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For clinical application of transcranial static magnetic stimulation (tSMS), it is important

to achieve a focal target cortical stimulation. Previous study suggested that the

associative stimulation combining non-invasive stimulation of the motor cortex (M1) and

the peripheral nerve stimulation (PNS) may be useful to produce cortical excitability

change. To test this hypothesis, we measured the M1 excitability and intracortical circuits

by using transcranial magnetic stimulation (TMS) before and after the tSMS of short

duration (5min) combined with PNS. Thirty-three normal volunteers were participated;

tSMS+PNS (n = 11), sham+PNS (n = 11), and tSMS alone (n = 11). We found the

transient suppression of the motor-evoked potential (MEP) of the right abductor pollicis

brevis (APB) muscle, but not of the abductor digiti minimi (ADM) muscle, when combining

tSMS with PNS over median nerve at the wrist. The lack of suppressive effect on APB

in tSMS alone with short duration is in accord with the previous observation. In addition,

the tendency of transient enhancement of the short-latency intracortical inhibition was

observed immediately after intervention in the tSMS±PNS group. These findings show

that the combination of tSMS and PNS can induce the cortical excitability change in

target cortical motor area and potentiate the suppression effect.

Keywords: transcranial static magnetic stimulation, peripheral nerve stimulation, transcranial magnetic

stimulation, motor evoked potential

INTRODUCTION

Noninvasive brain stimulation (NIBS) techniques have become an emerging field in clinical
neuroscience due to its effect to modulate cortical excitability (Nitsche and Paulus, 2000, 2001; Reis
et al., 2008b) and cognitive or motor function (Iyer et al., 2005; Hummel and Cohen, 2006; Reis
et al., 2008a). Among NIBS techniques, transcranial magnetic stimulation (TMS) is widely used for
brain stimulation, which can be applied for rehabilitation or therapy for neuropsychiatric disorders
(Lam et al., 2008; Koganemaru et al., 2010; Rossini et al., 2010; Dayan et al., 2013; Schulz et al.,
2013). Recently, transcranial direct current stimulation (tDCS) is also widely applied in clinical
fields because this is a safe, well-tolerated method, which has been shown to induce prolonged
excitability changes in humans’ cortical regions, resulting in long-term potential (LTP)/depression
(LTD)-like synaptic modifications, a cellular correlate of learning and memory (Liebetanz et al.,
2002; Nitsche et al., 2003). tDCS is thought to achieve its effects by polarizing neurons and indirectly
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influencing their firing rates and excitability. Anodal stimulation
depolarizes the cell bodies and axon hillock region of
corticospinal neurons and increases their excitability, whereas
cathodal tDCS has the opposite effect (Nitsche and Paulus, 2000).

Moreover, recent studies reported that local transcranial static
magnetic stimulation (tSMS) over the human M1 produced
by a small high-powered neodymium magnet can transiently
reduce the cortical excitability (Oliviero et al., 2011; Silbert et al.,
2013). And we found that the reduction of M1 excitability
by tSMS is partly related to the modulation of the short
interval intracortical inhibitory circuit (Nojima et al., 2015).
Although the physiological mechanisms that underlie this change
are not yet known for certain, animal experiments indicated
the alteration of the ion channel function embedded in the
membrane (Rosen, 2003b). It is possible that high-powered tSMS
can affect the orientation of the membrane phospholipids due to
their diamagnetic anisotropy. The effect of tSMS was also showed
to reduce cortical excitability both in the sensorimotor cortex
of humans (Oliviero et al., 2011; Silbert et al., 2013; Kirimoto
et al., 2014; Nojima et al., 2015), and in the visual cortex of cats
and monkeys (Aguila et al., 2016). Furthermore, the significant
behavioral changes were recently reported with the application
of tSMS to the visual cortex in monkeys and humans (Gonzalez-
Rosa et al., 2015; Aguila et al., 2016).

TMS-based techniques and tDCS deliver electric currents
to the cortex to obtain short or long term effects on cortical
excitability. The tSMS might be the only NIBS technique that
is able to produce a lasting change in cortical excitability that is
not associated directly with induced electric currents (Oliviero
et al., 2015). And, the advantages of tSMS were its ease of use,
absence of an uncomfortable sensation, lack of the need for high
operational skill and expensive devices.

