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Motor imagery (MI) and action observation have proven to be efficacious adjuncts

to traditional physiotherapy for enhancing motor recovery following stroke. Recently,

researchers have used a combined approach called imagined imitation (II), where an

individual watches a motor task being performed, while simultaneously imagining they

are performing the movement. While neurofeedback (NFB) has been used extensively

with MI to improve patients’ ability to modulate sensorimotor activity and enhance

motor recovery, the effectiveness of using NFB with II to modulate brain activity is

unknown. This project tested the ability of participants to modulate sensorimotor

activity during electroencephalography-based II-NFB of a complex, multi-part unilateral

handshake, and whether this ability transferred to a subsequent bout of MI. Moreover,

given the goal of translating findings from NFB research into practical applications,

such as rehabilitation, the II-NFB system was designed with several user interface and

user experience features, in an attempt to both drive user engagement and match

the level of challenge to the abilities of the subjects. In particular, at easy difficulty

levels the II-NFB system incentivized contralateral sensorimotor up-regulation (via event

related desynchronization of the mu rhythm), while at higher difficulty levels the II-NFB

system incentivized sensorimotor lateralization (i.e., both contralateral up-regulation and

ipsilateral down-regulation). Thirty-two subjects, receiving real or sham NFB attended

four sessions where they engaged in II-NFB training and subsequent MI. Results showed

the NFB group demonstrated more bilateral sensorimotor activity during sessions 2–4

during II-NFB and subsequent MI, indicating mixed success for the implementation of

this particular II-NFB system. Here we discuss our findings in the context of the design

features included in the II-NFB system, highlighting limitations that should be considered

in future designs.
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INTRODUCTION

Therapies involving the mental simulation of movements have drawn increased attention from
researchers in the past 10 years. Such therapies have been shown to hold utility as adjuncts to use-
dependent therapies in stroke rehabilitation, or as gateway therapies for patients whose limbs are
too impaired to engage in traditional (i.e., movement-based) rehabilitation(Sharma et al., 2006;
Wang et al., 2010; Braun et al., 2013). The two types of mental simulation therapy with the
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strongest claims to efficacy are motor imagery (MI) (Braun
et al., 2006, 2013; Liu et al., 2014) and action observation (AO)
(Garrison et al., 2013; Kim, 2014). Recently, researchers have
used a combined MI/AO approach: here an individual watches
a motor task being performed repetitively, while simultaneously
imagining they are performing the movement themselves. This
approach of “Imagined Imitation” (II) has been shown to
facilitate corticospinal excitability to a greater degree than either
AO or MI alone (Sakamoto et al., 2009; Ohno et al., 2011;
Tsukazaki et al., 2012; Wright et al., 2014), and to increase
brain activity in several regions critical for motor learning and
performance over and above that seen in AO or MI (Macuga and
Frey, 2012; Nedelko et al., 2012; Villiger et al., 2013; Kondo et al.,
2015).

Another innovation, recently garnering much attention for
its applications in neuro-prosthetics and as a supplement to
the use of MI for stroke rehabilitation, is neurofeedback (NFB).
Neurofeedback refers to digital interactive systems that put an
individual into a control-theoretic closed feedback loop with a
sensory representation of their brain activity. The individual is
afforded the opportunity to “find a way” to move the system to
the state explicitly defined as optimal (i.e., the win-state). Gaining
this control requires the individual to create an association
between the neural modulation required to elicit the system’s
win-state and the reward of success (Legenstein et al., 2010).
Feedback is a well-established means of improving the ability
to learn a wide variety of skills (Sutton and Barto, 1998; Wulf
et al., 2002; Kelley and McLaughlin, 2012; Prewett et al., 2006),
and NFB systems in particular are able to seamlessly combine
negative feedback (i.e., the error correction that takes place in
real time as the individual attempts to alter their brain activity)
and positive feedback (i.e., highlighting the individuals progress
through the use of reinforcing stimuli). The combination of
positive and negative feedback is highly advantageous for the
promotion of motor learning, as it has been shown that negative
feedback enhances procedural (Wächter et al., 2009; Abe et al.,
2011) and skill motor learning, while positive feedback has
been shown to improve retention skills gained through motor
learning (Ávila et al., 2012; Galea et al., 2015). Furthermore, the
increase in interactivity inherent in the provision of feedback—
in and of itself—has been shown to result in increased learner
persistence (Ainley et al., 2002; Liaw and Huang, 2013; Croxton,
2014). Hence, another major advantage of using NFB for motor
rehabilitation is the element of structure and interaction it brings
to a task that may otherwise become boring easily. Given that
the mechanism of action for MI and AO both crucially require
repetitive task performance (Jeannerod, 1995), this aspect is far
from trivial.

