in our data are captured by the
ARMA model. A higher order in the moving average portion
of the model, determined by q, is less important because the

MA process only captures temporal dependencies in the random
error. That is, the MA can explain some variance attributable to
e.g., drift in INI length (for instance, when speaking rate increases
or decreases over time), but does not have a straightforward
correlate in terms of predictability of syllable nuclei. As such
we focus on p as an indicator of higher-order predictability,
marginalizing over q.

Figure 3C depicts the marginalized Akaike weights (i.e.,
weights summed over possible values for d and q) for each p
and language. As can be seen, this visualization reveals a less
clear picture of the distribution of the Akaike weights. AICc
quantifies the quality of a fit while taking in account a penalty
for model complexity. Hence, a partition of identical weights
for each p and language would be the least informative with
respect to the best order of the model. Instead, if the higher-order
dependencies were adding nothing at all to the model’s predictive
power, we would expect the Akaike weights to be concentrated
strongly on just p = 0. Likewise, if higher-order dependencies
made improvements to the model’s predictions, we would expect
one or some of the p > 0 models to reserve positive Akaike
weight.

Figure 3C reveals a subtle pattern of results. On the one hand,
we see that for most languages, Akaike weight is concentrated on
lower-order models (p = 0, p = 1), arguing against the idea
that higher-order dependencies make dramatic improvements to
prediction (under the assumptions of the ARMA model). On
the other hand, even among these cases, higher-order models
often still reserve some Akaike weight, even after being penalized
for increased complexity. This suggests that higher-order models
may still be capturing meaningful structure, even where lower-
order dependencies are more powerful predictors. Moreover,
there are some notable cases, such as Dutch, Mapudungun,
and Turkish, in which higher-order models reserve extremely
strong Akaike weight, at the expense of lower order models.
This suggests that in these cases, models which are able to
capture temporal dependencies at higher orders represent our
best description of the data.

Discussion: What Can Time Series Tell Us
about Speech Timing?
Overall, the ARMA analysis hints at the possibility that temporal
regularities exist at higher orders in at least some of our data.
We take this as strong motivation to explore the possibility
further in future work, but hesitate to draw strong conclusions
given the limitations on the models’ predictive power and the
variability in results across languages. In this respect our findings
mirror previous results on rhythmical structures in speech, which
have also often not led to strong conclusions, and demonstrated
sensitivity to idiosyncrasies of the data (Arvaniti, 2012). A
conservative conclusion is that, even if there is predictability at
higher orders, only some of this structure appears capturable
by the ARMA analysis we undertook. This could have multiple
reasons, ranging from idiosyncrasies of our data and our
statistical approach, tomore general questions about the presence
and nexus of temporal structure in speech, as follows:
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(i) The amount of data per language may not be enough to give
clear results,

(ii) The linear ARMA models may be theoretically unable to fit
and predict the timings of our syllable nuclei,

(iii) The structural form of the ARMA model is better suited to
capture the regularities in speech at lower-order, whereas
higher-order regularities that exist in these languages take
a form that the ARMA model cannot fully capitalize on in
its predictions, for instance fractal long-range correlations
(Schenkel et al., 1993; Levitin et al., 2012; Delignières and
Marmelat, 2013),

(iv) The features we extracted from the speech data (i.e., INI
lengths and intensity) may be too limited and provide no
clear patterns, or

(v) There may well be no complex structures to be found in
speech that provide considerably more predictability than
simple zero- or first-order measures.

Deciding between these possibilities is a clear objective for future
research. A natural starting point would be to work with more
data (i) or different data (i.e., different features, iv): either more
data per language, or more data from a subset of languages, or
data from multiple speakers per language. Another approach
would be to look in more detail at ARMA predictions, and
perhaps consider generalizations or more complex time-series
models that build on or relax some of the assumptions in the
classic ARMA (e.g., the linearity assumption, ii, iii) Such models
exist and could be explored in our data, or new data. The final
possibility (v), that there are no structures to be found at this
level, could only be upheld by ruling out possibilities i–iv, which
our analyses cannot do.