However, tSMS has a disadvantage that it is hard to stimulate
to the focal target area within cortex. On the other hand, TMS
paired with low-frequency peripheral nerve stimulation (PNS)
can induce a long lasting, reversible, and somatotopically focal
alteration in the human cortical excitability (paired associative
stimulation: PAS), which may be related to the associative
LTP/LTD (Stefan et al., 2000). Moreover, it was reported that the
combination of DCS with low-frequency stimulation in mouse
M1 slice also resulted in long-lasting increases in the synaptic
efficacy (Fritsch et al., 2010). Here, we hypothesized that tSMS
combining with PNS can enhance the plastic change in the target
cortical motor area.

MATERIALS AND METHODS

Subjects
Thirty-three neurologically healthy subjects (19 males and 14
females; age, 23.6 ± 4.2 years, mean ± SD) participated in this
study. None of the participants had a history of neurological
or psychiatric disorders by self-report and was under drug
treatment during experiment. All subjects were right handed as
determined by Oldfield’s handedness inventory (Oldfield, 1971).
The protocol was approved by the Ethics Committee of Kyoto
University Graduate School of Medicine (Kyoto, Japan) and
NagoyaUniversity Graduate School ofMedicine (Nagoya, Japan).

Written informed consent was obtained from all subjects prior to
this experiment.

tSMS Exposure
The device we used in this experiment was a cylindrical nickel-
plated NdFeB magnet of 50-mm diameter and 30-mm thickness,
with a weight of 442 g (Model N-50; NeoMag, Chiba, Japan).
The maximum energy density was 406 kJ/m3 (48–51 MGOe),
with a nominal strength of 863 N (88 kg). The surface magnetic
flux density was about 5340 G. At 2–3 cm from the magnet
surface, magnetic field strength of this magnet on the cylinder
axis is 120–200 mT (Rivadulla et al., 2014, Kirimoto et al.,
2016). A nonmagnetic stainless-steel cylinder, of the same size,
weight and appearance as the real magnet, was used for sham
stimulation in the control group. The magnet and nonmagnet
were positioned by using an arm-type light stand (C-stand,
Avenger, Cassola, Italy) over the representational area for the
right abductor pollicis brevis (APB) muscle in left M1 identified
by TMS and held tangentially against the subject’s head. Because
it has been reported that the magnetic polarity is irrelevant
for neuromodulation (Oliviero et al., 2011), the magnetic field
polarity was set north pole oriented toward the subjects.

Peripheral Nerve Stimulation (PNS)
The peripheral stimulation consisted of electrical pulses which
were 0.2 ms in duration and delivered at rates of 1Hz through
Ag/AgCl conductive adhesive skin electrodes. These electrodes
were placed over the right median nerve on the skin 2–3 cm
proximal to the distal crease of the wrist with the anode proximal.
Stimuli were delivered at the motor threshold for each subject,
which is defined as the lowest possible intensity at which a visible
muscle contraction of the APB is elicited.

TMS Measurement
TMS was performed with twoMagstim 200 magnetic stimulators
connected by a bistim module. This device allows delivery of
two magnetic stimulations through the same coil. The handle of
the coil pointed backwards and 45 degree lateral to the midline.
A single pulse of TMS was delivered using a flat figure-of-
eight magnetic coil (outer diameter of each wing, 9 cm) at the
optimal scalp positions in left M1 to induce a motor response
for the right APB. The optimal position was marked on the
scalp by a soft-tip pen. The electromyogram (EMG) was recorded
from the right APB and Abductor digiti minimi (ADM) using
surface silver/silver chloride (Ag/AgCL) electrodes. The reference
electrode was placed on tendon, while recording electrode was
placed on belly of the muscle. The EMG signals were amplified,
band-pass-filtered (5–2000Hz), and digitized at a sampling rate
of 10 kHz using the Map 1496 system (Nihon-Santeku Co.,
Osaka, Japan). During TMS measurement, each subject was
seated comfortably in a reclining armchair.