In the past 10 years, the coupling of MI with NFB has
intensified the research community’s interest in MI. This is
undoubtedly driven by the fact that we have just entered the era
of affordable, mobile EEG systems (Kranczioch et al., 2014; Zich
et al., 2014)—meaning an MI-NFB interface has the potential
to be far more accessible than with previous lab-based systems.
MI-NFB has been shown to allow individuals to more efficiently
engage the sensorimotor network (Hwang et al., 2009; Chiew
et al., 2012; Bai et al., 2014; Boe et al., 2014), and to enhance the

efficacy of MI as a therapeutic adjunct for stroke rehabilitation
(Mihara et al., 2012). Given the ability of II to engage the
sensorimotor system to a greater degree than MI or AO alone,
it is possible that the use of II-NFB as an adjunct therapy in
stroke rehabilitation could provide greater benefits than those
demonstrated by the use of MI-NFB (Mihara et al., 2013; Ramos-
Murguialday et al., 2013; Pichiorri et al., 2015). To date, II-NFB
has only been attempted in one study (Kondo et al., 2015), where
subjects performed short (4 s) blocks of II or MI (accompanied
by a static image), then saw a binary indication of success during
a rest period. While this represents an interesting and novel step
forward, a real-time II-NFB system has yet to be tested; such a
system would be of note as it circumvents a central limitation
of current MI-neurofeedback systems: the fact that imagery is
best accomplished with the eyes closed limits designers, making
the delivery of visual, real-time feedback suboptimal. Making
it advantageous to perform imagery with the eyes open, by
combining MI and AO, opens up many possibilities with respect
to interface design, yet to date no real-time II-NFB systems have
been created.

In addition to the ability to modulate neural function
with increased precision (i.e., through NFB learning), another
important aspect of NFB is transfer—i.e., when the enhanced
ability to control an aspect of brain function learned through
NFB generalizes to a situation where NFB is not being provided.
NFB learning has been shown to induce task-related changes
in both white and gray matter volume, (Ghaziri et al., 2013;
Butz et al., 2014) suggesting these transient changes can lead
to lasting effects on the behavior of various functional neural
networks. The presence of lasting changes in functional neural
activity following training is referred to as NFB transfer, and it
has been shown to last 6months (Leins et al., 2007), 2 years (Gani,
2009), or even 9 years (Strehl, 2014) following NFB training.
When developing NFB systems for rehabilitation from stroke,
the presence of NFB transfer is a key metric, as it indicates that
subsequent MI performed without NFB will be more effective
than if the individual had not undergone NFB training.

To investigate the effectiveness of using NFB during II
to modulate brain activity, and to test the transfer of NFB
learning to subsequent MI, we created and tested an II-NFB
system. Sensorimotor activity during II was quantified via
desynchronization of the mu rhythm. The mu rhythm is thought
to reflect a class of components that differ slightly in their location
and relationship to sensorimotor processing (Pfurtscheller and
Berghold, 1989), and mu desynchronization during movement,
imagery, and action observation has been robustly demonstrated
(Arroyo et al., 1993; McFarland et al., 2000; Muthukumaraswamy
et al., 2004). This system allowed users to watch first-person
videos of a complex handshake (see Supplemental Video 1 for a
video depicting the task), while imagining that they themselves
were executing the handshake, to receive real-time feedback
regarding the quality of their II. “Quality” referred to the
ability to induce sensorimotor laterality—to both up-regulate
contralateral sensorimotor activity, and down-regulate ipsilateral
sensorimotor activity. This pattern of activity has been shown to
correlate with a re-balancing of themaladaptive interhemispheric
inhibition that has been associated with more complete motor
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recovery from stroke (Ferbert et al., 1992; Ward et al., 2003;
Dimyan et al., 2014).

Given the translational nature of NFB research, the current
system was created with an emphasis on user experience (UX).
We endeavored to create an interactive digital system that would
engage users and spur motivation to improve throughout long
experimental sessions. Feedback was provided in the form of
varying video color—the videos started black-and-white, and
turned to color on the basis of the electroencephalography
(EEG) data being collected over the subjects’ sensorimotor
cortices. To optimize the onboarding of subjects, the II-NFB
system contained titrated difficulty, and communicated subjects’
performance to them during the experimental session. At easy
difficulty levels the II-NFB system incentivized contralateral
sensorimotor up-regulation, and at higher difficulty levels
it incentivized both contralateral up-regulation, as well as
ipsilateral down-regulation. While this experimental design
means the exact nature of the feedback was not standardized
between sessions, the decision to align the level of challenge
presented to subjects with their aptitude was made to optimize
individual learning. Moreover, this approach is consistent with
best practice in rehabilitation, where tailoring the level of
challenge of an intervention to each individual is common
practice (Page et al., 2013).

Here we report preliminary findings related to the ability of
users to modulate their brain activity as a result of engaging with
the II-NFB system. Our results have implications for the future
design and application of NFB systems that attempt to augment
motor simulation for neurorehabilitation.

METHODS

Subjects
Thirty-two right-handed (Oldfield, 1971), non-disabled adults
(10 males; 23.7± 3.4 years) agreed to participate. All subjects had
normal or corrected-to-normal vision, were free of neurological
and movement disorders and each provided written, informed
consent. Subjects were assigned to either the NFB (n =

17) or sham feedback (n = 15) group based on a pre-
determined recruiting schedule to ensure that each member of
the sham feedback group would have a unique member of the
neurofeedback group to be yoked to (yoking is described in
detail below). Experimenters were not blinded, but were given a
structured script to ensure they responded in a consistentmanner
to any questions asked about how the NFB system worked, or
for advice on how to optimize their performance. The study was
conducted with approval from the Research Ethics Board at the
IWK Health Centre.

