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Understanding how brains process sensory signals in natural environments is one of

the key goals of twenty-first century neuroscience. While brain imaging and invasive

electrophysiology will play key roles in this endeavor, there is also an important role to

be played by noninvasive, macroscopic techniques with high temporal resolution such

as electro- and magnetoencephalography. But challenges exist in determining how best

to analyze such complex, time-varying neural responses to complex, time-varying and

multivariate natural sensory stimuli. There has been a long history of applying system

identification techniques to relate the firing activity of neurons to complex sensory stimuli

and such techniques are now seeing increased application to EEG and MEG data.

One particular example involves fitting a filter—often referred to as a temporal response

function—that describes a mapping between some feature(s) of a sensory stimulus and

the neural response. Here, we first briefly review the history of these system identification

approaches and describe a specific technique for deriving temporal response functions

known as regularized linear regression. We then introduce a new open-source toolbox

for performing this analysis. We describe how it can be used to derive (multivariate)

temporal response functions describing a mapping between stimulus and response in

both directions. We also explain the importance of regularizing the analysis and how this

regularization can be optimized for a particular dataset. We then outline specifically how

the toolbox implements these analyses and provide several examples of the types of

results that the toolbox can produce. Finally, we consider some of the limitations of the

toolbox and opportunities for future development and application.

Keywords: system identification, reverse correlation, stimulus reconstruction, sensory processing, EEG/MEG

INTRODUCTION

Traditionally, research on the electrophysiology of sensory processing in humans has focused
on the rather special case of brief, isolated stimuli because of the need to time-lock to discrete
sensory events in order to estimate event-related potentials (ERPs; Handy, 2005; Luck, 2014). The
objective is to estimate the impulse response function of the sensory system under investigation by
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convolving the system with a transient, impulse-like stimulus
and averaging over several-hundred time-locked response trials.
This approach has been used extensively to study how the
human brain processes various ecological events, even those that
occur in a continuous, dynamic manner such as human speech
(e.g., Salmelin, 2007; Picton, 2013). However, the type of speech
stimuli used in such ERP studies usually consist of individual
phonemes or syllables and are therefore not entirely reflective
of natural, connected speech which is ongoing and abundant
with lexical complexity. Recent studies have begun to use more
naturalistic, extended speech stimuli by focusing their analysis
on measuring the phase of neural responses across multiple
repetitions of the same speech segment (Luo and Poeppel, 2007;
Zion-Golumbic et al., 2013). While this approach has revealed
novel and important insights into the neurophysiology of speech
processing, it does not facilitate characterization of the system’s
response function, and in any case, is an indirect measure of how
the brain entrains to the stimulus over time.

A more direct way to investigate neural entrainment to
continuous stimuli is to mathematically model a function that
describes the way a particular property of the stimulus is
mapped onto neural responses, a technique known as system
identification (SI; Marmarelis, 2004). While there are several
classes of models that can be implemented for this purpose
(reviewed in Wu et al., 2006), the most straightforward class are
linear time-invariant (LTI) systems. Although the human brain
is neither linear nor time-invariant, these assumptions can be
reasonable in certain cases (e.g., Boynton et al., 1996) and allow
for the system to be characterized by its impulse response. An SI
method known as “reverse correlation” has become a common
technique for characterizing LTI systems in neurophysiology
(Ringach and Shapley, 2004), an approach that has long been
established in both visual and auditory animal electrophysiology
(De Boer and Kuyper, 1968; Marmarelis and Marmarelis,
1978; Coppola, 1979). This technique approximates the impulse
response of the sensory system under investigation, except it does
not require the use of discrete stimuli. While this is somewhat
analogous to calculating an ERP, there are important differences
that must be considered: (1) the response function obtained
by reverse correlation only reflects the response of the system
to specific stimulus parameters defined by the experimenter as
opposed to the entire event, (2) reverse correlation makes the
assumption that the input-output relationship of the system is
linear, unlike time-locked averaging and (3) reverse correlation
converges on a more temporally precise estimate of the systems
impulse response than an ERP (which is susceptible to temporal
smearing). Reverse correlation in its simplest form can be
implemented via a straightforward cross-correlation between the
input and output of an LTI system (Ringach and Shapley, 2004).
While this approach has been used to study how speech is
encoded in human brain activity (Ahissar et al., 2001; Abrams
et al., 2008; Aiken and Picton, 2008), it is better suited to stimuli
modulated by a stochastic process such as Gaussian white noise.
As such, most instances of this approach in animal models have
traditionally used white noise stimuli (De Boer and Kuyper, 1968;
Marmarelis and Marmarelis, 1978; Coppola, 1979; Eggermont
et al., 1983; Ringach et al., 1997). This work has even inspired

researchers to investigate how such stochastic signals are encoded
in the human brain (Lalor et al., 2006, 2009).

That said, the human brain has evolved to process ecologically
relevant stimuli that rarely conform to a white random process.
For example, in the context of human neuroscience research,
a proper understanding of how the brain processes natural
speech would surely require that natural speech is used as a
stimulus in the laboratory, given that neurons respond differently
to more complex stimuli (Theunissen et al., 2000). As such,
researchers using animal models have shifted their focus toward
studying the brain using more naturalistic stimuli thanks to
the development of SI methods such as “normalized reverse
correlation” (NRC; Theunissen et al., 2001), “ridge regression”
(Machens et al., 2004), and “boosting” (David et al., 2007). Each
of these techniques converge on the same theoretical solution
but use different priors and, critically, give an unbiased impulse
response estimate for non-white stimuli. This has inspired
researchers to characterize the “spectrotemporal receptive fields”
of auditory cortical neurons in various animal models (Depireux
et al., 2001; Tomita and Eggermont, 2005). As a result, researchers
interested in how human speech is processed have begun
to model response functions describing the linear mapping
between properties of natural speech (such as the envelope or
spectrogram) and population responses in both animals (David
et al., 2007; Mesgarani et al., 2008) and humans (Lalor and
Foxe, 2010; Ding and Simon, 2012b). There have been similar
efforts to model response functions relating more natural visual
stimulus properties such as motion to neural responses in
humans (Gonçalves et al., 2014), again inspired by previous
single-unit electrophysiology work (Jones and Palmer, 1987;
David and Gallant, 2005).

