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Across time, languages undergo changes in phonetic, syntactic, and semantic

dimensions. Social, cognitive, and cultural factors contribute to sound change, a

phenomenon in which the phonetics of a language undergo changes over time.

Individuals who misperceive and produce speech in a slightly divergent manner (called

innovators) contribute to variability in the society, eventually leading to sound change.

However, the cause of variability in these individuals is still unknown. In this study, we

examined whether such misperceptions are represented in neural processes of the

auditory system. We investigated behavioral, subcortical (via FFR), and cortical (via P300)

manifestations of sound change processing in Cantonese, a Chinese language in which

several lexical tones are merging. Across the merging categories, we observed a similar

gradation of speech perception abilities in both behavior and the brain (subcortical and

cortical processes). Further, we also found that behavioral evidence of tone merging

correlated with subjects’ encoding at the subcortical and cortical levels. These findings

indicate that tone-merger categories, that are indicators of sound change in Cantonese,

are represented neurophysiologically with high fidelity. Using our results, we speculate

that innovators encode speech in a slightly deviant neurophysiological manner, and

thus produce speech divergently that eventually spreads across the community and

contributes to sound change.

Keywords: language change, phonetics, individual variability, brainstem encoding, neurophysiology

INTRODUCTION

Language is a dynamic and adaptive system that undergoes diachronic and synchronic changes
(Beckner et al., 2009). Some of the well-documented changes across languages include the great
vowel chain shifts between the 14th and 16th century (Wolfe, 1972), phonological mergers in
Sinitic languages (Shen, 1997) and lexical borrowing between languages (Bloomfield, 1933; Cheng,
1987). In addition to documenting change, research studies have also investigated the sources of
change, predominantly by examining the impact of social factors (Labov, 1980, 1990, 2006; Haeri,
1996; Eckert, 2000) on language. In recent years, a new set of studies have begun to focus on
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speaker-internal factors that could drive change, including
individual differences in perceptual and cognitive processes
(Witkin et al., 1975; Messick, 1976; Ausburn and Ausburn, 1978;
Labov, 2001; Yu, 2010, 2013; Browman and Goldstein, 2014).
The aim of the current study is to further investigate speaker-
internal factors by examining how individual differences in
neurophysiological processing may be associated with language
change. The sound system of Cantonese is undergoing a course of
change in which some speech categories are being merged. Most
interestingly, the extent of merging differs across individuals
and across speech categories. This gives rise to the opportunity
for the current study to connect the extent of merging to
differences in neurophysiological responses across the auditory
neural pathway.

For decades, a large body of influential work on language
change by Labov and others has found social factors to be
predominant driving forces of change. Among the factors
investigated are the effects of local communities (Eckert, 2000),
socio-economic classes (Trudgill, 1974; Weinberg, 1974; Labov,
1980, 2006; Haeri, 1996; Velde et al., 2001), gender (Gauchat,
1905; Hermann, 1929; Labov, 1990, 2001; Yu, 2010), regional
dialect (Labov, 2010), and frequency of usage (Hooper, 1976;
Pierrehumbert, 2001; Abramowicz, 2007; Zhao and Jurafsky,
2009). Apart from social factors, cognitive differences among the
individuals have also been considered as important contributors
toward sound change (Ohala, 1990; Labov, 2010). It has been
postulated that in a society, there are innovators who are
individuals with a slightly deviant style of speech perception and
production, and early adopters who adopt their deviant style
(Milroy and Milroy, 1985). As innovators and early adopters
interact, there is a spread of divergent speech characteristics in
the society that during the course of time leads to modification of
norm ultimately leading to sound change. Research studies also
ask what speaker-internal factors may lead certain individuals
in society to become innovators and others early adopters.
Perceptual and cognitive factors are likely to contribute to such
biases (Yu, 2010, 2013). In particular, individual differences
in speech perception can be a particularly important driving
force (Yu, 2010; Ou et al., 2015). As certain individuals
misperceive speech, the misperception could lead to adjustments
in production norms leading to development of new variants.
When these variants are associated with social significance and
spread to the rest of the speech community, sound change occurs.
Ohala (1993) reports that the threemainmechanisms responsible
for sound change are hypocorrection in which a listener under-
corrects coarticulatory effects; hypercorrection in which a listener
overcorrects coarticulatory effects; and confusion between the
similar acoustical sounds that occurs due to failure of a listener
to retrieve a feature in one sound but not in the other. One
possibility is that the listeners who hyper/hypocorrect are the
innovators who perceive and produce in a divergent manner and
thus, modify the norms of the community.

