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Resting-state fMRI results in neurodegenerative diseases have been somewhat
conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in
patients with brain atrophy. To encounter this problem, we used a coefficient of variation
(CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in
order to minimize brain volume effects between groups. The effects of these measures
were compared to whole brain ICA dual regression results in Alzheimer’s disease (AD)
and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD
patients and 25 healthy controls were included. The quality of the data was controlled
by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA
(wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were
conducted, both of which were performed both before and after data quality control.
Decreased FC was detected in posterior DMN in the AD group and in the Salience
network in the bvFTD group after combining CV quality control with gmICA. Before CV
quality control, the decreased connectivity finding was not detectable in gmICA in neither
of the groups. Same finding recurred when exclusion was based on randomization.
The subjects excluded due to artifacts noticed in the CV maps had significantly lower
temporal signal-to-noise ratio than the included subjects. Data quality measure CV is
an effective tool in detecting artifacts from resting state analysis. CV reflects temporal
dispersion of the BOLD signal stability and may thus be most helpful for spatial ICA,
which has a blind spot in spatially correlating widespread artifacts. CV mapping in
conjunction with gmICA yields results suiting previous findings both in AD and bvFTD.

Keywords: Alzheimer’s disease, behavioral variant frontotemporal dementia, coefficient of variation, gray matter,
independent component analysis, quality control, resting-state fMRI
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INTRODUCTION

Resting-state functional MRI (rs-fMRI) has been increasingly
used in studies of neurodegenerative disorders in the recent years.
It offers the benefit of the patient not having to be able to perform
any specific tasks in the scanner and therefore it suits well in,
e.g., dementia research. Alzheimer’s disease (AD) and behavioral
variant frontotemporal dementia (bvFTD) are the two most
common forms of early onset dementia. AD is typically associated
with memory decline, but especially in early onset AD executive
dysfunction and visuospatial dysfunction are also common
(Mendez et al., 2007; Rohrer, 2012). bvFTD is characterized
by profound changes in behavior and personality, as well as
executive dysfunction (Rascovsky et al., 2011). Although the
two disorders are anatomically and histopathologically distinct,
considerable clinical overlapping exist, and the differential
diagnosis may be difficult especially in the early stages of the
disease. At present there are no reliable biomarkers and the
diagnosis is based on clinical criteria.

In rs-fMRI studies the findings in AD have been quite
consistent, and the finding of reduced default mode network
(DMN) connectivity has been replicated in numerous studies
(Zhou et al., 2010; Hafkemeijer et al., 2011; Agosta et al., 2012;
Binnewijzend et al., 2012). However, in bvFTD the findings have
been rather inconsistent. The finding of reduced salience network
(SLN) connectivity has been reported most often, but the results
have not been totally unanimous (Zhou et al., 2010; Farb et al.,
2012; Filippi et al., 2012; Rytty et al., 2013; Lee et al., 2014). The
inconsistency in the results may be related to the small study
populations, varying fMRI data analyzing methods, different MRI
field strengths, scanners and imaging sequences that have been
used. Also the varying neuropathology and atrophy findings
associated with bvFTD may have an impact. Other RSNs than the
DMN and SLN have been studied only rarely in both disorders
and the results have been heterogeneous (Farb et al., 2012; Filippi
et al., 2012; Li et al., 2012; Rytty et al., 2013; Adriaanse et al., 2014;
Lehmann et al., 2015).

The problem of the rs-fMRI signal is that it is noisy by
nature and effective removal of artifacts has been gaining growing
interest. Visual inspection of the data quality is important but
that may not always be adequate. A recent study demonstrated
that the finding of reduced functional connectivity (FC) in
the DMN in AD could only be detected after aggressive data
driven cleaning of the fMRI data using FMRIB’s ICA-based
Xnoiseifier (FIX) (Griffanti et al., 2015). FIX attempts to auto-
classify ICA components into RSNs and noise components.
Noise components are regressed out of the 4D fMRI data
before further analytics like dual regression. Reproducibility
measurements of fMRI in resting state data indicate that ICA
with dual regression is one of the most reliable fMRI metrics in
light of reproducibility (Zuo and Xing, 2014). ICA can identify
strongly independent noise sources that markedly alter signal
probability distributions. However, if the artifacts and noise
sources induce subtle alterations to the signal distributions in
a way that they do not explain a lot of variance or if they
are global in the image, their detection may be difficult even
with ICA.