Most of the aforementioned studies have modeled the
stimulus-response mapping function in the forward direction
(i.e., forward modeling). However, this mapping can also be
modeled in the reverse direction (i.e., backward modeling),
offering a complementary way to investigate how stimulus
features are encoded in neural response measures. Unlike
forward models, backward model parameters are not readily
neurophysiologically interpretable (see Haufe et al., 2014),
but can be used to reconstruct or decode stimulus features
from the neural response, a method known as “stimulus
reconstruction.” This approach has several advantages over
forward modeling approaches, especially when recording from
population responses using multi-channel systems such as EEG.
Firstly, because reconstruction projects back to the stimulus
domain, it does not require pre-selection of neural response
channels (Mesgarani et al., 2009). In fact, inclusion of all response
channels in the backward model is advantageous because the
reconstruction method gives a low weighting to irrelevant
channels whilst allowing the model to capture additional
variance using channels potentially excluded by feature selection
approaches (Pasley et al., 2012). Secondly, backward modeling
can offer increased sensitivity to important signal differences
between response channels that are highly correlated with each
other (as is often the case with EEG). It can do this because the
analysis maps the data from all response channels simultaneously
(i.e., in a multivariate manner) and so it can recognize any
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inter-channel correlation in the data (Mesgarani et al., 2009).
In contrast, when performing forward modeling, each analysis
is univariate and thus is ignorant of the data on the other
EEG channels. Thirdly, stimulus features that are not explicitly
encoded in the neural response may be inferred from correlated
input features that are encoded. This prevents the model from
allocating resources to the encoding of redundant stimulus
information (Barlow, 1972). The stimulus reconstructionmethod
has previously been used to study both the visual and auditory
system in various animal models (Bialek et al., 1991; Rieke et al.,
1995; Stanley et al., 1999). More recently, it has been adopted for
studying speech processing in the human brain using intracranial
and non-invasive electrophysiology (Mesgarani et al., 2009;
Pasley et al., 2012; Ding and Simon, 2013; Martin et al., 2014;
Crosse et al., 2015a, 2016; O’Sullivan et al., 2015).

While certain research groups now regularly use SI to study
sensory processing in the human brain, the approach has perhaps
not yet been as widely adopted throughout the neuroscience
community as it might because of the (at least perceived)
challenges associated with its implementation. The goal of the
present paper is to introduce a recently-developed SI toolbox
that provides a straightforward and flexible implementation
of regularized linear (ridge) regression (Machens et al., 2004;
Lalor et al., 2006). We begin by summarizing the mathematics
underlying this technique, continue by providing some concrete
examples of how the toolbox can be used and conclude by
discussing some of its applications and important considerations.

REGULARIZED LINEAR REGRESSION

Forward Models: Temporal Response
Function Estimation
Forward models are sometimes referred to as generative or
encoding models because they describe how the system generates
or encodes information (Haufe et al., 2014). Here, they will be
referred to as temporal response functions (TRFs; Ding and
Simon, 2012b). There are a number of ways of mathematically
describing how the input to a system relates to its output. One
commonly used approach—and the one that will be described
in this paper—is to assume that the output of the system is
related to the input via a simple linear convolution. In the
context of a sensory system where the output is monitored by
N recording channels, let’s assume that the instantaneous neural
response r(t, n), sampled at times t = 1...T and at channel n,
consists of a convolution of the stimulus property, s(t), with an
unknown channel-specific TRF, w(τ , n). The response model can
be represented in discrete time as:

r(t, n) =
∑

τ

w(τ , n)s(t − τ )+ ε(t, n), (1)

where ε(t, n) is the residual response at each channel not
explained by the model. Essentially, a TRF can be thought
of as a filter that describes the linear transformation of the
ongoing stimulus to the ongoing neural response. The TRF,
w(τ , n), describes this transformation for a specified range of time

lags, τ , relative to the instantaneous occurrence of the stimulus
feature, s(t).

In the context of speech for example, s(t) could be a measure
of the speech envelope at each moment in time and r(t, n) could
be the corresponding EEG response at channel n. The range of
time lags over which to calculate w(τ , n) might be that typically
used to capture the cortical response components of an ERP,
e.g., −100–400 ms. The resulting value of the TRF at −100 ms,
would index the relationship between the speech envelope and
the neural response 100 ms earlier (obviously this should have an
amplitude of zero), whereas the TRF at 100ms would index how a
unit change in the amplitude of the speech envelope would affect
the EEG 100 ms later (Lalor et al., 2009).

The TRF, w(τ , n), is estimated by minimizing the mean-
squared error (MSE) between the actual neural response, r(t, n),
and that predicted by the convolution, r̂(t, n):

min ε(t, n) =
∑

t

[

r(t, n)− r̂(t, n)
]2
. (2)

In practice, this is solved using reverse correlation (De Boer
and Kuyper, 1968), which can be easily implemented using the
following matrix operations:

w =

(

STS
)−1

STr, (3)

where S is the lagged time series of the stimulus property, s, and
is defined as follows:

S =




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




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.

(4)

The values τmin and τmax represent the minimum and maximum
time lags (in samples) respectively. In S, each time lag is arranged
column-wise and non-zero lags are padded with zeros to ensure
causality (Mesgarani et al., 2009). The window over which the
TRF is calculated is defined as τwindow = τmax − τmin and the
dimensions of S are thus T × τwindow. To include the constant
term (y-intercept) in the regression model, a column of ones is
concatenated to the left of S. In Equation (3), variable r is a matrix
containing all the neural response data, with channels arranged
column-wise (i.e., a T × N matrix). The resulting TRF, w, is a
τwindow×N matrix with each column representing the univariate
mapping from s to the neural response at each channel.
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One of the important points here is that this analysis explicitly
takes into account the autocovariance structure of the stimulus.
In non-white stimuli, such as natural speech, the intensity of
the acoustic signal modulates gradually over time, meaning it
is correlated with itself at non-zero time lags. A simple cross-
correlation of a speech envelope and the corresponding neural
response would result in temporal smearing of the impulse
response function. The solution here (Equation 3) is to divide out
the autocovariance structure of the stimulus from the model such
that it removes the correlation between different time points.
The TRF approach, which does this, is therefore less prone to
temporal smearing than a simple cross-correlation approach.
This is demonstrated in a worked example in the next section.