Together, our analyses provide reasonable evidence for first
or minimal order temporal structure (i.e., for the role of
relative durations in the perception of rhythm in speech), and
weaker evidence for principled higher-order structure that can
be captured by linear regression models such as ARMA.

GENERAL DISCUSSION AND
CONCLUSIONS

Temporal structure is a central aspect of speech processing.
Multiple studies have shown that infants rely on the rhythm
type of their native language as a guide for speech segmentation
(Nazzi and Ramus, 2003; Saffran et al., 2006). The extent to which
higher-order sequences are used in predicting subsequent events
or INIs is debated. Humans perform poorly at detecting temporal
structure in mildly complex patterns (Cope et al., 2012). Finding
regularity across a number of intervals correlates with reading
ability, while detecting gradual speeding-up/slowing-down does
not (Grube et al., 2014). However, to the best of our knowledge,
no studies have ever provided a quantitative analysis of how the
temporal properties of the speech signal determines predictability
within the speech signal. Does the temporal structure of our
data portray regularities that allow the duration and location
of upcoming syllables to be predicted? Our approach to this
question was 2-fold.

Our Approach: Alternative Metrics for Low
Order Temporal Regularities
First, in line with many other studies (Arvaniti, 2012), we focused
on lower order temporal regularity. Existing metrics for speech
rhythm at this level of analysis tend to be applied to research
objectives that are slightly different to ours (e.g., classifying
languages into rhythmic groups), and have been shown to be
somewhat unreliable in the sense that they are often sensitive
to idiosyncrasies of the data they model. In this light, our
lower-order analyses focused first on maximal simplicity, then
on quantifying predictability from the perspective of an ideal
observer. These approaches proved useful for quantification
of predictability at this level, showing broad support for
constrained, but not complete regularity in INIs across the
languages in our sample. These results are in keeping with the
general and well-attested idea that there is temporal regularity in
syllable timing, but that this regularity is not sufficient to account
for the subjective experience of rhythm in speech (Lehiste, 1977).
We add to this insight that a similar ceiling appears to also
constrain how well these lower-order regularities can aid speech
segmentation and acquisition in terms of predictability.

Our Approach: Introducing Time Series
Analysis to Speech Timing
Second, we tried to quantify predictability that might exist at
higher-order temporal resolution in our dataset, a topic that,
to the best of our knowledge, has received little attention in
previous work1. We chose to model INI sequences as time-
series, and to make inferences about the order of dependencies
in those series through model-fitting. This approach is a natural
generalization of existing lower-order metrics: it allowed us to
leverage a range of tried-and-tested methods of analysis in spite
of the complexity inherent to higher-order forecasting. However,
the results of our analyses provide only weak support for higher-
order predictability. We highlighted a range of possible reasons
for this above. Naturally, it is possible that our data are unsuited
to the problem, or that our inferential methods were simply not
powerful enough given the data. We disfavor this possibility for
all the reasons discussed in the introduction and materials and
methods. An alternative conclusion is that these regularities are
not there to be found at higher orders. Again, we are hesitant of
this conclusion, though acknowledge that it may chime with what
others have claimed about speech rhythm in general (see Lehiste,
1977). The ARMA model, while widely used and a natural first
contender, may be inherently unable to capture this important,
though yet unknown, class of regularities: in particular, the
ARMA model can only make predictions about the future on
the basis of linear combinations of the past, which may be too
restrictive.

1Though see Liss et al. (2010), who also examine higher-order dependencies;
in particular, they used the spectrum of the intensity envelope to recognize
dysarthrias in speech, a condition resulting in the perception of “disturbed speech
rhythm”: since peaks in the spectrum represent a linear relationship within the
original time domain, ARMA could potentially capture the same kind of structure,
though the ultimate goal of our article is different.
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Alternative Hypotheses: Is Predictability
Contained in the Speech Signal, or Is
Predictability a Top-Down Cognitive Trait?
An alternative explanation is that few regularities exist but
humans hear rhythmic patterns in speech because they impose
top-down expectations: for instance, humans perceive time
intervals as more regular than they really are (Scott et al.,
1985) and impose metric alterations to sequences which are
physically identical (Brochard et al., 2003). However, exposure to
strong temporal irregularities can make humans perceive regular
events as irregular (Rhodes and Di Luca, 2016). Mildly regular—
predictable though non-isochronous—patterns are perceived
quite well, possibly based on local properties of the pattern (Cope
et al., 2012). In any case it seems that human perception of
rhythm is not simply a matter of determining time intervals
between acoustic intensity peaks, but that it involves a more
complex process, potentially integrating multiple prosodic cues
such as pitch, duration, INI or intensity values.