Are these confusions or misperceptions represented at the
subcortical and cortical levels? For speech to be perceived,
it must undergo stages of processing in both the peripheral
(outer, middle and inner ear) and central (auditory nerve
to brainstem to the cortex) components of the auditory

pathway. The auditory brainstem and cortex are interconnected
via numerous afferent and efferent neuronal pathways. The
brainstem is a complex hierarchical structure consisting of
cochlear nucleus, superior olivary complex, lateral lemniscus, and
inferior colliculus interconnected via afferent, efferent, ipsilateral,
and/or contralateral nerve fibers (Chandrasekaran and Kraus,
2010). The brainstem acts as a hub for auditory processing,
and its activity can be measured using the frequency following
response (FFR). FFR has been used as a metric of auditory
system plasticity due to language experience (Krishnan et al.,
2005, 2009; Swaminathan et al., 2008) and musical training
(Musacchia et al., 2007, 2008; Wong et al., 2007; Bidelman
et al., 2009). Furthermore, the brainstem with its sharp phase-
locking characteristics (Galbraith et al., 1995) and top-down
feedback from the cortex via efferent pathways, acts as an active
contributor rather than a passive relay station in speech sound
processing (Chandrasekaran et al., 2014). It has been found
that clinical populations with disorders of speech, language
and reading have impaired subcortical representation of sounds
(Wible et al., 2005; Hornickel et al., 2009; Russo et al., 2009,
2010; Anderson et al., 2013). Given the importance of brainstem
in speech sound encoding, we used FFR as a tool to study the
distinction of tone categories in the brainstem. A deficiency
in brainstem encoding may lead to defective representation of
sounds in the cortex and vice versa (Chandrasekaran et al., 2014).

Apart from subcortical measures, cortical measures of
auditory processing have also been found to be sensitive
in determining the effects of long-term language experience
(Buchwald et al., 1994; Chandrasekaran et al., 2007, 2009a; Zheng
et al., 2012). Chandrasekaran et al. (2007) used mismatched
negativity (MMN) and found that Chinese and English speakers
differed on their pre-attentive ability to discriminate Mandarin
lexical tone pairs. Further, Chandrasekaran et al. (2009a) also
found that Chinese speakers processed lexical tones more
faithfully than musicians. They attributed these findings to
their long-term language experience. Though the effects of
linguistic experience can be gauged with MMN or even earlier
components, they may be driven by experience-dependent
acoustic features (Maiste et al., 1995; Chandrasekaran et al., 2007,
2009b) rather than perception. In contrast, P300 is known to
indicate discrimination of speech sounds based on phonological
information (Maiste et al., 1995; Frenck-Mestre et al., 2005).
Because of different attentional requirements, MMN and P300
index different stages of processing in the brain. MMN is a result
of automatic change detection regardless of whether the change
occurs in the acoustic or phonemic domain (Näätänen et al.,
2007) and is a relatively early-stage phenomenon occurring in
the latency range of 100–300 ms. P300, in contrast, is an event
related potential (ERP) usually elicited in the range of 250–500
ms in an oddball paradigm where attention needs to be allocated
to the deviant stimuli. In a P300 task, memory schemas are
built with the incoming standard stimuli and every time a rare
or deviant stimulus appears, these schemas are updated. P300
amplitude and latency is usually modulated by arousal levels
and the amount of effort required in detection of the deviant
stimuli (Polich, 2007). The more effortful the task, the longer
the P300 latency and the higher the amplitude (Luck, 2005).
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P300 has been used to study the effects of linguistic experience
(Buchwald et al., 1994; Zheng et al., 2012). Buchwald et al.
(1994) studied whether Japanese listeners could differentiate/r/
and /l/ phonemes that are contrasted in English but not in
Japanese. They found that adult native speakers of Japanese had
reduced P300 for detecting [r] and [l] sounds. Zheng et al. (2012)
found that Cantonese speakers had enhanced P300 amplitudes
relative to their Mandarin counterparts on a lexical tone oddball
discrimination task, mainly due to long-term experience with the
more complex tone space in Cantonese. As categorical perception
of lexical tones can be well represented neurophysiologically
using P300 (Zheng et al., 2012), we used this ERP technique
in the current study to probe active language processing at the
cortical level. In sum, we employed a combination of FFR and
P300 to probe passive (subcortical) and active (cortical) levels of
auditory processing to investigate neural representations of the
phenomenon of sound change.

It is known that encoding at the auditory brainstem is shaped
by language experience and tone language speakers encode lexical
tones more robustly than non-tone language speakers (Krishnan
et al., 2005, 2009; Swaminathan et al., 2008). Krishnan et al.
(2005, 2009, 2010) argue that local mechanisms in the brainstem
circuitry show plasticity toward long-term experience. On the
other hand, there is also evidence that brainstem encoding is
driven by top-down cortical feedback (Suga, 2008; Bajo et al.,
2010). Recently, it has been found that the effects visible at
the brainstem originate at the level of cortex and are driven
via corticofugal pathways from cortex to the brainstem (Suga,
2008; Parbery-Clark et al., 2009; Krizman et al., 2012; Song
et al., 2012; Hairston et al., 2013; Skoe and Kraus, 2013). As
literature supports the effect of tone language experience both at
the brainstem and cortex, it is important to probe these levels of
the auditory pathway using FFR and P300 in order to understand
whether sound change is represented at the brainstem and/or
cortical level.