Coefficient of variation (CV) is a metric that is commonly
used in e.g., engineering and analytical chemistry to measure
quality and reproducibility. The metric is the ratio of the standard
deviation to the mean and it reflects the dispersion of a frequency
or probability distribution. As ICA algorithms utilize statistical
properties of signal density distributions (Hyvarinen and Oja,
2000), the CV as a measure of dispersion of distributions sounds
ideal for measuring noise quality in data intended for ICA
analysis. Sudden movements (<< TR) like hiccup or cough
during only part of the brain volume acquisition may induce
signal intensity changes that will be missed by mere brain volume
registration methods (Beall and Lowe, 2014). Also, technical
gradient glitches during scanning may produce similar partial
k-space alterations that are also hard to detect visually. In this
article we utilize the CV mapping to detect these subtle technical
signal changes that may be missed by either visual or motion
parameter quality control. To our knowledge, CV has not been
previously used in the context of fMRI quality control.

Brain atrophy has a known impact on measures of FC
differences in neurodegenerative disorders (Lehmann et al.,
2015). In our previous FC analysis we took gray matter atrophy
into account by using gray matter as a spatial covariate in dual
regression analysis of FC differences in bvFTD (Rytty et al.,
2013, 2014). This may not be enough since loss of gray matter
may induce for more of partial volume effects of CSF. Voxels
with partial CSF contribution may alter connectivity measures
as the CSF has markedly altered fluctuation pattern with
high cardiovascular signal power (Kiviniemi et al., 2005, 2016;
Bodurka et al., 2007). It has been shown that reducing partial
volume effects improves measures of FC (Newton et al., 2012).
Previously Formisano et al. (2004) have used cortex-based ICA
focusing solely on gray matter. This method similarly improved
the separation of cortical components and the estimation of their
time courses particularly in the case of complex spatiotemporal
statistical structure.

In this study we utilize CV mapping as a quality assurance
metric and exclude subjects with CV images highlighting
artifacts. We explore whether only a single 3D map of BOLD
signal CV could be used in data quality control, thus speeding up
the visualization process in addition to normal visual inspection
of the whole 4D fMRI-data. Furthermore, we reduce the effects of
gray matter loss by analyzing only voxels from gray matter on the
individual level. We analyze the effect of CV quality control and
gmICA on the FC changes on AD and bvFTD. We concentrate
on the DMN in the AD group and on the SLN in the bvFTD
group, which have been most widely studied in these disorders
in previous research.

MATERIALS AND METHODS

Figure 1 provides a schematic summary of the study design.

Participants
The study sample consisted of 23 patients with AD, 21 patients
with bvFTD and 25 control subjects. All patients were examined
in Oulu University Hospital at the Memory outpatient clinic
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FIGURE 1 | A schematic summary of the study design.

of the Department of Neurology. The patients underwent a
history and physical examination by a neurologist, thorough
neuropsychological examination, screening laboratory tests and
MRI. The neuropsychological examination was performed within
6 months of the fMRI scan of each patient. The controls were
interviewed and MMSE and BDI were performed. No psychiatric
or neurological disorders or medications affecting the central
nervous system were allowed in the control group. Demographics
and clinical data are summarized in Table 1.

All patients in the AD group met the NINCDS-ADRDA
(National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association) criteria for probable AD (McKhann et al.,
1984). Cerebrospinal fluid measures were available from twelve
AD patients and in all the cases they supported the diagnosis.
Acetylcholinesterase inhibitors were used by 14, memantine by
two and neuroleptic medication by four AD patients.

The bvFTD patients were clinically diagnosed according to the
criteria of Lund and Manchester (Neary et al., 1998; Rascovsky
et al., 2011). Patients presenting progressive aphasia and semantic
dementia phenotypes were excluded. None of the patients had
symptoms or signs suggesting amyotrophic lateral sclerosis.
Medications for neuropsychiatric symptoms were used in some
of the patients (acetylcholinesterase inhibitors in five patients,
memantine in three, neuroleptics in eight and valproate in four).
DNA samples were available from ten patients and seven of them
carried the C9ORF72 repeat expansion (Renton et al., 2011).
Mutations in progranulin or microtubule-associated protein tau
genes were not found in any of the genetically tested patients.