The resting motor threshold (rMT) for the right APB muscle
was defined as the minimal stimulator intensity sufficient to elicit
five motor evoked potential (MEP) of >50 µV in a series of 10
stimuli delivered with at least 5 s intervals. To assess corticospinal
excitability, we measured the peak-to-peak MEP amplitudes of
both right APB and ADM muscles for 10 trials. The intensity of
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the test stimulus was adjusted to produce anMEP of∼1mV from
the target APB muscle before the intervention (SI 1 mV).

We measured short-latency intracortical inhibition and
facilitation (SICI and ICF) to evaluate the cortical inhibitory
and excitatory neural circuits. Paired-pulse magnetic stimuli
were applied over the left M1, with a subthreshold conditioning
stimulus (SC) at 80% of the rMT followed by a suprathreshold
test stimulus (TS) at SI 1 mV with interstimulus intervals (ISIs)
of 3 and 12 ms, respectively (Rossini et al., 2015). The test MEP
amplitudes were adjusted to be constant at ∼1 mV throughout
the experiment. The size of the mean conditioned response for
SICI and ICF (10 trials each) was expressed as a percentage of the
size of the mean test response alone. These techniques allowed
us to investigate the different pools of cortical interneurons that
modulate the inhibitory and facilitatory neural circuits (Paulus
et al., 2008; Badawy et al., 2012).

Experimental Procedures
Subjects were asked to lie on a reclining chair to apply tSMS
using a compact neodymium magnet and nonmagnet as sham
stimulation. They were randomly assigned to two equal-sized
groups (real and sham single-blind) (Figure 1). Subjects were
asked if they received real (tSMS+PNS) or sham (Sham+PNS),
and we confirmed that they were not aware of it. Each
subject, therefore, underwent either real or sham stimulation in
combination with PNS of the right hand. The peripheral and
cortical stimulations were applied at the same time. We have
set intervention for 5min in order to investigate the effect of
co-stimulation. In addition to these experiments, we executed the
control experiment in order to confirm the dependence of tSMS-
induced effects on its duration (tSMS alone).We tested the effects
of 5min of tSMS with sham PNS.

Regarding the cortical excitability changes induced by tSMS,
we measured the MEP amplitudes and rMT. In addition to these
parameters, we measured the SICI/ICF for the right APB before,
0, 15, 30min after intervention.

Data Analysis
Although the present experiment is not designed as a double-
blind study, for MEP measurement all the data were stored in
a computer, and a blinded researcher checked the data without
knowing the experimental information. The normal distribution
was tested using the Kolmogorov–Sminov test.

First, two-way repeated-measures analysis of variance
(ANOVA) was conducted to analyze the effects of three
interventions on cortical excitability. The effect of interventions
and time course on TMS parameters (MEP, rMT, SICI, and
ICF) was examined with Group (tSMS+PNS, sham+PNS, and
tSMS alone) and Time (pre, post-0, post-15, post-30). In the
case of significant interaction effects, the Bonferroni correction
for multiple comparisons was used as post-hoc analyses in order
to compare with pre condition. All statistical analyses were
performed using SPSS (IBM, Armonk, NY, USA), and alpha
level was set at p < 0.05 for all tests. All data are given as the
mean SEM. In the case of significant interaction effects, the
Bonferroni correction for multiple comparisons was used as
post-hoc analyses in order to compare with pre condition. All

statistical analyses were performed using SPSS (IBM, Armonk,
NY, USA), and alpha level was set at p < 0.05 for all tests. All data
are given as the mean SEM.

RESULTS

To delineate the physiological mechanism of the effect of the
combination tSMS with PNS, detailed TMS measurements were
performed.

Regarding the MEP amplitude for the right APB, two-way
repeated-measures ANOVA showed no significant main effect of
Time, but significant interaction of Group× Time [F(3, 39) = 2.20
(p = 0.048)]. Post-hoc analysis revealed a significant suppression
of MEP amplitude in post-0 (p < 0.011) of the tSMS+PNS
group compared with pre condition, suggesting that tSMS
combined with PNS influenced MEP amplitude immediately
after intervention (Figure 2). By contrast, there was no significant
effect of Time and Time× Group in the right ADM. A summary
of the mean amplitude of both muscles is given in Table 1.

For rMT, although two-way repeated-measures ANOVA
showed no significant effects of Time and Group interaction,
there was the tendency of increase immediately after tSMS+PNS
intervention (Figure 3).