In order to investigate the neural representations of sound
change in the auditory pathway, we examined the neural
responses to speech categories in Cantonese that are undergoing
various degrees of merging. Cantonese is a Chinese language
that has six lexical tones (high-level, mid-level, low-level, high-
rising, low-rising, and falling), which are pitch patterns used to
distinguish word meanings (e.g., the syllable /ji/ means “chair”
when spoken with high-rising tone 2 and “ear” when spoken
with low-rising tone 5). What makes Cantonese particularly
useful for studying the neural basis of sound change is that
some of the tone categories are in the process of undergoing
merging to various degrees. Merging leads to the disappearance
and emergence of speech sound categories in a language. The
merging phenomenon may be observed in the English of some
speakers in the southern United States where they have lost
distinction between “pen” and “pin” (the sound “e” has been
lost) (Labov et al., 2005). In Cantonese, several degrees of
merging can be observed across the tone categories. Degrees of
merging are determined based on the prevalence of confusions in
native Cantonese speakers’ perception and/or production (Law
et al., 2013; Mok et al., 2013). The two rising lexical tones of
Cantonese, Tones 2 and 5 (denoted by the symbols T2 and T5,

respectively) are confused most often and thus constitute a full-
merger pair, followed by Tones 4 (falling pitch) and 6 (low-
level pitch) forming a near-merger pair (T4/T6), and Tones 3
(mid-level pitch) and 6 (low-level pitch) form a quasi-merger
pair (T3/T6) with the least confusion compared to the other
merging pairs (Fung and Wong, 2011). Conversely, Tones 1
(high-level pitch) and 2 (high-rising pitch) form a non-merger
pair (T1/T2) causing no confusion in perception. Further, lexical
tones are especially useful for investigating subcortical auditory
processing because the brainstem response is phase-locked to the
fundamental frequency (F0), the acoustic correlate of lexical tone.

In the current study, we explored the neural representations
of sound change by investigating tone merging at behavioral,
brainstem and cortical levels. Given that perceptual and
cognitive factors are thought to contribute to sound change
(Yu, 2010, 2013), we hypothesized individual variability in
the behavioral, brainstem and/or cortical encoding of speech
sounds. Specifically, we predicted a high correlation between the
behavioral and neurophysiological manifestations of merging.
Additionally, we predicted a similar gradation of degree of tone
merging in the behavior and brainstem/cortical representations.

To evaluate tone merging at the level of the brainstem,
we recorded FFR from adult native Cantonese speakers (n =

30) using the six lexical tones of Cantonese. The magnitude
of merging in the brainstem was determined using response-
to-response correlation of FFR pitch contours of the tones in
the relevant tone pairs (T1/T2, T2/T5, T3/T6, T4/T6). Higher
correlations between FFR pitch contours would indicate a greater
degree of merging in the brainstem. For evaluating cortical
correlates of tone merging, we administered P300 in an oddball
paradigm using blocks of relevant tone pairs (T1/T2, T2/T5,
T3/T6, T4/T6) in adult native Cantonese speakers (n = 25)
and analyzed the amplitude and latency. P300 amplitude/latency
depends on the amount of effort a listener devotes to a task (Luck,
2005). In the current study, merging pairs are expected to be
more effortful than non-merging pairs resulting in higher P300
amplitude and latency. Both brainstem and cortical measures of
tone merging were analyzed alongside behavioral discrimination
scores obtained from all the participants in order to understand
the individual variability in neurophysiology contributing to
sound change.

MATERIALS AND METHODS

Two experiments were carried out in the current study. The first
explored the subcortical representation of tone merging using
FFR, and the second examined cortical representation of tone
merging using P300. Additionally, behavioral data were collected
in both experiments using AX discrimination tasks.

Stimuli for Neurophysiological Data
Acquisition
A 25-year old male native speaker of Cantonese, phonetically-
trained for production of Cantonese lexical tones, produced
the syllable /ji/ with six Cantonese lexical tones making six
unique words (Liu et al., 2015): /ji1/ “doctor,” /ji2/ “chair,” /ji3/
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“meaning,” /ji4/ “son,” /ji5/ “ear” and /ji6/ “justice.” Figure 1

shows the contour of the six lexical tones of Cantonese (F0
ranges: 135–146, 105–134, 120–124, 85–99, 98–113, 98–106).
Recordings were conducted in an acoustic booth using a Shure
SM10A microphone and Praat (Boersma and Weenink, 2010)
with a sampling rate of 44.1 kHz. Five versions of the stimuli
were created with durations normalized to 150, 175, 200, 225,
and 250 msec. A speech identification task was administered on
12 native Cantonese listeners to select the stimuli with the most
appropriate stimulus duration for the experiment. The 175 ms
stimuli were consistently and correctly identified and thus were
used as stimuli for the experiment.

Participants
Thirty native speakers of Cantonese (M age = 21.7 years; range
= 18–29 years; 10 males), studying at the Chinese University
of Hong Kong, participated in the FFR experiment. Of these,
seventeen had some formal musical training (M years of training
= 3.1; range = 1–13 years). Twenty-five participants (M age =
23.0; range = 21–27 years; 6 males), studying at the Chinese
University of Hong Kong participated in the P300 experiment.
Of these, sixteen had some formal musical training (M years
of training = 3.2; range = 1–12 years). All participants had
peripheral hearing sensitivity within 25 dB HL for 0.5–4 kHz.
Written informed consents were obtained from all participants
prior to the experiments. The Joint Chinese University of Hong
Kong—New Territories East Cluster Clinical Research Ethics
Committee approved the study.