Experimental Task/Paradigm
Subjects in both groups were to attend four experimental sessions
performed at approximately the same time of day within a
7-day period. At the beginning of the first session subjects
completed the Kinesthetic and Visual Imagery Questionnaire
(Malouin et al., 2007) (KVIQ) and the Edinburgh Handedness
Inventory (Oldfield, 1971) to confirm ability to perform MI and
hand dominance, respectively. Following completion of these

questionnaires, subjects watched a 2-min video describing the
NFB task, which included 2 replays of a 7-s video of a complex
handshake (see Figure 1). Following the introduction video in
session 1, and at the outset of sessions 2–4, subjects were
prepared for EEG and EMG recording. On all study days, subjects
performed 3 blocks of II-NFB training, and to test for NFB
transfer, a single block of MI without NFB (Figure 2).

Each II-NFB block consisted of 10 trials (see below for
description of the task being performed), with each trial lasting
50 s followed by 10 s of rest. The MI block performed at the
conclusion of the II-NFB blocks consisted of 10 trials, with each
trial consisting of 20 s of eyes-closedMI, followed by a rest period,
the length of which was randomized on a trial by trial basis
(between 8 and 12 s) in order to minimize anticipatory responses
prior to the “go” cue. In the MI block, subjects were instructed
to imagine they were performing the handshake from the NFB
condition (Figure 1), from the same perspective and at the same
speed it was presented in the II-NFB video.

Data Acquisition
The EEG signal was detected using a QuikCap (Compumedics
Neuroscan, Charlotte, NC) attached to a Synamps RT system
(Compumedics Neuroscan, Charlotte, NC) at a sampling rate
of 1000Hz and a band-pass of DC-333 Hz. Impedances for
all electrodes was maintained at <15 k� throughout the
experiment. Sensors C3/CP3 and C4/CP4 were used to detect
activity at the left and right sensorimotor cortex, respectively.
The selection of these four sensors is informed by multiple EEG
studies of motor execution and imagery (Neuper et al., 2005;
Pfurtscheller et al., 2006; Höller et al., 2013; Higashi and Tanaka,
2011). The electrooculogram (EOG) was obtained using self-
adhering ring electrodes placed above and below the left eye, and
just lateral to the left and right eye. Self-adhering ring electrodes
placed overlying the left and right mastoid process served as
reference. Activity of the extensor (i.e., extensor carpi radialis
longus) and flexor (i.e., flexor carpi radialis) muscles of the wrists
was acquired throughout using self-adhering electrodes (3 x 3 cm;
Kendall-LTP, Chicopee,MA) arranged in a bi-polar configuration
(inter-electrode distance of 2 cm) using the EEG electronics
as described above. The ground electrode on the 128-channel
QuikCap (located between AFz and Fz) was used as a ground.

Online Processing
Acquisition of the EEG and EMG data was performed in Curry
7 (Compumedics Neuroscan, Charlotte, NC). The following
procedures were applied online to the continuous EEG data:
re-referencing to the bilateral mastoid electrodes; high- and
low-pass filters at 1 and 100 Hz, respectively; a notch filter
at 60Hz; and baseline correction (using the first 3 s of
data acquired). Artifact reduction was also performed online
via principal component analysis (PCA) as implemented in
Curry 7, using a threshold of ± 360mV at both vertical
and horizontal occular electrodes to identify eye blinks and
movements, attenuating the first component within a window
of −200 to 500 ms relative to the peak of the detected
artifact.
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FIGURE 1 | Illustration of the complex handshake video used in the II-NFB system.

FIGURE 2 | Experimental timeline for all 4 sessions. ** = junction where the subject was asked to take as much time as they would like to rest and prepare for

the next block.

Calculation of Neurofeedback Metric
Following preprocessing, 500ms data segments were passed from
Curry toMATLAB (MATLAB 8.03, TheMathWorks Inc., Natick,
MA, 2014) for analysis using a custom script. Task related
decreases, or event related desynchronization (ERD) of the mu
rhythm (the central rhythm in a 7.5–14.5Hz window) was used
to quantify sensorimotor activity. The custom MATLAB script
continuously estimated power in the mu rhythm; measured
via a fast Fourier transform) relative to baseline. Baseline was
the mean mu power during a 15 s block obtained immediately
prior to the first II- NFB block. During this 15 s block the
subject silently counted backwards from 100 to 3 s, while
staring at a fixation cross and keeping their arms as relaxed
as possible. A single, fixed baseline (i.e., the 15 s block) was
required in order to titrate the difficulty of the NFB system.

A log2 function was applied to the mu power during II-NFB
divided by the baseline power, producing a negative integer for
all ERD segments, and a positive integer for all event-related
synchronization (ERS) segments. A running average of the most
recent 6 data segments (i.e., 3 s in total) was used as the metric
of current mu power relative to baseline. A running average
of the previous 3 s of mu power change was used in order to
present the modulation of mu power in a smooth way to the
subject.

In order to incentivize contralateral ERD and ipsilateral ERS
during the unilateral right-handed task, a series of calculations
were applied to the average mu power of each hemisphere’s
sensors (Equation 1), resulting in a single NFB Score. If the
NFB Score was a positive integer, it meant they were producing
contralateral ERD and ipsilateral ERS at levels above chance, and
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vice versa for a negative integer.