In the cortical inhibitory and excitatory neural circuit,
although two-way repeated-measures ANOVA showed no
significant effects of Time and Time × Group interactions for
both muscles, it also showed the trend toward of enhancement
of SICI immediately after intervention of tSMS+PNS (Figure 4).

DISCUSSION

We found that tSMS to M1 combined with PNS to the median
nerve produced a focal reduction in mean MEP amplitudes in
the APB but not the ADM. We also confirmed that the lack of
suppressive effects of APB in tSMS alone with short duration is
in accord with the previous observation (Oliviero et al., 2011).
Moreover, sham tSMS with PNS failed to induce any change.
These findings suggested that the synaptic activation induced by a
combination of tSMS with PNS can lead to somatotopically focal
modulation in the cortical function. Our results suggested that
the combination of tSMS and PNS can induce the somatotopic
focal excitability change in cortical motor area.

This study revealed a significant decrease in MEP amplitude
of the right APB only after the tSMS with PNS. However,
this change of cortical excitability did not generalize to the
right ADM muscle, which was an adjacent muscle innervated
by a different nerve. This result suggested that an interesting
feature of the combination of tSMS and PNS is the somatotopic
focal effects which may help to shape the regional pattern of
reorganization. This somatotopy is consist of other combining
stimulation protocols (Stefan et al., 2000; Wolters et al., 2003;
Koganemaru et al., 2009; Rizzo et al., 2009).

Our prediction was that concurrent PNS will potentiate the
plastic change if the stimulation is given with tSMS. Consistent
with our hypothesis, paired stimuli were tended to induce
reduction in resting excitability of corticospinal output neurons.
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FIGURE 1 | Healthy volunteers received peripheral nerve stimulation on right median nerve combined with transcranial statistic magnetic stimulation

(tSMS) over left M1 or sham stimulation. We recorded the motor evoked potential (MEP) from the right abductor pollicis brevis (APB) and abductor digiti minimi

(ADM) muscles to assess change in corticospinal and intracortical excitability immediately before and after 5min of intervention. In each block, we assessed the

resting motor threshold (rMT), short-latency intracortical inhibition (SICI) at an interstimulus interval (ISI) of 3 ms and intracortical facilitation (ICF) at an ISI of 12 ms.

Evaluation was done just before, immediately, 15min, and 30min after intervention.

FIGURE 2 | Effects of the combination of tSMS and PNS on the MEP amplitude measured in the right APB and ADM muscles. The mean MEP amplitude

in APB muscle was significantly decreased immediately after the intervention combining tSMS and PNS but not after the other sham condition. *p < 0.05 between pre

and post-0. Error bars are standard errors of the mean.

In contrast, sham tSMS with PNS for 5min failed to induce
significant change in the MEP amplitude. Previous PNS studies
have demonstrated that more than 10min of repeated PNS
were required to provoke consistent increases in corticospinal
excitability (Ridding et al., 2000, 2001; Pyndt and Ridding, 2004;

Quartarone et al., 2006). On the other hand, original study
(Oliviero et al., 2011) has reported that tSMS exposure less than
for 10min failed to reduce the MEP amplitude after the end of
stimulation. The results in the present study suggested that the
duration of tSMS for 5min can suppress the cortical excitability
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TABLE 1 | Changes of the time-course in TMS parameters for the right abductor pollicis brevis muscle.

MEP(APB) MEP(ADM)

Pre Post-0 Post-15 Post-30 Pre Post-0 Post-15 Post-30

tSMS+PNS 1032.1±154.7 686.1 ± 113.9 916.0 ± 139.1 1006.9 ± 139.7 465.6 ± 112.1 415.8 ± 92.8 477.2± 94.1 479.2 ± 109.3

PNS alone 898.2±131.4 929.1 ± 163.7 932.3 ± 160.3 980.7 ± 168.7 557.4 ± 152.0 603.9 ± 164.8 525.8± 108.1 539.5 ± 113.4

tSMS alone 770.8±107.3 823.4 ± 141.6 820.3 ± 125.0 793.9 ± 104.0 517.6 ± 169.8 517.6 ± 141.6 498.9± 169.9 542.9 ± 174.4

rMT(APB)