Regularization
An important consideration when calculating the TRF is that
of regularization, i.e., introducing additional information to
solve any ill-posed estimation problems and prevent overfitting.
The ill-posed estimation problem has to do with inverting the
autocovariance matrix, STS. Matrix inversion is particularly
prone to numerical instability when solved with finite precision.
In other words, small changes in STS (such as rounding errors
due to discretization) could cause large changes inw if the former
is ill-conditioned. In other words, the estimate of w can have very
high variance. This does not usually apply when the stimulus
represents a stochastic process because STS would be full rank
(Lalor et al., 2006). However, the autocorrelation properties of a
non-white stimulus such as speech means that it is more likely to
be singular (i.e., have a determinant of zero). Typically, numerical
treatment of an ill-conditioned matrix involves reducing the
variance of the estimate by adding a bias term or “smoothing
solution.” Specifically, because the overall estimation error is
made up of both a bias term (i.e., the difference between the
estimate’s expected value and its true value) and a variance term,
one can deliberately increase the bias so as to reduce the (high)
variance of the estimate by so much as to decrease the overall
estimation error.

Addition of this smoothing term also solves the other main
issue, that of overfitting. The reverse correlation analysis is
utterly agnostic as to the biological nature of the data that it is
being asked to model. As a result, without regularization, the
resulting TRF will be optimal in terms of the particular fitting
criterion (e.g., least squares error) for the specific dataset that
was used for the fitting. And, given that those data will be
“noisy,” the TRF can display biologically implausible properties
such as very high-frequency fluctuations. Using this TRF to then
predict unseen data will likely result in suboptimal performance,
because the high frequency fluctuations will not necessarily
correspond well to the “noise” in the new data. In other words,
the TRF has been “overfit” to the specific dataset used in the
training. Regularization serves to prevent overfitting to such
high-frequency, dataset-specific noise along the low-variance
dimensions (Theunissen et al., 2001; Mesgarani et al., 2008). It
can do this, for example, by penalizing large differences between
neighboring TRF values, thereby forcing the TRF to be smoother.
This makes the TRF less specific to the data that was used to fit it
and can help it generalize better to new unseen data.

In practice, both ill-posed problems and overfitting can be
solved simultaneously by weighting the diagonal of STS before
inversion, a method known as Tikhonov regularization or ridge
regression (Tikhonov and Arsenin, 1977):

w =

(

STS+ λI
)−1

STr, (5)

where I is the identity matrix and λ is the smoothing constant
or “ridge parameter.” The ridge parameter can be adjusted using
cross-validation to maximize the correlation between r(t, n),
and r̂(t, n) (David and Gallant, 2005). TRF optimization will be
described in more detail in the next section. While this form
of ridge regression enforces a smoothness constraint on the
resulting model by penalizing TRF values as a function of their
distance from zero, another option is to quadratically penalize
the difference between each two neighboring terms of w (Lalor
et al., 2006):

w =

(

STS+ λM
)−1

STr ,whereM =


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
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







.

(6)

Tikhonov regularization (Equation 5) reduces overfitting by
smoothing the TRF estimate in a way that is insensitive to
the amplitude of the signal of interest. However, the quadratic
approach (Equation 6) reduces off-sample error whilst preserving
signal amplitude (Lalor et al., 2006). As a result, this approach
usually leads to an improved estimate of the system’s response (as
indexed by MSE) compared to Tikhonov regularization.

Multivariate Analysis
The previous section focused on the specific case of relating
a single, univariate input stimulus feature (e.g., the envelope
of a speech stimulus) separately to each of multiple recording
channels. However, most complex stimuli in nature are not
processed as simple univariate features. For example, when
auditory speech enters the ear, the signal is transformed into a
spectrogram representation by the cochlea, consisting of multiple
frequency bands which project along the auditory pathway (Yang
et al., 1992). The auditory system maps each of these frequency
bands to the neural representation measured at the cortical level.
This process can be modeled by a multivariate form of the TRF
(i.e., mTRF).

Indeed, it is possible to define an mTRF that linearly
maps a multivariate stimulus feature to each recording channel
(Theunissen et al., 2000; Depireux et al., 2001). Using the above
example, let s(t, f ) represent the spectrogram of a speech signal
at frequency band f = 1...F. To derive the mTRF, the stimulus
lag matrix, S (Equation 4), is simply extended such that every
column is replaced with F columns, each representing a different
frequency band (i.e., a T × Fτwindow matrix). The resulting
mTRF, w(f , τ , n), will be a Fτwindow × N matrix but can easily be
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unwrapped such that each independent variable is represented as
a separate dimension (i.e., a F × τwindow × N matrix). Here, the
constant term is included by concatenating F columns to the left
of S.

An important consideration in multivariate TRF analysis
is which method of regularization to use. The quadratic
regularization term in Equation (6) was designed to enforce
a smoothness constraint and maintain SNR along the time
dimension, but not any other. For high λ values, this approach
would cause smearing across frequencies; hence it would not
yield an accurate representation of the TRF in each frequency
band. In this case, it will typically be most appropriate to use
the identity matrix for regularization (Equation 5) so as to
avoid enforcing a smoothness constraint across the non-time
dimension of the mTRF—although, in some cases, this may
actually be what is desired.

Backward Models: Stimulus
Reconstruction
The previous sections describe how to forward model the linear
mapping between the stimulus and the neural response. While
this approach can be extended to accommodate multivariate
stimulus features, it is suboptimal in the sense that it treats
each neural response channel as an independent univariate
feature. Backward modeling, on the other hand, derives a reverse
stimulus-response mapping by exploiting all of the available
neural data in a multivariate context. Backward models are
sometimes referred to as discriminative or decoding models,
because they attempt to reverse the data generating process by
decoding the stimulus features from the neural response (Haufe
et al., 2014). Here, they will simply be referred to as decoders.