Imaging data of 181 healthy subjects from Northern Finland
Birth Cohort 1966 (NFBC 1966)1 was used to create normative
CV maps (group mean and standard deviation).

Written informed consent was obtained from all of the
patients or their legal guardians according to the Declaration of
Helsinki. The Ethics Committee of the Northern Ostrobothnia
Hospital District, Finland, approved all the research protocols.

Image Acquisition
All subjects (including the NFBC participants) were imaged with
a GE Signa HDx 1.5 T whole body system with an eight-channel
receiver coil. Soft pads were fitted over the ears to protect hearing
and to minimize motion. During MRI scanning all subjects
received identical instructions: to simply rest and focus on a cross
on an fMRI-dedicated screen, which they saw through the mirror
system of the head coil.

Structural Imaging
High-resolution T1-weighted 3D FSPGR BRAVO images were
taken in order to obtain anatomical images for co-registration of
the fMRI data to the standard space coordinates and to investigate
voxel-wise changes in the gray matter. Repetition time: 12.1 ms,
echo time 5.2 ms, flip angle 20◦, slice thickness 1.0 mm, field of

1www.oulu.fi/nfbc

TABLE 1 | Subject demographics.

AD (n = 23) bvFTD (n = 21) Controls (n = 25) Overall ANOVA AD/bvFTD (Mann–Whitney U)

F:M, n 14:9 10:11 13:12

Age, years 61.5 (±5.6) 60.7 (±7.6) 59.6 (±5.3) 0.59 0.61

Disease duration, years 2.7 (±1.5) 3.0 (±1.8) – 0.86

MMSE (max = 30) 22.3 (±3.0) 24.1 (±3.9) 28.9 (±1.1) <0.001 0.08

FBI (max = 72) NC 23.4 (±4.9) (n = 17) NC

BDI NC NC 3.1 (±3.3)

Values represent mean (SD). MMSE, Mini Mental State Examination; FBI, Frontal Behavioral Inventory Score; BDI, Beck’s Depression Inventory; NC, not collected.
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view (FOV) 24.0 cm, matrix size 256 × 256 (i.e., 1 mm3 cubic
voxels).

Functional Imaging
Resting-state BOLD data were acquired using a conventional
gradient recalled echo (GRE) EPI sequence. Repetition time:
1800 ms, echo time 40 ms, 202 volumes, flip angle of 90◦, 28
oblique axial slices, slice thickness 4 mm, inter-slice space 0.4 mm
covering the whole brain, FOV 25.6 cm × 25.6 cm, matrix size:
64× 64.

The TR was minimized in order to produce maximal
number of volumes per scanning time, since ICA benefits
from maximized number of volumes and statistical power. We
optimized our protocol favoring high temporal resolution while
still minimizing penalty on spatial resolution at 1.5 tesla system.
The first three volumes were excluded from the time series due to
T1 relaxation effects.

Image Processing and Analysis
Analysis of Structural Imaging Data
Structural data were analyzed with FSL-VBM2, a voxel-based
morphometry style analysis (Ashburner and Friston, 2000; Good
et al., 2001). Structural images were brain-extracted using BET
(Smith, 2002). This procedure was verified with visual inspection
of the extraction result. Tissue-type segmentation into gray
matter, white matter and CSF was carried out using FAST4
(Zhang et al., 2001). The resulting gray matter partial volume
images were then aligned to Montreal Neurological Institute’s
(MNI152) standard structural space template using the affine
registration tool FLIRT (Jenkinson and Smith, 2001; Jenkinson
et al., 2002), followed optionally by non-linear registration using
FNIRT3, which uses a b-spline representation of the registration
warp field (Rueckert et al., 1999). The resulting images were
averaged to create a study-specific template, to which the native
gray matter images were then non-linearly re-registered. The
registered partial volume images were then modulated to correct
for local expansion or contraction by dividing by the Jacobian
of the warp field. The modulated segmented images were then
smoothed with an isotropic Gaussian kernel with a sigma of
4 mm.