NFB Score = rw log2

(

C4nfb

C4b
+

CP4nfb

CP4b

)

−lw log2

(

C3nfb

C3b
+

CP3nfb

CP3b

)

Equation 1. Calculations executed on averagemu power, to create
a singular metric that incentivizes left hemisphere decreases
and right hemisphere increases in mu power, weighting each
hemisphere’s contribution to the score based on the difficulty
level of the II-NFB system. C4nfb = mu power at sensor C4
during NFB; C4b = mu power at sensor C4 at rest; lw & rw =

weighting value’s for the left and right hemispheres, respectively.
See Table 1 for a full list of hemisphere weighting-difficulty level
pairings.

One important aspect of the NFB Score calculation was
the weighting applied to each hemisphere (Table 1), which was
determined by the difficulty level the subject was currently at.
At low difficulty-levels (1–4) the value for the ipsilateral (right)
hemisphere was not factored into the NFB Score, however the
threshold values determining the video color-level increased.
Conversely, at each medium difficulty-level (5–14) the ipsilateral
hemisphere’s weighting factor (value rw in Equation 1) was
increased by 10%. At high difficulty-levels (>14) ipsilateral and
contralateral II-NFB metrics contributed equally to the final II-
NFB metric (i.e., lw = rw), with the thresholds determining the
changes in color-level increasing with each difficulty level.

TABLE 1 | Listed are the left and right hemisphere weighting values (lw

and rw from Equation 1) for each difficulty level, as well as the NFB Score

thresholds for each difficulty level.

Difficulty Level lw rw NFB Score Thresholds

−1 1 0 [−8 −4]

0 1 0 [−6 −2]

1 1 0 [−4 0]

2 1 0 [−2 2]

3 1 0 [0 4]

4 1 0 [2 6]

5 1 0.1 [2 6]

6 1 0.2 [2 6]

7 1 0.3 [2 6]

8 1 0.4 [2 6]

9 1 0.5 [2 6]

10 1 0.6 [2 6]

11 1 0.7 [2 6]

12 1 0.8 [2 6]

13 1 0.9 [2 6]

14 1 1 [2 6]

15 1 1 [+2 +2]

NFB scores above the lower threshold would move the Video Score one increment closer

to black and white, while NFB scores above the higher threshold would move the Video

Score one increment closer to full color saturation. For difficulty levels >14 the NFB Score

threshold values increase by two ad nauseam.

Neurofeedback System
The II-NFB system consisted of Presentation R© (Version
16.05.09, www.neurobs.com) code designed to repetitively loop
the video of the complex handshake (Figure 1). The color of each
frame depended on a value (Video Score) passed from MATLAB
to Presentation every 500ms. The Video Score ranged from 1 to
6, corresponding to a range from black-and-white to full color
saturation. At the beginning of each NFB trial, the default Video
Score value was 1, meaning at the beginning of each II-NFB block
the video started black-and-white.

The Video Score value at each 500ms instance was determined
by comparing the current NFB Score (Equation 1) to the NFB
Score thresholds for the current difficulty level (see Figure 3 for
illustration; see Table 1 for a list of difficulty level-NFB Score
threshold pairings). The Video Score only moved up or down one
increment at a time, and each time the Video Score changed, it
was not able to change during the next 2 s. These design choices
were made to ensure that the changes in the color gradient
(i.e., the real-time representation of NFB performance) were a
smooth, intuitive and easily perceptible representation of NFB
performance.

At the beginning of each experimental day, subjects began
at difficulty level 1. If subjects remained at difficulty level 1
for three trials in a row, there were two difficulty levels below
one (0 and −1; where the thresholds required to increase the
Video Score were lowered considerably from difficulty level 1),
in order to prevent any participants’ initial level of competence
from precluding them from progression on the II-NFB system.
Upon completion of each NFB trial, the Video Score values from
the last 20 s were averaged, and this value determined whether
the difficulty-level increased (average color-level >4) decreased
(average color-level <2), or stayed the same (average color-level
2–4).

During each rest period, a line graph depicting the difficulty
level achieved by the subject throughout the day’s NFB blocks
was presented (Supplemental Figure 1). In conjunction with the
presentation of the line graph, a happy or sad sound played if
the difficulty level moved up or down, respectively. This feature
was included to increase the interactivity of the system and
increase subjects engagement with the task, as previous research
has shown that engaging the auditory system through reward
processing can increase task performance (Weis et al., 2013a,b).

Upon completion of each II-NFB session, a screen appeared
thanking the subject for their effort, and stating the average
difficulty level they achieved.

In addition, the difficulty levels the sham subjects would
have achieved throughout the entire session were calculated by
the MATLAB script, and saved to file upon completion of the
experimental day. Video score and the corresponding color-level
for each video frame were also saved to file to enable the provision
of sham NFB.