Procedure
Experiment 1

FFR Acquisition
Brainstem responses collected from 3000 sweeps of each stimulus
presented in alternating polarity were added to minimize
stimulus artifacts and cochlear microphonics (Gorga et al., 1985;

FIGURE 1 | F0 contours of all six Cantonese tones (F0 ranges:

T1:135-146Hz, T2: 105-134Hz, T3: 120-124Hz, T4: 85-99Hz,

T5: 98-113Hz, T6: 98-106Hz, respectively).

Skoe and Kraus, 2010). Stimuli were routed to the right ear
through ear inserts (Compumedics 10 �) at 81 dB SPL with
an interstimulus interval (offset to onset) jittered between 74
and 104 msec (Wong et al., 2007; Liu et al., 2015) using the
Audio CPT module of STIM2 (Compumedics, USA). The order
of stimulus presentation was randomized across participants.
Responses were differentially collected from Ag/AgCl electrodes
at Cz referenced to linked M1 and M2 (linked mastoids), with
lower forehead as ground (Liu et al., 2015), using Synamps RT
amplifier connected to Curry 7.05 workstation (Compumedics,
El Paso, TX). Inter-electrode impedances were maintained at less
than or equal to 1 k�. The responses were collected at a sampling
rate of 20 kHz. Offline analysis consisting of artifact rejection,
filtering, epoching, averaging, converting to wave files was done
using Curry 7.05 (Compumedics, El Paso, TX). Sweeps with
voltage beyond ± 35 µV were considered artifacts and rejected.
The waveforms were band-pass filtered from 80 to 5000Hz (with
6 dB roll off) with a 275 msec time window consisting of 50 msec
pre-and post-stimulus baselines. The EEG recordings with more
than 10% of the sweeps rejected (i.e., >300 rejections), were not
included in further analyses.

FFR analysis procedures
In order to test phase-locking ability of the auditory brainstem,
FFRs were band-pass filtered offline from 80 to 2500Hz. Pitch
contours of the FFRs were obtained using a periodicity detection
autocorrelation algorithm inMATLAB 8.3 (TheMathWorks, Inc,
Natick, MA, USA). The FFR waveforms were converted from the
temporal domain to the spectral domain and amplitude peaks
around the F0 were extracted from seven non-overlapping 25-
ms bins (0–25, 26–50, 51–75, 76–100, 101–125, 126–150, 151–
175) (Krishnan et al., 2005). The F0 pitch contour of the FFR
was constructed by connecting these peaks extracted from each
time bin (Figure 2). Supplementary Figure 1 shows averaged
FFR pitch contours from all subjects. The FFR pitch contours
were used to calculate response-to-response correlation for each
subject, which is a Pearson correlation between pitch contours
(F0) of two brainstem responses. Here, response-to-response
correlation serves as an indication of perceptual merging of
the tone categories in brainstem and was calculated for the
following tone pairs: T2/T5 (full-merger), T4/T6 (near-merger),
T3/T6 (quasi-merger), and T1/T2 (non-merger). Strong positive
response-to-response correlation values reflect a greater degree
of merging for lexical tone pairs in the brainstem, whereas
weak and/or negative correlations represent the absence of tone
merging. Supplementary Tables 1, 2 provide correlation matrices
for stimulus-to-stimulus and response-to-response correlations,
respectively, for all possible tone-pair combinations.

Behavioral Testing and Analyses
An AX discrimination task was used to test the four tone pairs
(T2/T5, T4/T6, T3/T6, T1/T2). To enhance ecological validity,
the speech discrimination task used words different from those
used in the FFR experiment. These words were “tong” (T2/T5),
“jy” (T4/T6), “bei” (T3/T6), and “min” (T1/T2), selected from
a subset of stimuli from Wong et al. (2009). The stimuli were
normalized for duration and intensity, and differed only in
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FIGURE 2 | Illustration of the method of extraction of F0 contour from FFR of a Cantonese lexical Tone 2 (T2) stimulus: (A) the FFRs in the time-domain

are divided into 7 bins of 25 ms each; (B) Autocorrelation periodicity detection algorithm works on each bin separately; (C) F0 points are obtained at each bin that are

connected to form the F0 contour of the FFR.

their pitch contours (Figure 3). Four practice trials (with 5
repetitions), different from the experimental items were provided
to the participants to familiarize them with the task. Participants
were presented with a total of 80 stimulus pairs (4 tone pairs× 5
repetitions × 2 “identical” sequences × 2 “different” sequences)
with an interstimulus interval of 500 msec. The participants
were required to press the appropriate button to indicate “same”
or “different” for the pitch patterns of the tone pairs. For
each lexical tone pair, discrimination scores were recorded,
and d′ scores were further calculated by subtracting z-scores
of hits from false alarms (d′ = ZFA–ZHit). This measures the
subjects’ discrimination sensitivity while accounting for response
bias.