Finally, gray matter differences between different studies
groups were statistically tested using permutation-based
non-parametric testing incorporating threshold-free cluster
enhancement (TFCE) (Smith et al., 2009). Resulting statistical
maps were thresholded at p ≤ 0.05 (TFCE-corrected for family
wise errors). The resulting subject-wise gray matter maps were
also used in gray matter only ICA.

Functional Connectivity Analysis
The BOLD data were preprocessed with a typical FSL
preprocessing pipeline as in our previous studies (Kiviniemi et al.,
2009; Abou Elseoud et al., 2010). Head motion was corrected
using MCFLIRT software (Jenkinson et al., 2002), and motion

2www.fmrib.ox.ac.uk/fsl
3www.fmrib.ox.ac.uk/analysis/techrep

estimates computed by this algorithm were used in evaluating
motion differences between groups.

Brain extraction was performed using FSL BET (Smith, 2002)
with parameters f = 0.5 and g = 0; and for 3D FSPGR, f = 0.25
and g = 0. This procedure was verified with visual inspection
of the extraction result. When the BET failed to satisfactorily
remove some tissue, the extra cranial tissues (often in neck areas)
were removed manually by removing the tissue with FSL and then
re-entering the data into the processing pipeline. Smoothing as
preprocessing step widens the spatial FC effects (Wu et al., 2011).
In this paper we chose to minimize this effect. BOLD volumes
were smoothed with only Gaussian kernel of 5 mm FWHM. Time
series were high-pass filtered with an fslmaths tool using a 100-
s cutoff. Multi-resolution affine co-registration within FSL 4.1.4
FLIRT software (Jenkinson et al., 2002) was used to co-register
mean, non-smoothed fMRI volumes to 3D FSGR volumes of
corresponding subjects, and to co-register 3D FSPGR volumes to
the MNI152 standard space template. Both whole brain BOLD
data and individually masked gray matter BOLD data was used
for group ICA. The masking was based on the anatomical gray
matter VBM masks (see above) that were then realigned to match
the 4 mm voxel dimension of individual BOLD data.

Group ICA analysis was performed on whole brain (wbICA)
and segmented gray matter only (gmICA) BOLD data using
FSL 4.1.4 MELODIC software implementing probabilistic
independent component analysis (PICA) (Beckmann and Smith,
2004). A multisession temporal concatenation tool in MELODIC
was used to perform PICA related pre-processing and data
conditioning in the group analysis setting. In this study ICA
was performed separately to patient vs. control groups (AD vs.
CON and bvFTD vs. CON) and different setups (wbICA and
gmICA). Spatial ICA using 50 independent component maps (IC
maps) was applied to detect RSNs from the study population
of interest. The IC maps were thresholded using an alternative
hypothesis test based on fitting a Gaussian/gamma mixture
model to the distribution of voxel intensities within spatial maps
and the probability of false negatives and false positives was set
to equal relevance (P < 0.5) (Beckmann et al., 2005). ICs were
identified as anatomically and functionally classical RSNs upon
visual inspection by a neuroradiologist (VK) using previously
described criteria (Kiviniemi et al., 2009; Smith et al., 2009).
Salience and DMN networks were identified amongst RSNs as
previously reported (Kiviniemi et al., 2009; Smith et al., 2009;
Abou Elseoud et al., 2010).

The analysis for the differences between groups was carried
out using an FSL dual regression technique that allows for voxel-
wise comparisons of resting-state fMRI (Filippini et al., 2009;
Littow et al., 2010; Veer et al., 2010; Abou Elseoud et al., 2011).
This involves (A) using the group-ICA spatial maps in a linear
model fit against the separate fMRI data sets, resulting in matrices
(time-course matrices) describing the temporal dynamics for
each component and subject, and (B) using these time-course
matrices to estimate subject-specific spatial maps. The ICA
template for the dual regression was selected from the group
ICs. The dual regression analysis was performed with variance
normalization (Allen et al., 2012). Statistical analysis using
permutation testing (implemented in the FSL’s Randomize tool,
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10,000 random permutations) was performed on the selected
networks to obtain p< 0.05 significance at voxel level. Bonferroni
correction was used to counter for multiple comparisons problem
in gmICA analysis where two similar SLN IC’s were detected. The
Juelich histological atlas incorporated in FSL and the Harvard-
Oxford cortical and subcortical atlases (Harvard Center for
Morphometric Analysis), which are provided with the FSL4
software were used to identify the anatomical characteristics of
the resulting PICA maps. The FSL4 fslstats and fslmaths tools
were used to calculate the number of non-zero voxels in the
selected difference maps, and their t-score values.