To ensure the ERD/ERS values used to generate the NFB
signal were not the result of overt movement, online analysis of
the EMG signal was performed. Specifically, every 500ms the
amplitude of the full-wave rectified EMG signal from the flexor
and extensor musculature of the right arm was compared to the
corresponding average obtained during the baseline period (i.e.,
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FIGURE 3 | Example of the interaction between NFB score and the video’s color during II-NFB (with a new NFB score calculated every 500ms). When

the NFB score exceeds the lower or upper bounds of the threshold (i.e., the definition of the win and lose state at the current difficulty level), the Video Score

decreases or increases by 1 (unless already at 1, then it remains at 1), and the Video Score will then not change for the next 2 s, to ensure that changes in the color

gradient do not happen so quickly as to become imperceptible.

the 15 s block obtained immediately prior to the first II- NFB
block). In the real-time II-NFB system, if the amplitude of the
current 500ms sample of EMGwas 2 SD greater than the baseline
amplitude values, EMG activity was considered excessive, and the
Video Score was reset to 1. For subjects in the sham group, online
EMG did not affect the Video Scores presented to them.

Provision of Sham Neurofeedback
All individuals in the sham group were yoked to an individual in
the NFB group. The Video Score andDifficulty levels experienced
by the sham subjects during their 4 sessions were identical to
those of the NFB subject they were yoked to. The MATLAB
script for the Sham group accessed the text files containing
the Video Score and difficulty level values for NFB subject and
session the current Sham session was yoked to, and referenced
these files rather than the online calculation of mu power when
communicating with Presentation.

Offline Data Analysis
Bilateral mastoid re-referencing, high-pass filter at 0.5Hz, a notch
filter at 60Hz, and baseline correction (using the first 3 s of
data acquired) were applied to all continuous data files. A PCA
was also performed, using a threshold of ± 200mV at both
vertical and horizontal ocular electrodes to identify eye blinks
and movements, with the first component in the time window
−200–500ms relative to the peak of the artifact being removed.

Pre-processed continuous EEG data were then segmented into
epochs synchronized to event markers placed in the continuous
data file by the II-NFB Presentation script (with unique event
markers identifying the beginning and end of each block). For
each session, there were 30 × 50 s epochs of II-NFB, and 30
× 10 s epochs of rest; and for the MI condition there were 10
× 25 s epochs of MI, and 10 × 8 s epochs of rest. All epochs
from the NFB and MI task were concatenated into two data

files, and these new files (one for each task, session, and subject)
were exported to MATLAB for subsequent analysis. Consistent
with the online approach described above, EMG from both real
and sham NFB groups were evaluated for the presence of EMG
activity in the right arm. Specifically, 500 ms data segments from
the II-NFB blocks where the EMG signal from the flexor and
extensor musculature of the right arm was >2 SD from the
baseline period were discarded from subsequent analysis. The
power in the mu rhythm was calculated (using a fast Fourier
transform) in 500 ms segments, and the power at each segment
was divided by a mean baseline mu power value. For the NFB
task the last 4 s from the baseline calculation period (where the
subject counted backwards by 3 s while remaining still) was used,
for the MI task the last 4 s from the initial rest period (where the
subject had their eyes closed and had been instructed to relax and
remain still). The ERD/ERS values from each 500 ms segment
for each task, respectively, were concatenated with the group and
session independent variables, and the resulting matrices were
then exported to RStudio (2015) for analysis.

Statistical Analysis
We used conditional inference random forest modeling
(Breiman, 2001; Hothorn et al., 2006) (CForest) to investigate
the differences in activity between the NFB and sham groups.
CForest is a recursive machine learning algorithm, well-suited
to modeling data with a non-normal distribution (Grandvalet,
2004; Strobl et al., 2009). This method is advantageous for the
study of longitudinal NFB data, given the variability in the types
of effects found in the NFB literature. CForest (1) randomly
selects a subset of a full data set (bootstrap aggregation or bagging
Breiman, 1996, 2001; Strobl et al., 2009), (2) randomly selects an
independent variable (termed, variable pre-selection), and uses a
permutation testing method (Strasser andWeber, 1999) to detect
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the split of the independent variable that renders the smallest
p-value. The data is split along this dimension of the independent
variable, resulting in two new subsets of data that are each tested
using another randomly selected independent variable. The
process continues until the “best split point” of a variable renders
a p < 0.05 (Bonferroni corrected for multiple comparisons). The
conclusion of this process produces a single decision tree. After a
pre-selected number of trees have been grown, they are averaged,
(Oliver and Hand, 1996, 2014) resulting in a single predictive
model where the relationship between the independent and
dependent variables can be explored in an a priori manner.

In keeping with best practices, (Tremblay and Newman, 2016)
2500 CForest decision trees were grown (Hothorn et al., 2015),
using bags (i.e., initial partitions) encompassing 23.3% of the
entire dataset, and testing each node with 1 randomly selected
independent variable. The dependent variable in the model
was event-related mu power with respect to baseline, and the
independent variables of interest were group (NFB or sham) and
session.

RESULTS

Questionnaire Score and EMG Rejection
The visual and kinesthetic scores on the KVIQ were within a
normal range for both groups (for the NFB group: 19.29 ± 2.85
for visual, and 19.88 ± 3.18 for kinesthetic; for the Sham group:
20.53 ± 3.42 for visual, and 20.8 ± 3.99 for kinesthetic Malouin
et al., 2007). The NFB and Sham groups consisted of 17 and 15
subjects, respectively, however, two subjects in the NFB group
(included in the analysis) only completed 2 sessions. Across all
trials, 31.9% of the EEG data from the NFB group, and 36.9%
from the Sham group were discarded due to excess EMG activity
in the right flexor and extensor muscles of the digits.