Pre Post-0 Post-15 Post-30

tSMS+PNS 54.3±2.6 55.8 ± 2.4 54.7 ± 2.7 54.5 ± 3.0

PNS alone 52.6±1.6 52.9 ± 1.5 52.8 ± 1.5 52.2 ± 1.5

tSMS alone 57.8±2.1 57.9 ± 2.2 58.0 ± 2.1 57.3 ± 2.0

SICI(APB) SICI(ADM)

Pre Post-0 Post-15 Post-30 Pre Post-0 Post-15 Post-30

tSMS+PNs 0.602±0.081 0.456 ± 0.064 0.529 ± 0.040 0.545 ± 0.088 0.476 ± 0.082 0.467 ± 0.058 0.504± 0.106 0.513 ± 0.081

PNS alone 0.575±0.088 0.548 ± 0.066 0.593 ± 0.070 0.598 ± 0.070 0.572 ± 0.083 0.580 ± 0.094 0.576± 0.089 0.583 ± 0.113

tSMS alone 0.507±0.081 0.539 ± 0.071 0.517 ± 0.092 0.526 ± 0.073 0.615 ± 0.067 0.597 ± 0.076 0.640± 0.093 0.621 ± 0.086

Values are mean ± SED. MEP, motor evoked potential; rMT, rest motor threshold; SICI, short-term intracortical inhibition; APB, abductor pollicis brevis; ADM, abductor digiti minimi;

tSMS, transcranial static magnetic stimulation; PNS, peripheral nerve stimulation.

FIGURE 3 | Effects of the combination of tSMS and PNS on the rMT

measured in the right APB muscle. There were no significant changes of

right APB. Error bars are standard errors of the mean.

if PNS was simultaneously applied. Although Kirimoto reported
the loss of suppression of SEPs when tSMS was simultaneously
combined with SEPs recording (Kirimoto et al., 2014), the results
cannot be directly comparable to the present results. Firstly,
our study measured the corticospinal excitability which was
not measured in the previous study. Moreover, the parameters
of peripheral nerve stimulation were totally different (1Hz vs.
3.3Hz). Concurrent afferent stimulation of peripheral nerves
may produce an enhanced reduction effect of the corticospinal
output.

Regarding PNS, it has been reported that high-frequency PNS
(90Hz) applied over the hand muscles in healthy volunteers for
30min was associated with a decrease of sensory threshold and
parallel decrease of corticospinal excitability (Mima et al., 2004).

It suggested that long-term intervention was needed to modulate
corticospinal excitability by PNS alone, and the additional tSMS
exposure may potentiate the suppression effect induced by PNS.
By contrast, it has also reported that prolonged PNS (>120min)
could enhance excitability in the contralateral M1 (Ridding
et al., 2000, 2001). The divergence of the PNS-induced cortical
excitability change might be related to the different stimulus
frequencies. In patients with chronic stroke, PNS has been shown
to transiently improve motor performance (Sawaki et al., 2006;
Celnik et al., 2007) although little is known about themechanisms
and ability of PNS to modulate the effects of motor training.
Further studies would be necessary to test the underling neural
mechanism of PNS-induced cortical excitability change.

One of the plausible explanations of the effect of combining
NIBS with PNS may be related to Brain-derived neurotrophic
factor (BDNF) secretion. A recent ex vivo animal study in mice,
in which anodal DCS applied to M1 slices was coupled with
low-frequency synaptic stimulation, showed to induce long-
term synaptic plasticity (Fritsch et al., 2010). Notably, these
effects required activity-dependent BDNF secretion, a finding
that was in agreement with previous demonstrations of the
role of BDNF in NIBS-induced plasticity (Cheeran et al., 2008;
Antal et al., 2010). BDNF is crucial for human motor learning,
thus modulation of BDNF by external stimulation may help
control the neuroplastic potential. Since the BDNF mechanism
associated with cortical excitability change is still speculative,
further study would be needed.

In addition to the decrease of MEP amplitudes, we found the
increase of rMT just after the tSMS in accordance with previous
studies (Silbert et al., 2013; Nojima et al., 2015). Although the
basis of rMT is not fully certain yet, pharmacological research
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FIGURE 4 | Effects of combining tSMS with PNS on the SICI and ICF in the right APB muscle. There were no significant changes of right APB. Error bars are

standard errors of the mean.

has suggested that it is modulated by membrane excitability
(Ziemann et al., 1996a,b). These suggested that intrinsic
excitability could be modulated by tSMS and may underlie some
of the post-stimulation effects on cortical excitability.