Coefficient of Variation Maps
Mapping the CV in each voxel enables to assess the quality of
the data using only single 3D volume in a single glance thus
speeding up the visualization process in addition to normal visual
inspection of the whole 4D fMRI-data. For each preprocessed
fMRI dataset, a single subject CV map was calculated voxel-wise:

CVmap =
σ(X)
−

X
,

where σ is standard deviation, X is voxel timeserie and X̄ is mean
voxel time serie.

Data for reference CV map was obtained from 181 subjects
from NFBC 1966 study. These single subject CV maps were
merged into normative group mean and standard deviation CV
maps using fslmaths. The group mean CV map was used as a
visual reference for discarding artifactual data. Figure 2 shows
examples of excluded subject data with marked artifacts. Only
clear visual aberration was considered significant.

The Effect of Subject Exclusion
The effect of excluding subjects from each study group based on
CV quality control was tested. The original gmICA analysis was
re-analyzed (a new group ICA and dual regression with 10,000
random permutations; 25 control subjects, 21 bvFTD patients
and 23 AD patients), this time excluding randomly selected
subjects (−1 control subject, −4 bvFTD patients and −2 AD
patients) without considering the CV findings. This obviously
is not exhaustive testing, but multiple group ICA and dual
regression was not considered computationally feasible.

The temporal signal-to-noise ratio (tSNR) was evaluated. SNR
is a measure that compares the level of a signal to the level of
background noise. tSNR is defined as (Triantafyllou et al., 2005):

tSNR =
−

X
σ(X)

,

where σ is standard deviation, X is voxel timeserie and X̄ is mean
voxel time serie.

The mean tSNR was calculated using voxels within MNI52
4 mm brain mask. The effect of gmICA was also evaluated
comparing these mean tSNRs to the ones calculated using
individually formed GM maps. Statistical testing was carried out
using Mann–Whitney U-test.

FIGURE 2 | (A,B) Mean and standard deviation CV maps obtained from 181
healthy subjects from NFBC 1966. These maps were used as a reference to
detect artifacts. (C) Example of single subject CV map considered normal (D)
shows stripe-like artifact along slice orientation that was found in 7 subjects
who were removed from the final analysis due to this artifact (E) shows
another technical signal level artifact that was found from two subjects who
were removed from the final analysis.

RESULTS

Coefficient of Variation Maps Highlight
the Artifacts
For most of the subjects CV maps looked consistent and no
technical artifacts were detected by visual inspection (Figure 2C).
For seven subjects (1 control subject, 4 bvFTD patients and
2 AD patients), CV maps revealed stripe-like slice direction
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FIGURE 3 | Atrophy patterns in AD and bvFTD. The AD group showed
prominent temporoparietal atrophy. In the bvFTD group the atrophy was
located in posterior cingulate gyrus and precuneus and also on frontal lobes
and insula. Significant atrophy is marked in yellow (p < 0.05).

artifacts that were not clearly visible in the pre-processing stage
(Figure 2D). These artifacts could not be easily detected in visual
re-evaluation and not in the MCFLIRT motion parameter of
the 4D fMRI-data. Two subjects in the AD group showed clear,
widespread signal defect artifacts (Figure 2E). These artifacts
were not detected in the preprocessing stage, but in visual re-
evaluation of the 4D fMRI-data these subtle artifacts could now
be clearly detected.

Motion
There were no significant differences in the head motion
parameters in the absolute [AD (0,25 mm), bvFTD (0.25 mm),
CON (0,23 mm), p > 0.05] or relative [AD (0,08 mm), bvFTD
(0.07 mm), CON (0,06 mm), p > 0.05] head motion between
the study groups. Maximum absolute (0.96 mm) and relative
(0.15 mm) head motion were below the voxel size in all subjects.

Structural Findings in AD and bvFTD
In AD most prominent atrophy was detected in precuneus and
posterior cingulate gyrus. Significant atrophy was also detected

in bilateral angular gyri, left precentral gyrus and bilaterally in
temporal lobes and hippocampi.