Experiment 2

P300 Acquisition and Analysis
P300 data were collected for the four tone pairs: Tone 2/Tone
5 (T2/T5; full-merger), Tone 3/Tone 6 (T3/T6; quasi-merger),
Tone 4/Tone 6 (T4/T6; near-merger), Tone 1/Tone 2 (T1/T2;
non-merger). For P300 acquisition, we collected averaged EEG
responses from 1000 sweeps of each pair of stimuli in an oddball
paradigm (Standard: Rare: 80: 20). The order of stimuli (tone

pairs) and their presentation (standard and rare stimuli) were
counterbalanced across subjects. The stimuli were presented at
an intensity of 80 dB SPL to the right ear via insert ER-3A insert
earphones (Etymotic research) at a repetition rate of every 0.85 s.
Participants were instructed to press the response button as soon
as they heard a deviant stimulus. As we were interested in only
looking at the temporal aspects, EEG data were collected with a
4-electrode Cz-(M1+M2)-ground montage using an Intelligent
Hearing Systems unit (Miami, USA). The responses were filtered
from 1 to 30Hz, rejected for artifacts beyond ± 75 µV, baseline
corrected and averaged over a time window of −100 msec (pre-
stim baseline) to 500 ms. The P300 peaks were identified as
the maximum peak amplitude on the waveforms elicited by the
deviant stimuli in the latency region of 250 to 400ms. The
peaks were identified independently by two experienced EEG
researchers and in case of a disagreement, opinion of a third rater
was sought.

Behavioral Data Collection
Given the technical constraints of the EEG instrument used,
the behavioral responses could not be recorded simultaneously
and thus, were collected separately. In order to test the
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FIGURE 3 | Time-normalized F0 contours (in Hz) of the four tone pairs used in the AX discrimination task: (A) bei_T6 [鼻,“nose”] – bei_T3 [臂,“arm”]; (B)

jy_T5 [雨,“rain”] -jy_T2 [鱼,“fish”]; (C) min_T4 [綿,“cotton”] – min_T6 [麵,“noodle”]; (D) tong_T2 [糖,“sweet (candy)”] – tong_T1 [湯,“soup”]. Note: T1, T2, T3, T4, T5,

and T6 correspond to the Cantonese high-level (Tone 1), high rising (Tone 2), mid-level (Tone 3), low-falling (Tone 4), low-rising (Tone 5), and low-level (Tone 6) tones,

respectively.

discrimination ability of the participants for the 4 tone pairs
(T2/T5, T4/T6, T3/T6, T1/T2) used in the P300 task, an AX
discrimination task was constructed using the same set of
stimuli used in P300 recording (/ji1/ to /ji6/). Participants were
presented with a total of 48 stimuli pairs (4 tone pairs × 3
repetitions × 2 “identical” sequence × 2 “different” sequence)
with an interstimulus interval of 500 ms. The participants were
required to press the appropriate button to indicate “same” or
“different” for the pitches of the tone pairs. For each lexical
tone pair, accuracy, d′ (ZFA–ZHit) and reaction time were
calculated.

RESULTS

Experiment 1: Brainstem and Behavior
Behavioral Results
The pattern of results on d′ revealed that the subjects best
discriminated the non-merger pair (T1/T2) followed by the
quasi-merger pair (T3/T6), near-merger pair (T4/T6) and full-
merger pair (T2/T5) (Figure 4A). There was a main effect
of category on d′ with a Greenhouse-Geisser adjustment to
the degrees of freedom, F(2.28,66.18) = 19.01, p <.001, η2p =

0.40. Further, post-hoc paired t-tests revealed that participants

performed better on the near-merger than full-merger pair,
t(29) =−4.33, p < 0.001, and better on the non-merger pair than
the quasi-merger pair, t(29) = 3.61, p = 0.001. However, there
was no significant difference between the d′ of the near-merger
and quasi-merger pairs, t(29) = 0.69, p= 0.498.

Brainstem Electrophysiology Findings
FFRs were obtained for all six lexical tones of Cantonese. Figure 5
depicts waveforms from the six Cantonese lexical tones (left
panel) and their grand-averaged FFRs (right panel). In order
to obtain a brainstem representation of perceptual merging,
response-to-response correlations were calculated for T1/T2
(non-merger), T2/T5 (full-merger), T3/T6 (quasi-merger), and
T4/T6 (near-merger) tone pairs. The full-merger pair (T2/T5)
showed the strongest response-to-response correlation, followed
by the near-merger (T4/T6), quasi-merger (T3/T6) and non-
merger (T1/T2) pairs in a sharp gradation (Figure 4B). A main
effect of tone category was obtained with a Greenhouse-Geisser
adjustment, F(2.39, 69.3) = 40.09, p < 0.001, η2p = 0.58. Further,
post-hoc paired t-tests revealed that there was a significant
difference between the full-merger pair and the near-merger
pair, t(29) = −3.41, p = 0.002; the quasi-merger pair and
the non-merger pair, t(29) = −4.52, p < 0.001, with the
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FIGURE 4 | (A) Discrimination of tone pairs in an AX discrimination task and; (B) Response-to-response correlation of FFRs of tone pairs varying in their degree of

tone category merging. Full-merger pair (T2/T5) showed the lowest discrimination scores and highest response-to-response correlation, whereas non-merger pair

(T1/T2) showed the highest discrimination scores and lowest response-to-response correlation (**p < 0.01, *p = 0.021; Error bars = ± SEM).

near- and quasi-merger pairs not reaching significance after
correction for multiple comparisons, t(29) = −2.43, p =

0.021.