Cforest Analysis of II-NFB’s Effect on
Sensorimotor Activity
Figure 4 shows the distribution of ERD/S values across all
sessions for the NFB and sham groups for both the NFB and MI
tasks.

To investigate whether subjects in the NFB group produced
more contralateral and less ipsilateral sensorimotor activity than
the sham group in the II-NFB task, the significant partitions of
the data, as defined by the CForest procedure, were explored in
order to determine the effect of group (NFB vs. Sham) and session
(1–4) on the activity of the contralateral (left) and ipsilateral
(right) mu ERD/S data, respectively.

Figure 5 shows the significant partitions of the final predictive
CForest model for the contralateral hemisphere during the NFB
task, explored to determine the effect of group (NFB/sham) and
session (1–4) on log2mu ERD/S values. The results of the CForest
analysis showed that the largest effect was associated with the
difference between sessions 1 and sessions 2–4, with sessions 2–
4 having significantly lower log2 ERD/S values than session 1.
While in the session 1 partition the sham group had significantly
lower log2 ERD/S values than the NFB group, in accordance with
our hypotheses this is reversed in sessions 2–4 (see Figure 5).

Figure 6 contains an analogous decision tree for the ipsilateral
hemisphere during the NFB task. Results show that the NFB
group has significantly lower log2 ERD/S values compared to
the sham group, with this split occurring at the first level of
the decision tree. While the direction of this effect aligns with
the design of the NFB system in the contralateral hemisphere,
finding this pattern in the ipsilateral hemisphere is the inverse
of the modulation the NFB system was designed to facilitate.
Furthermore, while the sham group showed lower log2 ERD/S
values for sessions 1–2 compared to sessions 3–4, the NFB
group had lower log2 ERD/S values in sessions 2–4 compared
with session 1. Thus it appears that the sham group shows the
ipsilateral effect we hypothesized to see in the NFB group.

The decision tree for the mu ERD/S in the contralateral
hemisphere for the MI task (Figure 7) is similar to that found for
the contralateral sensors in the NFB task. Like the NFB task, the
first split segregates sessions 1 from sessions 2–4, with lower log2
ERD/S values in sessions 2–4. Also mirroring the NFB results,
session 1 is split by group, with the sham group showing lower
log2 ERD/S values than the NFB group, while within sessions 2–
4 the NFB group had lower log2 ERD/S values compared with
sham. Results for the ipsilateral hemisphere during the MI task
showed a similar group by session effect as the contralateral
hemisphere (Supplemental Figure 2).

Finally, the average difficulty level achieved by subjects in
the NFB and sham groups for all 4 sessions (Figure 8) reveal
a pattern similar to that of the EEG data in the contralateral
hemisphere (Figure 4A). The finding that subjects in the NFB
group produced greater contralateral sensorimotor activity in
sessions 3–4 (in both the NFB and MI task) is mirrored by the
finding that these same subjects achieved the highest average
difficulty levels in sessions 3–4. The notable exception to this is
the fact that the NFB group achieved a higher difficulty level than
the sham group during session 1, despite producing significantly
less contralateral sensorimotor activity during session 1.

DISCUSSION

The present work sought to determine the effectiveness of II-NFB
to allow subjects an enhanced ability to modulate sensorimotor
activity during II. Our analysis rendered mixed results. In
the contralateral hemisphere, for II-NFB the effect of session
represented the first split in the decision tree (i.e., the split that
produced the largest effect), indicating that the effect of session
was the largest driver of change. The effect of group within these
partitions showed that while in session 1 the NFB group showed
higher log2 ERD/S values than the sham group, in sessions
2–4 the NFB group had lower log2 ERD/S values (i.e., more
sensorimotor activity). While the superseding effect of session
obviously limits our ability to make claims about the effect of our
NFB intervention, the fact that the NFB group outperformed the
sham group in all sessions after session 1 suggests this group may
have benefitted from the NFB training in the sessions following
session 1. Furthermore, the analogous findings in the MI task
in the contralateral hemisphere further suggest that the NFB
training may have influenced MI performance.
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FIGURE 4 | Mean log2 mu rhythm ERD/S values from both the left (A) and right (B) hemisphere during the NFB task, and left (C) and right (D) hemisphere

during the MI task for the NFB (black circles) and Sham (red squares) groups. The log2 of the ERD/S values in the mu rhythm have an inverse relationship to

sensorimotor activity. Bars represent standard deviation.