In bvFTD atrophy was detected in posterior cingulate gyrus
and milder atrophy was also detected in precuneus. Additionally,
more widespread atrophy was detected in frontal medial cortex,
inferior temporal gyrus, central opercular and insular cortices
and left hippocampus. The structural findings are displayed in
Figure 3 and Table 2.

Functional Connectivity Findings before
CV Quality Control
Whole Brain ICA – Figure 4A, Table 3
In wbICA followed by dual regression, the AD group showed
decreased connectivity in posterior cingulate gyrus in the
posterior DMN. In the bvFTD group decreased FC was detected
in the left insula, which is part of the SLN.

Gray Matter Only ICA – Figure 4B
gmICA followed by dual regression was conducted in order to
account for gray matter atrophy. When the artifacts were not
efficiently removed from the data, no changes were detected in
the DMN in the AD group or in the SLN in the bvFTD group.

Functional Connectivity Findings after
CV Quality Control
Whole Brain ICA – Figure 4C
After removal of artifacts based on CV quality control, wbICA
and dual regression were conducted again in both patient groups.
Significant FC reductions were detected in both groups. In AD,
reduced FC was seen in the posterior DMN. In bvFTD, reduced
FC was seen in separate bilateral insular salience components
even after Bonferroni correction for multiple comparisons.

Gray Matter Only ICA – Figure 4D
After CV quality control, gmICA was conducted in order
to account for disease-related atrophy. After concentrating
solely on gray matter, the detected FC differences in the
DMN in AD and in the SLN in bvFTD were smaller
than before atrophy correction. Nevertheless, after effective
removal of artifacts, the AD group still showed significantly
decreased FC in the precuneus in the DMN. In the bvFTD
group, reduced FC was seen in the right insula in the SLN.
Table 3 shows statistics of the changes in the FC of the
areas.

TABLE 2 | Statistics of significant differences in gray matter anatomical
volume.

Coordinates t-score

Voxels Volume X Y Z Mean Std Min Max

AD 3614 231296 30 25 12 2.78 0.75 1.85 7.39

bvFTD 1732 110848 31 16 30 3.00 0.59 2.16 6.17

Results are demonstrated by the number of voxels (4 mm), volume in mm3, mean,
standard deviation, minimum and maximum of the t-scores. MNI coordinates of the
maximum change of the involved anatomical areas.
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FIGURE 4 | Reduced functional connectivity changes in the AD and bvFTD groups. In AD, the default mode network (DMN) and in bvFTD the salience
network (SLN) was analyzed. Group ICA and dual regression were carried out for the whole brain, i.e., for all the voxels (wbICA) or for gray matter only (gmICA), and
the network of interest was recognized from the group ICA results. Decreased connectivity was found in the DMN in AD and in the SLN in the bvFTD group in the
wbICA (A). However, the results were not statistically significant in the gmICA (B). After CV quality control, decreased FC was detected in the DMN in AD and in the
SLN in bvFTD in wbICA (C) and importantly also in gmICA (D). A new gmICA analysis was performed after returning the subjects originally excluded based on CV
quality control and excluding the same amount of randomly selected subjects. No significant FC changes were detected (E).

The Effect of Subject Exclusion – Figure 4E
A new gmICA was performed to test the effect of reduced size
of study groups due to the CV quality control. The subjects
originally excluded from the study based on CV quality control
were returned and the same amount of different subjects was
randomly excluded. With these novel study groups gmICA
followed by dual regression was conducted. No statistically
significant changes were detected in the DMN in the AD group
or in the SLN in the bvFTD group.

Temporal Signal-to-Noise Ratio
The subjects excluded due to artifacts noticed in CV maps had
significantly lower tSNR than the included subjects (p = 0.0237,
c.f. Figure 5). Gray matter template did not have statistically
significant effect to the mean tSNR of the signal (p= 0.955).

DISCUSSION

In this study FC changes in AD and bvFTD were analyzed using
two simple approaches of controlling data variance. The overall
data quality of the fMRI signal was first evaluated by calculating
CV maps, a novel quality control method introduced in this
paper. This method revealed artifacts in the data missed in the
original visual inspection and other preprocessing stages such
as motion control. Based on CV findings, some patients were
removed from the final analysis in both patient groups. We show
that this additional data quality control is helpful in clinical cases.