Relationship between Behavioral and FFR Findings
In order to determine the relationship between behavioral
discrimination abilities and brainstem measures, we calculated
Pearson correlations between behavioral data (d′) of tone
pairs and the corresponding response-to-response measures
(Figure 6). For the non-merger (T1/T2) pair, there was no
significant correlation with d′ (r = −0.11, p = 0.55).
However, moderate correlations were observed between d′ and
neurophysiological measures for full-merger (T2/T5) pair (d′: r
= −0.59, p = 0.001), T3/T6 pair (d′: r = −0.57, p = 0.001), and
near-merger (T4/T6) pair (d′: r = −0.44, p = 0.014). Musical
experience did not correlate with d′ (T2/T5: r = 0.07, p = 0.722;
T3/T6: r = 0.08, p = 0.678; T4/T6: r = 0.10, p= 0.593; T1/T2: r
= 0.15, p = 0.435) and response-to response correlation (T2/T5:
r = 0.05, p= 0.806; T3/T6: r = 0.07, p= 0.699; T4/T6: r = 0, p=
0.987; T1/T2: r =−0.14, p= 0.473).

Experiment 2: Cortex and Behavior
Behavioral Results
There was a main effect of the tone categories on discrimination
abilities (d′), F(1.81, 43.43) = 14.33, p < 0.001, η2p = 0.37. Further,
post-hoc paired t-tests revealed a significant difference between
the full-merger and near-merger pairs, t(24) = −3.65, p = 0.001,
but no significant difference between the non-merger and quasi-
merger pairs, t(24) = 0, p = 1, and quasi- and near-merger
categories, t(24) =−1.98, p= 0.059 (Figure 7A).

Additionally, there was a main effect of tone-categories on
reaction time for discrimination, F(1.95, 46.88) = 4.10, p = 0.024,
η2p = 0.15. Further, post-hoc paired t-tests revealed a significant
difference between the full-merger and near-merger pairs, t(24) =
2.84, p = 0.009, but no significant difference between the non-
merger and quasi-merger pairs, t(24) = 0.52, p = 0.607 or the
quasi-merger and near merger pairs, t(24) = −0.41, p = 0.683
(Figure 7B).

Cortical Electrophysiology Findings
There was a main effect of the tone categories on P300 peak
latency, F(2.29, 55.08) = 7.05, p = 0.001. Further, post-hoc paired
t-tests revealed a significant difference between the quasi- and
near-merger pairs, t(24) = −3.11, p = 0.005, and no significant
difference between the near- and full-merger pairs, t(24) =

−2.01, p = 0.056 and non- and quasi-merger pairs, t(24) =

0.29, p = 0.773 (Figures 7C, 8). Similarly, there was a main
effect of the tone categories on P300 peak amplitude with a
Greenhouse-Geisser adjustment, F(3, 67.22) = 3.21, p = 0.031,
η2p = 0.51. Further, post-hoc paired t-tests revealed that the
difference between the tone pairs did not reach significance after
correction for multiple comparisons (full- and near-merger: t(24)
= −2.45, p = 0.022; non- and quasi-merger, t(24) = −0.96,
p = 0.345; quasi- and near-merger, t(24) = 0.85, p = 0.404;
Figures 7D, 8).

Relationship between Behavioral and P300 Findings
P300 latency correlated significantly with the behavior (d′) only
for the full-merger pair (r = −0.52, p = 0.008; Figure 9) but not
with other tone pairs (quasi-merger: r = −0.09, p = 0.645; near-
merger: r = 0.09, p = 0.668; non-merger: r = 0.26, p = 0.219).
Additionally, no significant correlation between P300 amplitude
and d′ were found (full-merger: r = −0.19, p = 0.364; quasi-
merger: r = 0.048, p = 0.819; near-merger: r = −0.01, p = 0.95;
non-merger: r = 0.25, p = 0.23). Musical experience did not
correlate with d′ (T2/T5: r = 0.06, p = 0.766; T3/T6: r = −0.09,
p = 0.684; T4/T6: r = −0.11, p = 0.603; T1/T2: r = −0.21, p =

0.331), P300 amplitude (T2/T5: r =−0.11, p= 0.595; T3/T6: r =
0.24, p= 0.255; T4/T6: r=−0.37, p= 0.071; T1/T2: r=−0.05, p
= 0.807) and P300 latency (T2/T5: r= 0.05, p= 0.823; T3/T6: r=
−0.08, p= 0.707; T4/T6: r=−0.08, p= 0.698; T1/T2: r=−0.21,
p= 0.314).

DISCUSSION

In the current study, we explored sound change from behavioral
and neurophysiological perspectives. Given that the Hong Kong
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FIGURE 5 | Cantonese lexical tone stimuli (left panel) and coresponding grandaveraged FFRs (right panel). X-axis: Time (ms), Y-axis: Amplitude (Arbitrary units

for stimuli in the left panel; µV for FFRs in the right panel). Initial and final 50 msec represents pre- and post-stimulus baselines.
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FIGURE 6 | Depicting the distribution of participants across response-to-response correlation and d′ for the four tone pair combinations. Non-merger

pair (D) showed no significant correlation whereas other tone pairs (A–C) showed significant correlations with behavioral discrimination measures.