Top-down and global/local regularity perception relates
to the question of whether the ability to perceive and
entrain to temporal patterns in speech may benefit language
processing at both a developmental and an evolutionary
scale. From an evolutionary perspective, overregularization of
perceived patterns combined with mild regularities in the
speech signal might hint at culture-biology co-evolutionary
processes. It would suggest that humans might have developed
top-down mechanisms to regularize highly variable speech
signals, which would have in turn acquired slightly more
regularities (for biology-culture coevolution in language and
speech, see: Perlman et al., 2014; de Boer, 2016; Thompson et al.,
2016).

Future Work
All the analyses above are based on only one speaker per
language. Having multiple speakers for each language would
have been preferable to account for speaker variability; Ideally,
18 speakers per language (as many as the languages encompassed
in this study), would have allowed a meta-analysis via a 18 × 18
repeated measures ANOVA to test whether most variance could
be explained by the language or rather the speaker/annotator
factor. However, as we neither find, nor claim, existence of
categorical differences between languages, we believe speaker
variability is not an issue in the current analysis. Had we found
strong differences between languages, we would not be able to
know—with only one speaker per language—whether these were
due to a particular language or, rather, to the particular speaker
of that language. On the contrary, all our results are quite similar
across languages and, importantly, annotators. The few outliers
(Cantonese, Hungarian, and Turkish) should be investigated in
future research by having many speakers and many annotators
for each of them. Ours is in fact just a first attempt at introducing
the Bayesian and time series approaches to the world of speech
timing.

While annotating the language samples, we did not use pre-
conceived notions about the building blocks of speech based
on writing systems. Rather, we used clearly defined acoustic
measures to define the events. Our approach is supported by

evidence from analysis of phonological processes showing that
syllables have cognitive reality even without writing. Moreover,
although the sample size was small, our statistical methods were
shown in the past powerful enough for comparable sample sizes,
and for our sample could detect some regularities. Future studies
with larger samples will test if analyzing more languages, or
longer samples per language, leaves our controversial results
unvaried. Should a replication confirm our negative result, this
would suggest that the effect size of temporal predictability of
speech is so small that it is unlikely to play an important role in
the acquisition of speech.

We suggest that the ARMA model we use here to model
syllable timing could be used to model another aspect of
speech rhythm, namely amplitude modulation. It has been
suggested that modulation in the envelope of the speech signal
at different time scales might provide a useful physical correlate
to rhythm perception (Goswami and Leong, 2013). In particular,
the timing of signal amplitude decrease/increase and phase
difference between modulation rates at different scales within the
same speech signal might encode much rhythmic information
(Goswami and Leong, 2013), which is not captured by our
temporal prediction model above. However, hypotheses on
predictability in amplitude modulation could be tested across
languages using the same time series approach we use here.
By swapping the roles of intensity and duration in the model
above, one would allow a range of past intensity values to predict
the timing and intensity of the upcoming syllable. High lag
order of the resulting amplitude-modulation ARMA, possibly
together with a lower Akaike than our time prediction model,
would provide empirical support for the amplitude modulation
hypothesis.

Further comparative research on temporal structure
perception in speech with nonhuman animal species could
better inform our understanding of the evolutionary path of such
an ability, determining how much this ability depends on general
pattern learning processes vs. speech-specific combination of
cues (Ramus et al., 2000; Toro et al., 2003; Patel, 2006; Fitch,
2012; de la Mora et al., 2013; Ravignani et al., 2014; Spierings and
ten Cate, 2014; Hoeschele and Fitch, 2016).