Decoders can be modeled in much the same way as TRFs.
Suppose the decoder, g(τ , n), represents the linear mapping from
the neural response, r(t, n), back to the stimulus, s(t). This could
be expressed in discrete time as:

ŝ(t) =
∑

n

∑

τ

r(t + τ , n)g(τ , n), (7)

where ŝ(t) is the reconstructed stimulus property. Here, the
decoder integrates the neural response over a specified range of
time lags τ . Ideally, these lags will capture the window of neural
data that optimizes reconstruction of the stimulus property.
Typically, the most informative lags for reconstruction are
commensurate with those used to capture the major components
of a forward TRF, except in the reverse direction as the decoder
effectively maps backwards in time. To reverse the lags used in
the earlier TRF example (τmin = −100 ms, τmax = 400 ms),
the values of τmin and τmax are swapped but their signs remain
unchanged, i.e., τmin = −400 ms, τmax = 100 ms.

The decoder, g(τ , n), is estimated by minimizing the MSE
between s(t) and ŝ(t):

min ε(t) =
∑

t

[

s(t)− ŝ(t)
]2
. (8)

Analogous to the TRF approach, the decoder is computed using
the following matrix operations:

g =

(

RTR+ λI
)−1

RTs (9)

where R is the lagged time series of the response matrix, r. For
simplicity, we will define R for a single-channel response system:
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(10)

As before, this can be extended to the multivariate case of an N-
channel system by replacing each column of R with N columns
(each representing a separate recording channel). ForN channels,
the dimensions of R would be T × Nτwindow. The constant term
is included by concatenating N columns of ones to the left of
R. In the context of speech, the stimulus variable, s, represents
either a column-wise vector (e.g., envelope) or a T × F matrix
(e.g., spectrogram). The resulting decoder, g, would be a vector of
Nτwindow samples or a Nτwindow × F matrix, respectively. While
interpretation of decoder weights is not as straightforward as
that of a TRF, one may wish to separate its dimensions (e.g.,
N×τwindow×F) to examine the relative weighting of each channel
at a specific time lag. The channel weights represent the amount
of information that each channel provides for reconstruction, i.e.,
highly informative channels receive weights of greater magnitude
while channels providing little or no information receive weights
closer to zero.

In Equation (9), Tikhonov regularization is used as it is
assumed that the neural response data is multivariate. As
mentioned above, any bias from the correlation between the
neural response channels is removed in the reconstruction
approach. In practice, this is achieved by dividing out the
autocovariance structure of the neural response (see Equation
9). As a result, channel weighting becomes much more localized
because inter-channel redundancies are no longer encoded in the
model, giving it an advantage over the forward TRF method and
cross-correlation approaches.

MTRF TOOLBOX: IMPLEMENTATION AND
FUNCTIONALITY

This section outlines how regularized linear regression can be
implemented in MATLAB using the mTRF Toolbox (https://
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sourceforge.net/projects/aespa/). Specifically, it describes how to
train and test on univariate andmultivariate datasets and how the
resulting model should be optimized for specific purposes.

Training
Modeling the stimulus-response mapping of a given dataset is
implemented in themTRFToolbox using a simple function called
mTRFtrain. This function computes univariate or multivariate
ridge regression as described in the previous section (Equations 5,
6, and 9). Themodel can be trained on the data set in two separate
ways: (1) by training on each trial separately and averaging over
M models, or (2) by training on a concatenation of trials. Both
of these approaches yield the same results because the data are
modeled using a linear assumption. Here, the former approach
will be considered because it affords certain advantages. Firstly,
by generating separate models for each of the M trials, certain
denoising algorithms that require repetition of “trials” can be
applied to the model coefficients, even if they were modeled
on different stimuli, e.g., joint decorrelation (de Cheveigné and
Parra, 2014). Secondly, artifacts from discontinuities between
trials are not an issue. Thirdly, cross-validation is much more
efficient because training models on small amounts of data and
averaging across trials is much faster than concatenating large
amounts of data and training on them.

For a given trial, the mTRFtrain function trains on
all data features (e.g., frequency bands, response channels)
simultaneously (see Figure 1). The only requirement is that
the stimulus and response data have the same sampling rate
(which is specified in Hz) and be the same length in time. As
described in the previous section, vectors and matrices should
be organized such that all features are arranged column-wise.
The mapping direction is specified as “1” (forward modeling)
or “−1” (backward modeling). The minimum and maximum
time lags are entered in milliseconds and converted to samples
based on the sampling rate entered. It is often useful to include
additional time lags such as prestimulus lags for visualization
purposes. And one should also be aware of regression artifacts at
either extreme of the resulting model. However, when optimizing
models for prediction purposes, it is advisable to use only
stimulus-relevant time lags. The lag matrix used in the ridge
regression is generated by a function called lagGen. If the user
specifies to map backwards, the lags are automatically reversed
and the algorithm is changed from Equations (5) to (9). If the
stimulus entered is univariate (i.e., a vector), the algorithm will
automatically switch to Equation 6 to use the superior quadratic
ridge penalty. The final parameter that must be specified is the
ridge parameter, λ. For visualization of model coefficients, λ

can be empirically chosen as the lowest value such that any
increase would result in no visible improvement in the plotted
estimate (Lalor et al., 2006). For optimizing model performance,
a more systematic approach should be implemented such as
cross-validation, as described in the following section.

Optimization
Optimization of the stimulus-response mapping can be achieved
via cross-validation and is implemented using the mTRFcrossval
function. Specifically, the goal is to identify the value of the ridge

parameter that optimizes this mapping. Here, the entire dataset
is entered together, with M stimuli and M response matrices
arranged in two cell arrays. There is no requirement that the
individual trials be the same length in time (although this is
preferable for optimization reasons). Another important factor
that optimizes cross-validation is normalization of both input
and output data. By z-scoring the data, the range of values needed
to conduct a comprehensive parameter search can be greatly
reduced, making the process more efficient. The ridge values over
which validation is measured can be entered as a single vector. All
other parameters are entered in the same way as inmTRFtrain.