Secondly, we reduce unnecessary data variance of the
clinical BOLD datasets by focusing the analysis on gray
matter. Furthermore, the considerable gray matter atrophy in
neurodegenerative diseases like AD and bvFTD needs to be
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TABLE 3 | Decreased functional connectivity detected in the DMN in AD patients and in the SLN in bvFTD patients when compared to healthy controls.

Coordinates t-score

Voxels Volume X Y Z Mean Std Min Max

AD DMN

wbICA non-CV 73 4672 23 21 22 3.20 0.49 2.48 5.05

wbICA CV 22 1408 23 21 22 3.82 0.44 3.31 4.98

gmICA non-CV ∗

gmICA CV 5 320 23 20 23 4.54 0.37 4.09 4.94

bvFTD SLN

wbICA non-CV 13 832 35 32 16 4.19 0.47 3.62 5.07

wbICA CV 86 5504 22 7 19 3.44 0.52 2.70 5.15

wbICA CV 9 576 35 32 16 4.05 0.34 3.72 4.64

gmICA non-CV ∗

gmICA CV 5 320 8 31 16 4.05 0.37 3.72 4.68

The results of the wbICA and gmICA analysis both with and without CV quality control are displayed. Two SLN components showed decreased connectivity in the
bvFTD group in wbICA followed by CV. ∗ In the gmICA without CV quality control, no changes were detected in neither of the patient groups. Significant differences
are demonstrated by the number of voxels (4 mm), volume in mm3, mean, standard deviation, minimum and maximum of the t-scores of randomize tstat-files. MNI
coordinates of the maximum change of the involved anatomical areas.

FIGURE 5 | The mean temporal signal-to-noise ratio (tSNR) comparing the subjects included and excluded based on the CV quality control. The
difference between these two groups is statistically significant (p = 0.0237).

addressed in order to minimize false positive changes in FC. In
the wbICA, the effects of atrophy are not accounted for and we
therefore performed ICA with gray matter only analysis. In this
analysis with strict atrophy correction, the finding of reduced

connectivity in the DMN in AD and in insula (part of the SLN) in
bvFTD could only be detected when the subjects showing artifacts
on their CV maps were removed from the analysis. The effect
of excluding subjects was tested by re-analyzing the gmICA, but
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this time including those with artifacts within the BOLD data
and excluding random subjects. With this approach the reduced
connectivity was not detected. In our opinion, this highlights the
importance of quality control in the fMRI data. In this study, our
focus was to improve detection of artifacts and we did not attempt
to clean the data but methods exist for cleaning procedures as
well.

To detect artifacts in the BOLD data we used CV maps
formed individually for each subject. CV addresses dispersion
of probability and frequency distributions and as such suits
for a quality measure for data attributed to ICA. The
ICA utilizes the skewedness, kurtosis or other higher order
statistics, i.e., the shape of the signal source joined density
distributions in separating non-Gaussian, un-correlated signal
sources (Hyvarinen and Oja, 2000). Probabilistic ICA utilizes
gamma distributions fitted to distribution tails (Beckmann and
Smith, 2004). If the data has some odd dispersion in the
signal distributions, like widely spatially correlated sudden signal
changes affecting only parts of the k-space, those may mask brain
activity sources and therefore affect subtle group differences as
well. In order to obtain normative mean and standard deviation
CV maps we used imaging data of 181 healthy subjects from
NFBC 1966 scanned with the same scanner with identical
imaging parameters. Based on the normative data from this large
sample we were able to use it as a reference to detect spatially
widespread technical or motion related signal changes as shown
in Figures 2D,E. These data alterations may be hard to detect
even with spatial ICA since some ICA algorithms tend to detect
spatially sparse events (Daubechies et al., 2009). The temporal
signal-to-noise ratio of the removed subjects was also lower.
Therefore, an additional quality measure such as CV mapping
does seem to improve the accuracy for subtle changes between
groups in the data.