FIGURE 5 | Decision tree for the CForest predictive model of the contralateral (left) EEG sensors during the NFB task. The data is partitioned according to

split of the independent variable (either session or group) that garners the most significant effect. Where no split garners an effect of p < 0.05 (Bonferroni corrected) no

split is shown. Red squares represent the partition with significantly lower ERD/S values (i.e., less sensorimotor activity) while blue squares represent the

corresponding partition with higher ERD/S values. Split A: effect of session, with sessions 2–4 showing more sensorimotor activity than session 1. Split B: effect of

group, with sham showing more sensorimotor activity than NFB during session 1. Split C: effect of group, with NFB showing more sensorimotor activity than sham

during sessions 2–4. Split D: effect of session, with sessions 2 and 4 showing more sensorimotor activity than session 3. Split E: effect of session, with session 3

showing more sensorimotor activity than sessions 2 and 4. Split F: effect of session, with session 4 showing more sensorimotor activity than session 2. Split G: effect

of session, with session 2 showing more sensorimotor activity than session 4.
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FIGURE 6 | Decision tree for the CForest predictive model of the ipsilateral (right) EEG sensors during the NFB task. The data is partitioned according to

split of the independent variable (either session or group) that garners the most significant effect. Where no split garners an effect of p < 0.05 (Bonferroni corrected) no

split is shown. Red squares represent the partition with significantly lower ERD/S values (i.e., less sensorimotor activity) while blue squares represent the

corresponding partition with higher ERD/S values. Split A: effect of group, with NFB showing more sensorimotor activity than sham. Split B: effect of session, with

sessions 1–2 showing more sensorimotor activity than sessions 3–4 in the sham group. Split C: effect of session, with sessions 2–4 showing more sensorimotor

activity than session 1 in the NFB group. Split D: effect of session, with session 4 showing more sensorimotor activity than session 3. Split E: effect of session, with

session 1 showing more sensorimotor activity than session 2. Split F: effect of session, with session 4 showing more sensorimotor activity than sessions 2–3. Split G:

effect of session, with session 3 showing more sensorimotor activity than session 2.

Conversely, the findings in the ipsilateral hemisphere—both
in the NFB and MI tasks—were the opposite of our hypotheses,
with the NFB group showing lower log2 mu ERD values than
the sham group. The reason for this finding remains a matter
of speculation. One possibility is that our approach to difficulty
titration resulted in subjects not having enough exposure to
difficulty levels where ipsilateral down-regulation was being
factored into the NFB metric calculation, and that in lieu of
promoting sensorimotor lateralization, our system primarily
promoted a bilateral pattern of sensorimotor activation. This
explanation is supported by the fact that the highest average
difficulty level for any group-session combination was <5. At
levels<5, ERD/S data from the ipsilateral (right) hemisphere was
not factored into the NFB Score (Table 1).

Given the fact that subjects in the NFB group were exposed
to markedly more NFB where ipsilateral activity was not
meaningfully factored into the NFB metric (discussed in detail
below), our interpretation of these results are that the individuals
in the NFB group were learning to upregulate sensorimotor
activity bilaterally over the course of NFB training. This
interpretation is consistent with previous research showing a
degree of bilateral sensorimotor activation even in unilateral
tasks (Kuhlman, 1978; Aziz-Zadeh et al., 2002; Stinear et al.,
2006; Kobayashi et al., 2009; Berends et al., 2013; Zimerman
et al., 2014), and suggests that ipsilateral signals should have been
incorporated into the NFB signal throughout all difficulty levels.

Given that other studies have shown ipsilateral down-regulation
and contralateral up-regulation when subjects perform NFB
incentivizing both of these modulations simultaneously (Boe
et al., 2014; Zich et al., 2015), it is possible that we would have
seen similar results if we had used a NFB metric that weighted
both hemispheres equally throughout the NFB training. The use
of a dynamic (and thus non-standardized) learning protocol in
the present study, where the difficulty levels of each subject for
each session differing based on performance, was adopted given
that matching an intervention to one’s ability is best practice in
learning and rehabilitation contexts (Rebeiro and Polgar, 1999;
Page et al., 2013). However, it is possible that its particular
implementation in the present study prevented the finding of a
more robust effect for our NFB intervention.

However, it is also possible that the attentional demands of
II-NFB are such that down-regulating ipsilateral sensorimotor
activity during II-NFB is too difficult; it is also possible that four
sessions simply did not provide enough training time in order to
see the hypothesized effect. This explanation is consistent with
past NFB studies showing that >4 sessions are required before
individuals are able to gain control over a NFB system (Ros et al.,
2010; Gruzelier et al., 2014; Auer et al., 2015).

This shortcoming is not unprecedented in NFB studies
involving lateralization of sensorimotor activity. Several other
studies attempting to utilize MI-NFB to show that healthy
controls could lateralize sensorimotor brain activity found
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FIGURE 7 | Decision tree for the CForest predictive model of the contralateral (left) EEG sensors during the MI task. The data is partitioned according to

split of the independent variable (either session or group) that garners the most significant effect. Where no split garners an effect of p < 0.05 (Bonferroni corrected) no

split is shown. Red squares represent the partition with significantly lower ERD/S values (i.e., less sensorimotor activity) while blue squares represent the

corresponding partition with higher ERD/S values. Split A: effect of session, with sessions 2–4 showing more sensorimotor activity than session 1. Split B: effect of

group, with sham showing more sensorimotor activity than NFB during session 1. Split C: effect of group, with NFB showing more sensorimotor activity than sham

during sessions 2–4. Split D: effect of session, with sessions 2 and 3 showing more sensorimotor activity than session 4. Split E: effect of session, with sessions 3–4

showing more sensorimotor activity than sessions 2 and 4. Split F: effect of session, with session 2 showing more sensorimotor activity than session 3. Split G: effect

of session, with session 3 showing more sensorimotor activity than session 4.