The validation approach implemented inmTRFcrossval is that
of “leave-one-out” cross-validation, although this could also be
described as M-fold cross-validation. First, a separate model is
fit to each of the M trials for every ridge value specified. Then,
the trials are rotated M times such that each trial is “left out” or
used as the “test set,” and the remaining M−1 trials are assigned
as the “training set” (see Figure 1). The actual models tested are
obtained by averaging over the single-trial models assigned to
each training set. As mentioned earlier, this approach is more
efficient than concatenating M−1 trials and fitting a model to
these data. Each averagedmodel is then convolved with data from
the corresponding test set to predict either the neural response
(forward modeling) or the stimulus signal (backward modeling).
This process is repeated for each of the different ridge values.
Validation of the model is assessed by comparing the predicted
estimate with the corresponding original data. Two different
validation metrics are used: Pearson’s correlation coefficient and
mean squared error. Once the validation metrics have been
obtained, they should be averaged across all trials. This approach
is advisable because each of the models should in theory require
the same ridge value for regularization, given that they share
M−2 trials of data with each other. This ensures that the models
generalize well to new data and are not overfit to the test set.
However, this approach works best if all the trials are the same
length. The optimal ridge value is identified as that which yields
either the highest r-value or the lowest MSE-score on average.

Testing
Once the model parameters have been tuned using cross-
validation, the optimized model can be tested on new data using
the mTRFpredict function. This can be conducted on data that
was held aside from the cross-validation procedure (which is
considered good practice) or on the same test data used for
cross-validation (Figure 1). As previously mentioned, because
the above cross-validation procedure takes the average of the
validation metric across trials, the models are not biased toward
the test data used for cross-validation. Thus, it is legitimate to
report model performance based on these data because testing
on new unseen data will likely yield the same result.

While the mTRFpredict function outputs the same
performance metrics as mTRFcrossval, it also outputs the
predicted signal for further evaluation. When predicting a
multivariate signal such as EEG, a performance measure is
calculated for every feature (i.e., EEG channel), allowing the user
to base evaluation of the model on whichever features they deem
most relevant.
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FIGURE 1 | Schematic of the forward and backward modeling approaches implemented by mTRF Toolbox. Stimulus reconstruction (i.e., backward

modeling) can be used to decode specific stimulus features from recorded neural response data in order to estimate how accurately this information was encoded in

the brain. Temporal response function estimation (i.e., forward modeling) can be used in a similar manner to predict the neural response to a novel stimulus, but also

allows for detailed examination of how the stimulus features were encoded in the brain and interpretation of the underlying neural generators.

EXAMPLES

The examples presented in this section use data from a published
study that measured EEG responses of human subjects to natural,
continuous speech (Di Liberto et al., 2015). The subject listened
to an audiobook version of a classic work of fiction read by a
male speaker in American English. The audio was presented in
28 segments (each ∼155 s in duration), of which a subset of
five are used in the examples in this chapter. EEG data were
recorded using a 128-channel ActiveTwo system (BioSemi) and
digitized at a rate of 512Hz. Offline, the data were digitally filtered
between 1 and 15Hz, downsampled to a rate of 128Hz and re-
referenced to the left and right mastoid channels. Only 32 of the
128 channels recorded are included in the analysis, but crucially,
are distributed evenly across the head (Mirkovic et al., 2015).
Further details can be found in the original study (Di Liberto
et al., 2015).

This section details several examples that demonstrate how
the mTRF Toolbox can be used to relate neural data to sensory
stimuli in a variety of different ways. These include:

1. Univariate TRF estimation
2. Optimization and prediction
3. Multivariate TRF analysis
4. Stimulus reconstruction

5. Multimodal TRF estimation
6. TRF vs. cross-correlation

While the examples all relate to EEG data collected during speech
stimuli, as stated earlier, these approaches can all be used with
other types of sensory stimuli.

Univariate TRF estimation
The aim here is to estimate the temporal response function that
maps a univariate representation of the speech envelope onto the
EEG signal recorded at each channel. The broadband envelope of
the speech signal (Figure 2A) was calculated using:

xa(t) = x(t)+ jx̂(t), (11)

where xa(t) is the complex analytic signal obtained by the
sum of the original speech x(t) and its Hilbert transform x̂(t).
The envelope was defined as the absolute value of xa(t). This
was then downsampled to the same sampling rate as the EEG
data, after applying a zero-phase shift anti-aliasing filter. TRFs
were calculated between lags of −150 and 450 ms, allowing
an additional 50 ms at either end for regression artifacts. An
estimate was computed separately for each of the five trials and
then averaged. The ridge parameter was empirically chosen to
maintain component amplitude (Lalor et al., 2006).
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FIGURE 2 | Univariate TRF estimation. (A) A 30-s segment of the

broadband speech envelope. (B) Global field power measured at each time

lag. (C) Scalp topographies of the dominant TRF components occurring at

∼80 and ∼140 ms. The black markers indicate the locations of fronto-central

channel, FCz, and occipital channel, Oz. (D) Grand average TRFs at FCz (blue

trace) and Oz (red trace).

A measure of global field power (GFP) was first estimated
by calculating TRF variance across the 32 channels (Figure 2B).
GFP constitutes a reference-independent measure of response
strength across the entire scalp at each time lag (Lehmann and
Skrandies, 1980; Murray et al., 2008). Based on the temporal
profile of the GFP measure, three clear TRF components are
evident at ∼50, ∼80, and ∼140 ms. Figure 2C shows the scalp
topographies of the latter two of these components. Their latency
and polarity resemble that of the classic N1 and P2 components
of a typical (mastoid-referenced) auditory-evoked response. The
topography of the N1-P2 complex suggests that both components
are strongest at fronto-central position FCz. The grand average
TRF calculated at FCz is shown in Figure 2D, along with the TRF
measured at occipital location Oz for comparison.

Optimization and Prediction
The aim here is to use the TRF model to predict the EEG
response of unseen data. This time, tuning of model parameters
was conducted using a more systematic approach, i.e., that of the
cross-validation procedure described earlier. Specifically, TRFs
were calculated for a range of ridge values

(

λ = 20, 22, ..., 220
)

on each of the separate trials. For each ridge value, the TRFs
were averaged across every combination of four trials and used to
predict the EEG of the remaining fifth trial. Here, the data were
modeled at time lags between 0 and 200 ms as these lags reflected
the most information in the global TRF responses (Figure 2B).
Inclusion of additional lags (pre-stimulus or post-stimulus) did
not improve model performance.