FIGURE 7 | Tone pairs varying in their degree of tone category merging (**p <0.01, *p <0.05, ∧p = 0.022; Error bars = ± SEM). (A) Non-merger pair

(T1/T2) was discriminated best, whereas full-merger pair (T2/T5) was discriminated worst; (B–D) Full-merger pair (T2/T5) showed highest reaction time, P300 latency

and amplitude, whereas non-merger pair (T1/T2) showed lowest values on these parameters.

Cantonese tone system is undergoing merging, we used it as
a vehicle to study sound change. We found that there was a
gradation of degree of merging across the tone categories. On

average, Cantonese participants showed poorest discrimination
or maximum merging for the full-merger pair (T2/T5) and
best discrimination or least merging for the non-merger
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FIGURE 8 | Grand-averaged P300 waveforms for (A) Full-merger (T2/T5) (B) Near-merger (T4/T6) (C) Quasi-merger (T3/T6) (D) Non-merger (T1/T2). Full-merger

pair elicited the highest P300 amplitude and longest latency.

FIGURE 9 | Full-merger pair (T2/T5) showed a significant correlation

(r = −0.52, p = 0.008) between d′ and P300 latency.

pair (T1/T2), while the quasi- (T3/T6) and near-merger
(T4/T6) pairs showed comparable discrimination and merging.
Neurophysiological measures including cortical and subcortical
responses revealed a similar gradation of the tone categories.
However, subcortical responses (FFR) revealed a sharper
gradation or categorization than cortical neurophysiological
responses and behavioral discrimination scores. Additionally,
there were more individual differences in the subcortical and
cortical processes for tone pairs with a greater degree of merging
relative to those with less degree of merging. We propose that
these individual differences can be a contributory factor to sound
change.

The behavioral discrimination data are compatible with
the idea that perceptual similarity/confusability leads to sound

change (Ohala, 1981, 2012). Based on reaction time data in an

AX discrimination paradigm, (Mok et al., 2013) found that their

participants took longer on T2/T5 discrimination than T1/T2

discrimination. Recently, there have been studies (Law et al.,

2013) classifying participants into merger and/or non-merger
groups based on their speech production and/or perception.
The literature on Cantonese tone merging has been limited

to studying merging as a discrete phenomenon. However, in

order to systematically investigate sound change in Cantonese,
tone merging must be viewed as a continuum across the tone
categories. In the present study, we evaluated one non-merging
pair and three merging pairs of Cantonese lexical tones that
varied in their degrees of merging. The current study, for the first
time investigated the sound change as a continuum of Cantonese
tone merging.

Individual variability is considered to be an important
factor for dissemination of variants of sound change (Witkin
et al., 1975; Messick, 1976; Ausburn and Ausburn, 1978;
Yu, 2010, 2013). In the current study, variability in speech
perception across individuals was established behaviorally
and neurophysiologically. Significant correlations were
found between behavioral discrimination scores and FFR
response-to-response correlations for the tone merging pairs,
whereas there was no correlation between the behavioral and
neurophysiological aspects of the non-merger pair. Similarly,
there was a significant correlation between the behavioral
discrimination scores for the full-merger pair and corresponding
P300 latency, whereas there were no significant correlations
in the lesser or non-merging pairs. The absence of reliable
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correlations between behavioral and neurophysiological
measures for the lesser or non-merging pairs and the presence
of reliable correlations for the merging pairs confirms that the
individual variability among listeners is equally well-represented
in their neurophysiology and behavior, and may in turn
contribute to sound change. Thus, the findings from the present
study establish a plausible link between sound change, behavior
and neurophysiology.

In the FFR data, stronger response-to-response correlations
suggested more merging of tone categories in the brainstem. In
the cortical neurophysiological data, higher values of amplitude
and latency corresponded with increased merging of tones in
the tone pairs. A sharper gradation of the merging phenomenon
was evident in the brainstem as compared to cortical and
behavioral data, probably because of sharp phase locking abilities
of the brainstem. Recently, Law et al. (2013) conducted an ERP
study exploring tone merging at cortical levels using MMN and
P3a. They found that individuals who performed poorly on
T4/T6 (near-merger) discrimination tasks had a smaller MMN
and P3a amplitude. However, as merger pairs with varying
degrees of merging were not included, their study was limited
to investigating merging as a discrete phenomenon and not as
a continuum to account for sound change. In the current study,
instead of looking at inattentive levels of processing using MMN
or P3a, we looked at attentive levels using P300. Additionally, a
P300 task challenges the capacities of the auditory and attention
system as a whole and reflects the effort devoted by individuals
in discriminating stimuli (Luck, 2005). Therefore, use of a P300
task, as in the current study, is informative of active language
processing and a better indicator of tone merging.