Altogether, our FC results after CV quality control and gray
matter only ICA are in line with previous literature. In this study,
decreased FC was seen in the precuneus in the DMN in the AD
group. The finding of reduced posterior DMN connectivity has
been widely replicated in AD (Zhou et al., 2010; Hafkemeijer
et al., 2011; Agosta et al., 2012; Binnewijzend et al., 2012).
Decreased FC in the right insula was found in the bvFTD group.
The insula is part of the salience network, which has been
associated with guiding of behavior (Seeley et al., 2007; Pievani
et al., 2014). The finding of reduced FC in the salience network
has been replicated in most rs-fMRI studies concerning bvFTD
(Zhou et al., 2010; Whitwell et al., 2011; Borroni et al., 2012; Farb
et al., 2012; Filippi et al., 2012).

The detected atrophy in AD and bvFTD groups in this study is
consistent with previous literature (Du et al., 2007; Tartaglia et al.,
2011; Hartikainen et al., 2012; Whitwell and Josephs, 2012). The
finding of posterior atrophy in the bvFTD group may be at least
partly driven by the patients with the C9ORF72 expansion, since
it has been associated with more widespread cortical atrophy
involving also the parietal lobes and the cerebellum (Boeve et al.,
2012; Whitwell et al., 2012). The significant atrophy that is
present in neurodegenerative diseases has to be accounted for in
the FC analysis. At present, the ideal means for consideration of
atrophy is still under investigation.

In previous studies concerning bvFTD or AD various methods
for atrophy correction have been used, which may have an impact
on the results. Often gray matter loss has been used as a covariate
in the FC analysis (Zhou et al., 2010; Binnewijzend et al., 2012).
In this study we used a strict atrophy correction method and
only concentrated on gray matter in ICA in order to minimize
the CSF partial volume effect and to increase sensitivity to BOLD
signal changes. The removal of white matter and CSF containing
voxels in the gmICA also minimizes the effects of spurious CSF
fluctuations that also affect connectivity measures (Bodurka et al.,
2007).

Although the patient groups in this study were comparable
in size with other fMRI-studies in neurodegenerative disorders,
they are still rather small. After CV quality control the patient
groups were still reduced and this reduction in power may have
an effect on our results. To evaluate this we repeated the gmICA
analysis including those originally excluded by the CV quality
control and excluding randomly selected subjects. Results showed
no significant FC changes in the RSNs studied. This implies
that the results are not depending on the number of subjects
but rather on the removal of clear artifacts showed in the CV
maps.

Since the early differential diagnosis of AD and bvFTD is
difficult, it is possible that some patients with atypical AD are
placed in the bvFTD group and vice versa. Nevertheless, the
follow-up time of the patients has been relatively long and they all
underwent extensive diagnostic screening fulfilling the diagnostic
criteria. In seven bvFTD patients genetic testing confirms
the diagnosis. Unfortunately, there is no neuropathological
confirmation of the diagnosis in any of the patients.

Expectations for rs-fMRI as a diagnostic biomarker in
neurodegenerative diseases are high. However, at present
significant results are achieved only on group level analysis and
single-subject analysis are still under development. The quality
control of the data is essential especially on single-subject level,
which is mandatory in clinical work. CV maps introduced in this
study are calculated on single subject level and seem to enable
improved detection of artifacts.

Comparison of Different Analytical
Approaches
The classical whole brain analysis without correction with CV
maps yields largest changes overall in the brain. After removing
of the datasets with technically distorted CV maps, the volumes
of the changes reduce in AD but increase in bvFTD. The wbICA
results tend to have abnormal spurious connectivity changes
outside the main RSN, like wbICA CV map corrected results in
bvFTD finding maximum change in connectivity near sagittal
sinus (MNI 22,7,19-coordinates). To counter the spurious FC
alterations, the analyses were performed to data containing
only gray matter. Without CV map correction of technically
flawed data, the results failed to produce any significant FC
changes. When the subjects with technical CV map distortions
were removed, the gmICA results showed overlapping FC
changes with the original areas but the alterations were focused
solely within the RSN areas without spurious long distance
abnormalities far from the proper network.
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CONCLUSION
In this study we highlight the meaning of quality control in rs-
fMRI. We performed CV quality control to reveal artifacts and
concentrated only on gray matter in the ICA in order to account
for disease-related atrophy. With this approach, we detected
decreased FC changes in the DMN in the AD group and in the
SLN in the bvFTD group.
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