Figure 3A shows the results of the cross-validation based on
the correlation coefficient (Pearson’s r) between the original and
predicted EEG responses. Critically, the r-values were averaged
across the five trials to prevent overfitting the model to the test

FIGURE 3 | Optimization of TRFs for EEG prediction. (A) Cross-validation

of model based on the correlation between the original and predicted EEG

response (Pearson’s r averaged across channels and trials). The filled marker

indicates the highest r-value, i.e., the optimal ridge value. (B) Cross-validation

based on mean squared error (MSE). The optimal ridge value is identified by

the lowest MSE-score. (C) Test of the optimized TRF model shows the

correlation coefficient at each channel. The black marker indicates the location

of channel FCz. (D) Two-second segments of the EEG response at FCz (blue

trace) and the corresponding estimate predicted by the optimized TRF model

(red trace).

data. The r-values were also averaged across the 32 channels such
that model performance would be optimized in a more global
manner. Alternatively, one could average across only channels
within a specified top percentile or based on a specific location.
Figure 3B shows the results of the cross-validation based on the
mean squared error. The same averaging procedure was used to
identify the optimal ridge value here.

The ridge value was chosen such that it maximized the
correlation between the original and predicted EEG (David
and Gallant, 2005). Note that using MSE as a criteria for
cross-validation would have yielded the same result. Figure 3C
shows the correlation coefficient obtained at each channel
using the optimized TRF model. The topographical distribution
of Pearson’s r is very similar to that of the dominant TRF
components (Figure 2C). Indeed, it is unsurprising that the
model performed best at channels where the response was
strongest. Figure 3D shows 2-s segments of the EEG response at
FCz and the corresponding estimate predicted by the optimized
TRF model.

Multivariate TRF Analysis
The aim here is to estimate the TRF for a multivariate
(spectrogram) representation of speech, i.e., an mTRF. The
spectrogram representation (Figure 4A) was obtained by
first filtering the speech stimulus into 16 logarithmically-
spaced frequency bands between 250 and 8 kHz according to
Greenwoods equation (Greenwood, 1990). Filtering the data
in a logarithmic manner attempts to model the frequency
analysis performed by the auditory periphery. The energy in
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FIGURE 4 | Multivariate TRF estimation and EEG prediction. (A) A 30-s

segment of the speech spectrogram. (B) Grand average mTRF at channel

FCz. (C) Cross-validation of model based on the correlation between the

original and predicted EEG response (Pearson’s r averaged across channels

and trials). The filled marker indicates the highest r-value, i.e., the optimal ridge

value. (D) Cross-validation based on mean squared error (MSE). The optimal

ridge value is identified by the lowest MSE-score. (E) Test of the optimized

mTRF model shows the correlation coefficient at each channel. The black

marker indicates the location of channel FCz. (F) Two-second segments of the

EEG response at FCz (blue trace) and the corresponding estimate predicted

by the optimized TRF model (red trace).

each frequency band was calculated using a Hilbert transform as
above (Equation 11).

For visualization, mTRFs were calculated between lags
of −150 and 450 ms and model parameters were tuned
empirically. Figure 4B shows the mTRF response at channel
FCz for all frequency bands between 250 and 8000Hz. Visual
inspection of Figure 4B suggests that the dominant N1TRF and
P2TRF components encoded speech information at nearly every
frequency band up to ∼6 kHz, which is where most of the
information was contained in the speech signal (Figure 4A).
Averaging the mTRF across frequency bands would yield a
univariate TRF measure that closely approximates the TRF
calculated using the broadband envelope (Figure 2D).

To predict the EEG response with the mTRF model, the
same approach was implemented as before. Although the results
yielded by the cross-validation (Figures 4C,D) were similar
to those for the univariate TRF approach (Figures 3A,B), the
mTRF approach appeared to be more sensitive to changes
in the ridge value. Further investigation revealed that this
could not be attributed to using different regularization
penalties in univariate and multivariate analyses. Despite this,
performance of the optimized mTRF model was akin to

that of the univariate TRF model over the entire scalp
(Figures 4E,F).

While it has been demonstrated that multivariate
TRF models are superior to univariate TRF models for
predicting EEG responses (Di Liberto et al., 2015), it
must be taken into consideration that multivariate TRF
analysis is more sensitive to regularization (certainly
for ridge regression) and can involve considerably more
computations.

Stimulus Reconstruction
The aim here is to generate a decoder that models the data in
the backwards direction (i.e., from EEG to stimulus) and to use
it to reconstruct an estimate of the univariate stimulus input.
The advantages of this approach over the forward modeling
technique are outlined in the Introduction and BackwardModels
Section. Tuning of model parameters was conducted using the
same cross-validation technique described for the TRF models.
Specifically, decoders were calculated for the same range of ridge
values

(

λ = 20, 22, ..., 220
)

at time lags between 0 and 200 ms. The
difference here was that the EEG was treated as the “input” and
the stimulus as the “output,” and the direction of the lags was
reversed, i.e.,−200 to 0.

Figure 5A shows the results of the cross-validation as
measured by the correlation coefficient between the original
and reconstructed speech envelope, while Figure 5B represents
validation of the model ridge parameter based on MSE. Again,
both metrics have been averaged across trials to prevent
overfitting to the test data. All 32 EEG channels were included
in the model validation procedure to optimize performance. The
advantages of the backward modeling approach over forward
modeling are evidenced by the dramatic reduction in residual
error as indexed by the correlation values. This is mainly
attributable to the fact that the decoder can utilize information
across the entire head simultaneously (i.e., in a multivariate
sense) to determine the speech estimate, whereas when modeling
in the forward direction, the predicted EEG estimate is based
on a single univariate mapping between the stimulus and
the EEG response at that specific channel (Mesgarani et al.,
2009). Additionally, the predictions for the forward modeling
approach are evaluated in the EEG domain, where the low SNR
negatively affects prediction accuracy. In contrast, the backward
modeling approach moves the estimation of these measures to
the stimulus domain, which is defined by the experimenter.
Therefore, in case of stimuli with low SNR (e.g., a speech
envelope), the quality of fit will likely be higher for backward
modeling.