FIGURE 8 | Average difficulty level achieved by subjects in both the NFB and Sham groups. Note that there were two difficulty levels below 1 (i.e., 0 and−1).

Error bars represent standard deviations.

that subjects were successfully able to up-regulate contralateral
sensorimotor activity, though they were not able to down-
regulate ipsilateral sensorimotor activity (Chiew et al., 2012; Auer
et al., 2015).

Furthermore, and again contrary to our expectations, none
of the group-session permutations in the NFB task contained a

mean log2 ERD/S value of <0 (indicating a decrease in power
from baseline). This is an unexpected result given previous
findings that typically show a reduction in mu rhythmmagnitude
during tasks involving sensorimotor processes (Nedelko et al.,
2012; Villiger et al., 2013; Kondo et al., 2015). Several studies
of II have found it to be associated with increased motor cortex
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excitability (Sakamoto et al., 2009; Ohno et al., 2011; Tsukazaki
et al., 2012; Wright et al., 2014), and increased activation of the
motor network more broadly (Nedelko et al., 2012; Villiger et al.,
2013), when compared to MI or AO alone. One explanation for
the lack of ERD/S values <0 is that engaging with the present
NFB system while performing II was too cognitively demanding,
hindering subjects’ performance of II. Another explanation is
that our choice of rest block was not optimal. The choice to
have subjects count backwards by 3 s was selected to ensure
homogenous activation pattern across subjects and sessions
(compared with traditional resting state, where individuals are
told to “relax,” and essentially permitted to let their mind
wander). However, it is possible that this more-demanding task
produced changes in mu power that affected our calculation of
ERD/S (i.e., attentional modulation of the somatosensory mu
rhythm). Another possible explanation that no mean log2 ERD/S
values below zero were seen in the NFB task was related to
the choice of motor task included in the video. It is possible
that the unusual and complex arm movements contained in the
handshake made performing II more difficult, and contributed
to our underwhelming results in the NFB task. The decision to
use a complex action was to replicate the complex, multi-joint
tasks that patients endeavor to recovery in rehabilitation, and
the choice of a unique handshake was to ensure all subjects were
naïve to the stimulus used.

And lastly, it is possible that the long trial length (50 s)
washed out the ERD that was present during the II-NFB task.
The majority of studies investigating motor simulation utilize
short (<10 s), discrete blocks of MI, AO, or II, and thus it
is possible that the difficulty inherent in producing ERD for
such an extended period lead to the higher log2 mu ERD/S
values we see in the NFB task (see Figures 4A,B). Indeed, the
only other NFB system that utilized II had subjects perform
4 s blocks of II (Kondo et al., 2015). While this is a limitation
of the current study, clinical studies have shown that MI-NFB,
used in conjunction with traditional physiotherapy, can improve
patient’s clinical outcomes, despite the fact that the patient’s
ability to gain control of the NFB system was not statistically
significant (Ramos-Murguialday et al., 2013; Pichiorri et al.,
2015).

Despite these limitations, the present study possesses several
noteworthy methodological strengths. The use of an active
control, where the NFB and sham groups were exposed
to indistinguishable audio-visual stimuli, is critical in order
to equate task motivation and interactivity between groups,
buttressing our claim that it is NFB itself that is the causal factor
responsible for any between-group differences. Furthermore,
the design of the NFB system was undertaken with an eye
on the potential to translate any possible findings to a real-
world setting. Thus the present study endeavored to marry NFB
mechanics and interface design with carefully considered user
experience (UX) elements (e.g., attempting to reduce frustration
through gradual onboarding, striving to drive user motivation
through titrating difficulty and simple feedback regarding the
users overall progress, and utilizing a novel feedback modality).
These design elements were included in the hope that they would
make the NFB system more user-friendly, and thus enhance

NFB learning. While more simplistic NFB system designs
offer more experimental control, given the large upper bound
on the potential distribution of NFB interfaces (Kranczioch
et al., 2014; Zich et al., 2014), we believe that detailing NFB
system design that adopts a more user-centric mentality is a
worthy pursuit. However, it appears that the present study’s
pursuit of this goal impacted the ability to observe a robust
NFB training related effect. Our hope is that designers of
NFB systems build upon these findings, incorporating complex
tasks and titration of difficulty, albeit in a more conservative
manner.

Overall, the design features of this II-NFB system, including
the use of a complex task performed continuously over a
longer window in lieu of a discrete simple one, the titration
of difficulty on an individual subject basis, introducing an
aspect of gamification by allowing subjects to track their
performance during rest periods, and of using a novel feedback
modality, were all chosen to enhance UX. While it is the
opinion of the authors that NFB systems are too often
presented as technical entities that focus on calculation of
the NFB signal, with little thought paid to the way that
the NFB system design will affect the experience of the
user, it is clear that there is a need to balance design
features intended to improve UX with more traditional aspects
of NFB system design. While it is more laborious, such
innovations likely need to be introduced in a piecemeal
manner, with a new experimental group for each new UX
feature.

The system tested herein represents a novel attempt
to uncover the optimal NFB permutation to enhance
neurorehabilitation through motor simulation. While it is
clear that more research is needed to substantiate the ability of
II-NFB to lateralize sensorimotor activity, we hope the methods,
results and related interpretation will both inform and inspire
future UX-focused NFB experiments.
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