Our previous study showed that tSMS can enhance the
GABAergic system (Nojima et al., 2015). SICI is measured
in a paired-pulse TMS protocol involving a subthreshold
conditioning stimulus followed by a suprathreshold test stimulus
with a short interstimulus interval of 1–5ms (Kujirai et al., 1993;
Nakamura et al., 1997; Chen et al., 1998). This inhibitory effect is
thought to result primarily from activation by the conditioning
stimulus of low threshold GABAergic interneurons in the cortex
(Ziemann et al., 1996c; Di Lazzaro et al., 2002; Paulus et al., 2008).
Our results suggested that suppression of focal M1 function may
be partly related to the modulation of the GABAergic system.

The effect of tSMS on cortical excitability has also been
confirmed in the other brain areas (Kirimoto et al., 2014;
Aguila et al., 2016), and was reported that had created a
reversible cortical scotoma in the animal experiment. Several
animal studies reported that tSMS interfere with neural function
(Rosen and Lubowsky, 1987; McLean et al., 2003, 2008; Coots
et al., 2004; Aguila et al., 2016). Of these, it suggested that
tSMS directly interfere with the functioning of membrane
ion channels and consequently with the generation of action
potentials (Coots et al., 2004), possibly due to the diamagnetic
anisotropic properties of membrane phospholipids (Rosen,
2003b; Miyakoshi, 2005). Previous studies revealed that the
activation kinetics of both sodium (Rosen, 2003a; Coots et al.,
2004) and calcium (Rosen, 1996) channels were transiently
affected during tSMS. The hypothesis is that tSMS would cause
reorientation of membrane phospholipids, which would cause
a deformation of ion channels embedded in the membrane
and therefore altering their activation kinetics (Rosen, 2003b).
Other possible influences have been postulated effects on cellular
growth and size alterations of the cell cytoskeleton (Rosen and
Chastney, 2009).

Regarding the strength of the magnetic field, recent study
reported that magnet used in this study was in range between 120

and 200 mT 2–3 cm from the surface of the magnet (Rivadulla
et al., 2014; Kirimoto et al., 2016). Therefore, it seems that this
range is enough to obtain biological effects.

On the other hand, the magnet size we used in the present
study was slightly bigger than the previous study. In the control
experiment, we confirmed that tSMS for 5min using our magnet
does not change the M1 excitability, which is consistent with
the previous study (Oliviero et al., 2011). However, since the
effect of magnet size/strength and duration on M1 excitability
has not been systematically investigated, further studies would be
necessary to clarify these points.

Previous studies have already suggested that the effect of
tSMS on excitability change was disappeared for couple min after
removing the magnet (Roshan et al., 2003; Ortu et al., 2008). Due
to the limitation of the time during the experiment, we tested only
for the hot spot for the APB muscle. It is possible that the small
testMEP amplitude in ADMmight influence on the results of this
study. It was reported that changes in the amplitude of the test
MEP hadmarkedly different effects on SICI, especially only slight
inhibition in weaker test MEP amplitude (Ziemann et al., 1996a;
Sanger et al., 2001). However, the amount of SICI in the ADM
(0.572 ± 0.083) at the baseline was similar to that in the APB. It
suggests that the SICI phenomenon in both muscles would have
been occurred in a proper way.

This study provides a new combined tSMS protocol that can
be used for the induction of somatotopically focal M1 excitability
change. Moreover, we confirmed that 5 min of co-stimulation
induced a decrease in the excitability of the corticospinal output
from the stimulated M1. These results suggested that tSMS
exposure could be a valuable tool in research studies of cortical
function. And enhancement of SICI function in somatotopically
focal brain area by combining with PNS might be a new
promising therapeutic tool for neurological disorders associated
with GABA dysfunction, such as epilepsy (McLean et al., 2003,
2008) and dystonia (Ikoma et al., 1996; Garibotto et al., 2011;
Boecker, 2013). Because somatotopic specificity is an important
characteristic of this co-stimulation, we believe this protocol is
suitable for a clinical therapeutic approach.
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