Finally, alternative algorithms and toolboxes could be tested
and compared to our manual annotation results. Crucial
desiderata for such algorithms are to: (1) yieldmore robust results
than the unsatisfying automated approaches which spurred
our manual annotation in the first place; (2) be at least as
psychologically plausible as our manual annotation; (3) work
properly across different language families and phonological
patterns. These desiderata might be partially or fully satisfied
by using and adapting algorithms originally developed for
music analysis. In particular, interesting research directions at
the boundary between experimental psychology and artificial
intelligence could be: (i) performing automated annotations after
adapting the “tempogram toolbox” (Grosche and Muller, 2011)
to the speech signal, (ii) assessing the perceptual plausibility
of the beat histogram (Lykartsis and Weinzierl, 2015) and the
empirical mode decomposition of the speech amplitude envelope
(Tilsen and Arvaniti, 2013), and (iii) further testing beat tracking
algorithms already used in speech turn-taking (Schultz et al.,
2016).
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Conclusions
Taken together, what do our analyses imply about the existence
and locus of temporal predictability in speech? Others have
argued that subjectively-perceived rhythm in speech may result
from coupled or hierarchical series of events at multiple
timescales across domains in speech (e.g., Cummins and Port,
1998; Tilsen, 2009). Our results speak only to predictability
in the temporal relations between syllables. Nevertheless, these
results hint at a broadly complementary perspective: within
one domain, regularity in temporal structure is difficult (but
not impossible) to capture with our methods, suggesting that
the degree of predictability available to a learner is weak or
unreliable at any individual level (e.g., first order, second order
regularities). However, the following hypothesis strikes us as
worthy of investigation in a statistical framework: the impression
of regularity and predictability may result from the combination
of cues atmultiple levels, even though individually these cuesmay
be weak.

Our results somewhat undermine a simplistic view of
the usefulness of rhythm in language acquisition (Pompino-
Marschall, 1988). Future research should further investigate
the interaction of acoustic features underlying the perception
of phonological patterns in natural languages. Research along
these lines will improve our understanding of the interplay
between predictability and learning, informing the debate on
both language acquisition and language evolution.

OVERVIEW OF THE DATA FILES AND
THEIR FORMATS

Raw Annotations
The data is available as Supplementary Material and at:
https://10.6084/m9.figshare.3495710.v1.

The files with extension .zip, having the format
Language_iso_annotator.zip contain the raw
annotations in a saved Praat TextGrid. They annotate
the narrative sound files of the Illustrations of the IPA, as
provided by the Journal of the International Phonetics Association
(https://www.internationalphoneticassociation.org/content/
journal-ipa). Whenever this audio data consisted of multiple
files, multiple Praat files with annotation were created.

These annotations also contain the perceived phrase and
sentence breaks (respectively by a / and // marker), that
interrupted the sequences of contiguously uttered speech.

The individual TextGrid files should all be readable by Praat,
version 6.

Prepared Data
The previously mentioned TextGrid annotations were enhanced
by adding the intensities and were then converted into a

format that was easier to read by our analyses scripts. The
Language_iso_annotator.out files are tab-separated
text files that contains 4 columns, with each row corresponding
to a single syllable nucleus annotation:

- The first column, part, refers to the order of the audio files of
the narrative.

- The second column, time, refers to the location in the audio
file the annotation was added.

- The third column, mark, can be empty or can contain the / or
// symbols, indicating a phrase or sentence break.

- The fourth column, intensity, shows the intensity of the
audio recording at the specified point in time, as calculated by
Praat.

all.out assembles the previously described data from all different
languages, while all_unique.out contains the data of only
one annotator for each language. To distinguish between the
different concatenated datasets, these two tab-separated files
contain 2 extra columns:

- language contains the ISO code per language (cfr. the
second part of the previous filenames).

- annotator contains the initials identifying the author that
created this annotation (cfr. the third part of the previous
filenames).

Python Conversion Scripts
The Python script files (.py extension) are the ones that were
used to convert the Praat .TextGrid format to the tab-
separated .out files. They are included as a reference for the
interested, but will not be executable as they depend on a self-
created (and for now unfinished and unreleased) Python library
to extract the intensities with Praat. Feel free to contact the
authors for further explanation or access to the analysis scripts.
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