The source of individual variability in the behavioral and
neurophysiological findings of the current study can be discussed
in light of bottom-up processing (Krishnan et al., 2005, 2009,
2010), top-down processing (Suga, 2008; Parbery-Clark et al.,
2009; Krizman et al., 2012; Song et al., 2012; Hairston et al., 2013;
Skoe and Kraus, 2013), and the predictive tuning hypothesis
(Chandrasekaran et al., 2014). The brainstem has been found
to be sensitive to language experience as lexical tones are more
accurately represented in tone language speakers than non-tone
language speakers. Krishnan et al. (2005, 2009, 2010) argue that
the experience-dependent effects in brainstem responses are due
to local reorganization of brainstem circuits via excitatory and
inhibitory synaptic plasticity. This account has been supported
by animal models where it was found that auditory midbrain
neurons rapidly adapt to the dynamic stimulus characteristics
(Escabí et al., 2003; Dean et al., 2005; Pérez-González et al., 2005;
Dahmen et al., 2010). In other words, the auditory brainstem
is locally malleable. In the current study, the participants who
may be inducing variability (called innovators) may be the
ones with aberrant encoding of lexical tones at the level of
the inferior colliculi. As a result of this, there is an inefficient
transmission of information to cortex that is leading to deficient
perception.

Recently, it has also been found that the effects visible at
the level of the brainstem originate at the level of the cortex
and are driven via corticofugal pathways from the cortex to the
brainstem (Suga, 2008; Parbery-Clark et al., 2009; Bajo et al.,

2010; Krizman et al., 2012; Song et al., 2012; Hairston et al.,
2013; Skoe and Kraus, 2013). This view has gained support from
animal models where inactivation of auditory cortex has led
to disruption of brainstem plasticity (Suga et al., 2000, 2002;
Zhou and Jen, 2000; Suga, 2008). Gao and Suga (1998) found
that behaviorally relevant sounds reflect more activity in the
inferior colliculi as compared to acoustic stimulation alone. Tone
merging originating in the cortex, as observed in the current
study, could have driven merging at the level of the brainstem.
We found that the tone pairs showed similar trends of merging
in brainstem and cortical measures. The pairs with longer P300
latencies also showed stronger response-to-response correlations,
and vice versa. These findings show that the individuals inducing
variability might have learned the pitch contours of the lexical
tones in a divergent manner. Learning could have led to divergent
cortical changes. Corticofugal effects of this divergent experience-
dependent learning could have led to deviant representations in
the brainstem. Though, both cortical and brainstem mechanisms
may be affected with divergent learning, the effects are more
well-defined and represented in the brainstem. This could be due
to more accurate phase locking and fidelity of representation of
lexical tones in the brainstem.

The findings of the current study can also be explained
using the predictive tuning model (Chandrasekaran et al., 2014)
which proposes that there is continuous, online modulation
of brainstem encoding by the auditory cortex via corticofugal
pathways (Chandrasekaran et al., 2009a; Chandrasekaran and
Kraus, 2010) along with local processes in the inferior colliculi
still being active. Signal representation gets enhanced at each level
when the stimulus matches the expectation or prediction from a
higher level. In the current study, it is possible that individuals
contributing to variability (innovators) are not able to predict the
F0 contour of the lexical tones accurately and thus are matching
to a slightly deviant representation at the cortical levels as a result
of which there is enhancement of slightly deviant representation
at the brainstem level.

Though the results of the current study provide an insight
into the subcortical and cortical neural representations of sound
change in a group of Cantonese listeners, determining a causal
relationship between the two is beyond the scope of this
study. The results from the current study have implications
toward studying atypical populations (e.g., autism) with cognitive
and/or perceptual aspects deviant to the typical population, in
order to investigate the neurophysiological indicators of sound
change in greater detail. Future studies could use the latest
pitch-specific ERP techniques such as cortical pitch response
(Krishnan et al., 2012, 2014, 2015, 2016) to probe sound change
in tone languages. Further, as other linguistic factors such as
frequency of occurrence have been known to affect sound
change (Hooper, 1976; Pierrehumbert, 2001; Abramowicz, 2007;
Zhao and Jurafsky, 2009), future studies may conduct an in-
depth investigation of neurophysiological indicators of sound
change from the perspective of frequency of usage and exemplar
theory (Abramowicz, 2007). Concomitantly, the data from the
current study also exhibited a lack of influence of musical
training on behavioral and neurophysiological differentiation
of lexical tone contrasts. For investigating the key mechanisms
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responsible for these findings, another study from our group is
underway.

CONCLUSIONS

In the current study, we investigated the contribution of
individual variability toward sound change in Hong Kong
Cantonese. We found that the sound change in Cantonese,
indicated by reshaping of tone categories was observable at
the levels of the brainstem and cortex. Moreover, we found
that the newly merging categories that are not yet clearly
expressed at the behavioral and cortical levels appear delineated
at the subcortical level. These findings have implications toward
the active contribution of the brainstem in driving sound
change. Overall, we speculate that the individuals with divergent
encoding of speech sounds in their subcortical and cortical
processes might produce speech in a deviant manner that spreads
across the community and leads to sound change over a period
of time. However, a causal relationship between the neural
representations and sound change still remains an open question.
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