While the decoder channel weights are not readily
interpretable in a neurophysiological sense, their weighting
reflects the channels that contribute most toward reconstructing
the stimulus signal (Haufe et al., 2014). Figure 5C shows the
decoder weights averaged across time lags between 110 and
130 ms (this was where weighting was maximal as indexed by
GFP). In comparison to the TRF topographies (Figure 2C), the
distribution of model weight is much more localized. Because the
decoder is not required to encode information at every channel
across the scalp as a TRF does, it can selectively weight only
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FIGURE 5 | Stimulus reconstruction. (A) Cross-validation of model based

on the correlation between the original and reconstructed speech envelope

(Pearson’s r averaged across trials). The filled marker indicates the highest

r-value, i.e., the optimal ridge value. (B) Cross-validation based on mean

squared error (MSE). The optimal ridge value is identified by the lowest

MSE-score. (C) Decoder channel weights averaged over time lags between

110 and 130 ms. (D) Two-second segments of the original speech envelope

(blue trace) and the corresponding estimate reconstructed by the optimized

decoder (red trace). (E) Decoder channel weights transformed to forward

model space using the inversion procedure described by Haufe et al. (2014).

The black markers indicate the locations of fronto-central channel, FCz, and

occipital channel, Oz. (F) Temporal response function obtained by inverting the

decoder weights to the forward model domain at FCz (blue trace) and Oz (red

trace).

those channels important for reconstruction, whilst ignoring
irrelevant and noisy channels by giving them a lower weighting
(Haufe et al., 2014). A 2-s sample of a reconstructed estimate can
be seen in Figure 5D. Stimulus reconstruction for a multivariate
stimulus is conducted in much the same manner, except model
performance must be evaluated for every feature (e.g., frequency
band) separately or by averaging across features and then
evaluating.

Previous research has described a procedure that enables
neurophysiological interpretation of backwardmodel coefficients
(Haufe et al., 2014). Specifically, they proposed a deterministic
approach to transform previously fit linear backward model
coefficients into linear forward model coefficients. This
procedure enables the neurophysiological interpretation of
the parameters of linear backward models which could be
otherwise misleading and erroneous. The mTRFtransform
function implements this procedure specifically for backward
models derived using the ridge regression technique
(e.g., Figures 5E,F).

FIGURE 6 | Multimodal TRF estimation. (A) A 30-s segment of the

broadband speech envelope. (B) A 30-s segment of the corresponding

frame-to-frame visual motion. (C), Grand average envelope TRFs at Fz (blue

trace) and Oz (red trace). (D), Grand average motion TRFs at Fz (blue trace)

and Oz (red trace). (E) Scalp topography of the dominant envelope TRF

component occurring at 78 ms. (F) Scalp topography of the dominant motion

TRF component occurring at 117 ms.

Multimodal TRF Estimation
As well as extracting the neural response to unimodal stimuli,
the TRF approach can be used to disentangle contributions
from multimodal signals (or multiple signals within the same
modality such as a cocktail party scenario, e.g., Power et al., 2012).
This can be demonstrated using EEG recorded during natural
audiovisual speech. The data presented here were published
in a study that investigated the influence of visual speech on
the cortical representation of auditory speech (Crosse et al.,
2015a). The subject listened to 15 min of natural audiovisual
speech, of which a subset of 7min are used here. The auditory
stimulus was characterized as the broadband envelope as before
(Figure 6A), while the visual stimulus was characterized by
calculating the frame-to-frame motion of the videos (Figure 6B).
For each frame, a matrix of motion vectors was calculated using
an “Adaptive Rood Pattern Search” block matching algorithm
(Barjatya, 2004). A measure of global motion flow was obtained
by calculating the sum of all motion vector lengths of each frame
(Bartels et al., 2008). This was then converted from an RGB
representation to relative luminance and upsampled from 30 to
128Hz to match the rate of the EEG data.

Figure 6C shows the TRFs at channels Fz and Oz when the
acoustic envelope is mapped to the EEG, whereas Figure 6D

shows the TRFs at the same channels when the visual motion
signal is mapped to the same EEG data. TRF amplitude is much
greater at Fz than at Oz when the auditory signal is used, whereas
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the converse is true for the visual signal. This can also be seen in
the topographies which show a dominant response over frontal
scalp for the envelope TRF (Figure 6E) and a dominant response
over occipital scalp for the motion TRF (Figure 6F). Although
the same EEG data were analyzed in both cases, responses from
different sensory cortical regions could be extracted by simply
mapping from features specific to each sensory modality.

To measure multisensory integration, the mTRFmulticrossval
function can be used to fit an “additive model” based on the
algebraic sum of the unisensory model coefficients (Stein and
Meredith, 1993). The additivemodel is tested on themultisensory
neural response data and its performance can then be compared
with that of the multisensory model to obtain an objective
measure of integration. For further detail, see Crosse et al.
(2015a).

TRF vs. Cross-Correlation
As mentioned earlier, the impulse response of an LTI system
can be easily approximated via a simple cross-correlation of the
input and output. While this approach is more straightforward
than using techniques such as normalized reverse correlation
or ridge regression, it is only suitable for input signals that
conform to a stochastic process. To demonstrate this empirically,
a comparison is made between each of these approaches using
both speech and white noise as a stimulus input signal. The
speech data presented here are the same as those in the previous
examples. The non-speech data presented here were published
in a study that investigated the TRF approach for estimating
the response of the auditory system to Gaussian white noise
(Lalor et al., 2009). The subject listened to ten 120-s segments
of uninterrupted noise stimuli, of which a subset of six are used
in this example. The stimuli were Gaussian broadband noise
with energy limited to a bandwidth of 0–22.05 kHz, modulated
using Gaussian noise signals with uniform power in the range 0–
30Hz. To account for the logarithmic nature of auditory stimulus
intensity perception, the values of these modulating signals, x,
were then mapped to the amplitude of the audio stimulus, x′,
using the following exponential relationship:

x′ = 102x. (12)

EEG data were recorded and processed using the exact same
procedure described in the previous examples. Further details can
be found in the original study (Lalor et al., 2009).

Examples of the speech and noise stimuli used in the
experiments are shown in Figures 7A,B respectively. The
autocorrelation of each stimulus reveals that the speech stimulus
is correlated with itself at multiple time lags (Figure 7C), whereas
the noise stimulus is only correlated with itself at a zero
time lag (Figure 7D). Figure 7F shows the impulse response
for the white noise stimulus calculated at channel FCz using
the TRF approach and the cross-correlation (XCOR) approach.
Visual inspection suggests that the cross-correlation and TRF
approaches produce approximately identical estimates of the
system response function. However, the same was not true
for the speech stimulus, where the cross-correlation approach
caused temporal smearing of the impulse response estimate

FIGURE 7 | Comparison of the temporal response function (TRF) and

cross-correlation (XCOR) approach. (A) A 30-s segment of the broadband

speech envelope. (B) A 30-s segment of amplitude modulated noise. (C),

Autocorrelation of the speech envelope. (D), Autocorrelation of the noise

signal. (E) The impulse response to speech at channel FCz estimated using

the TRF approach (blue trace) and the cross-correlation approach (red trace).

(F) The impulse response to white noise at channel FCz estimated using the

TRF approach (blue trace) and the cross-correlation approach (red trace).

compared to the TRF approach (Figure 7E). This is because the
stimulus dynamics map to the EEG signal at multiple overlapping
time lags. This demonstrates the utility of the TRF technique
for characterization of sensory systems in response to slowly-
modulating naturalistic stimuli such as human speech.

DISCUSSION

Here, we have described a new MATLAB-based SI toolbox for
modeling the relationship between neural signals and natural,
continuous stimuli. The above examples demonstrate how
this versatile toolbox can be applied to both univariate and
multivariate datasets, as well as unisensory and multisensory
datasets. Importantly, it can also be used to map in both the
forwards and backwards direction to perform response function
estimation and stimulus reconstruction respectively, providing
complementary analysis techniques.

Applications
The mTRF Toolbox has many applications in sensory
neuroscience, none more so than for studying how natural
speech is processed in the human brain. The forward TRF
approach has previously been used to demonstrate how neural
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responses to uninterrupted speech can be extracted with precise
temporal resolution in humans using both intracranial and
non-invasive recording techniques (Lalor and Foxe, 2010).
Subsequent studies using this approach have yielded several
key findings relating to how the brain selectively attends to a
single speech stream in a cocktail party scenario (Power et al.,
2012) and how spectrotemporal and phonetic information are
represented in auditory cortical activity (Di Liberto et al., 2015).
Other applications of the toolbox include using both backward
and forward models to investigate audiovisual speech processing
(Crosse et al., 2015a, 2016) and visual speech processing, i.e.,
speech reading (Crosse et al., 2015b). Alternative SI techniques
(that ultimately yield the same solution) have also been used
to investigate auditory scene analysis (Ding and Simon, 2012a;
Mesgarani and Chang, 2012; Zion-Golumbic et al., 2013;
O’Sullivan et al., 2015), speech-in-noise (Ding and Simon, 2013;
Ding et al., 2014), overt and covert cortical representations
of speech (Martin et al., 2014) and detailed spectrogram
reconstructions of speech from intracranial recordings (Pasley
et al., 2012).

Aside from studying speech, the forward TRF approach has
been applied in vision research to study how the human brain
processes stimuli that modulate in contrast over time (Lalor et al.,
2006, 2007; Frey et al., 2010; Murphy et al., 2012). This particular
approach has also been used in clinical research to investigate
visual processing deficits in children with autism spectrum
disorder (Frey et al., 2013) and in adults with schizophrenia
(Lalor et al., 2008, 2012). More recently, it has been modified to
studying how the brain processes more naturalistic visual stimuli
such as coherent motion (Gonçalves et al., 2014). In addition
to characterizing mappings between visual stimulus features
and EEG recordings, researchers have recently reconstructed
finger movements from surface EMG signals using the same
regularized linear regression approach (Krasoulis et al., 2015),
further demonstrating the versatility of this technique.

Considerations
The linear assumption underlying the reverse correlationmethod
has implications for its interpretation. This assumption of a
linear relationship between stimulus feature and neural response
amplitude likely results in a response measure reflective of
feedforward activity in a subset of cortical cells (Lalor et al.,
2009). Thus, it is possible that such an approach is insensitive
to cortical responses that relate to the stimulus in a non-linear
manner including lateral and feedback contributions, which
may have implications for studying the effects of higher-order
cognitive processes. This is in contrast to the challenge involved
in disambiguating the myriad feedforward, lateral and feedback
contributions to the time-locked average ERP (Di Russo et al.,
2005).

Indeed, such linear assumptions will need to be addressed
in order to accurately characterize populations of neurons that
respond in a non-linear way to complex stimuli (Theunissen
et al., 2000). That said, a previous study that implemented a
quadratic extension of the linear TRF approach for modeling
visual responses to contrast stimuli did not find any significant
improvement in model performance relative to that of a linear

model (Lalor et al., 2008). Subsequent studies that applied the
same quadratic model to the auditory system did however
demonstrate marginal improvements in model performance for
acoustic white noise stimuli (Power et al., 2011a,b). Expansion
of the TRF model into higher orders has also been explored
using machine learning techniques such as support vector
regression, but similarly, yielded only negligible improvements
(Crosse, 2011). While such non-linear regression techniques can
result in slight improvements in model performance, there is
a considerable trade-off between performance and computation
time that often make them impractical.

However, the fact that non-linear models perform only
marginally better than linear models for population data (e.g.,
EEG; Power et al., 2011a,b), and yet appear to be more beneficial
for modeling single-unit data (e.g., ECoG; Theunissen et al.,
2000) may imply something fundamental about the nature of
EEG recordings. Each EEG electrode detects neural activity
from large cortical populations (107–109 neurons) due to the
spatial smearing effects of volume conduction (Freeman et al.,
2003). Thus, activation patterns that are common across the
largest neural populations will contribute most to the signal
recorded at the scalp. Because of the diversity of non-linear
responses across neurons, it is likely that such activity is
encoded in small, sub-populations of neurons, whereas linear
responses are likely encoded on a more macroscopic level. The
effects of volume conduction could therefore result in much
of this non-linear activity being obscured in the resulting EEG
recording. Indeed if this were the case, it would explain why
linear regression techniques perform comparably to that of
non-linear techniques for modeling EEG responses. In support
of this notion, other EEG/MEG modeling algorithms such as
SPoC (Dähne et al., 2014)—which relates the amplitude of
neural oscillations to stimulus features or behaviorally relevant
parameters—have specifically used linear models based on the
fact that superposition of such oscillations is known to be linear
and instantaneous (Parra et al., 2005; Nunez and Srinivasan,
2006).
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