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People with post-stroke aphasia may have some degree of chronic deficit for which

current rehabilitative treatments are variably effective. Accumulating evidence suggests

that transcranial direct current stimulation (tDCS) may be useful for enhancing the

effects of behavioral aphasia treatment. However, it remains unclear which brain regions

should be stimulated to optimize effects on language recovery. Here, we report on

the therapeutic potential of right cerebellar tDCS in augmenting language recovery

in SMY, who sustained bilateral MCA infarct resulting in aphasia and anarthria. We

investigated the effects of 15 sessions of anodal cerebellar tDCS coupled with spelling

therapy using a randomized, double-blind, sham controlled within-subject crossover trial.

We also investigated changes in functional connectivity using resting state functional

magnetic resonance imaging before and 2 months post-treatment. Both anodal and

sham treatments resulted in improved spelling to dictation for trained and untrained

words immediately after and 2 months post-treatment. However, there was greater

improvement with tDCS than with sham, especially for untrained words. Further,

generalization to written picture naming was only noted during tDCS but not with sham.

The resting state functional connectivity data indicate that improvement in spelling was

accompanied by an increase in cerebro-cerebellar network connectivity. These results

highlight the therapeutic potential of right cerebellar tDCS to augment spelling therapy in

an individual with large bilateral chronic strokes.
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INTRODUCTION

Aphasia is a leading cause of disability following stroke and can affect every aspect of daily life,
including interpersonal relationships, work, and community interactions. Speech-language therapy
is the mainstay of treatment. Therapy is beneficial for language recovery; however, gains in therapy
are variable and progress may be slow, especially after large, chronic left hemisphere lesions (Brady
et al., 2016). Recently, neuromodulation with tDCS has been introduced to increase the efficiency of
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speech and language therapy (for recent reviews see de Aguiar
et al., 2015; Sebastian et al., 2016b). Studies indicate that anodal
tDCS over peri-lesional left hemisphere (LH) language regions
has the potential to augment language outcomes in individuals
with chronic aphasia (e.g., Baker et al., 2010; Fiori et al., 2011;
Fridriksson et al., 2011; Vestito et al., 2014). However, large
LH stroke impedes improvement of language functions that
are dependent on LH networks. In such cases, enhancing the
function of non-damaged hemisphere with the goal of facilitating
compensation has been investigated. However, some data suggest
that recruitment of right hemisphere (RH) regions can be
maladaptive in the chronic stage. Also, several studies have
shown benefit of RH inhibitory (cathodal) tDCS or combined LH
anodal tDCS + RH cathodal tDCS (e.g., Marangolo et al., 2014;
Manenti et al., 2015). However, inhibition of the RH might have
detrimental effects on cognitive functions that normally rely on
the RH. Previous studies have not evaluated the effect of tDCS in
individuals with large, bilateral chronic stroke.

This case study illustrates the potential usefulness of a novel
electrode placement for tDCS augmentation of language therapy
in chronic post-stroke aphasia: the right cerebellum.

Evidence from functional neuroimaging and neuroanatomical
investigations indicate that the right cerebellum is important
for language and cognitive functions (e.g., Leiner et al., 1989;
Schmahmann, 1991, 2001; Middleton and Strick, 1994; Stoodley
and Schmahmann, 2009; Murdoch, 2010; Stoodley et al., 2012;
Marien et al., 2014; for recent reviews see De Smet et al., 2013;
Keren-Happuch et al., 2014). Damage to the right cerebellum
has been associated with deficits in a variety of language tasks
(e.g., Hassid, 1995; Marien et al., 1996, 2000; Gómez Beldarrain
et al., 1997; Fabbro et al., 2004; Baillieux et al., 2010). In addition,
cerebellar tDCS studies in healthy individuals provide evidence
that right cerebellar tDCS modulates cognitive and language
functions such as verb generation (Pope and Miall, 2012), verbal
fluency (Turkeltaub et al., 2016), working memory (Boehringer
et al., 2013; Macher et al., 2014), and implicit learning (Ferrucci
et al., 2013). See Grimaldi et al. (2016) for a recent review.
Beneficial cognitive effects from right cerebellar tDCS have been
found for both anodal and cathodal stimulation.

Given the role of the cognitive and language functions of
the cerebellum and the ability of cerebellar tDCS to modify
behavior in healthy individuals, cerebellar tDCS may have a
uniquely valuable therapeutic role for individuals with aphasia.
Furthermore, cerebellum can be stimulated even in patients
with aphasia associated with bilateral hemispheric strokes. In
addition, the cerebellum is regarded as an important region
involved in skill learning (Morton and Bastian, 2006; Galea et al.,
2011). Therefore, cerebellar tDCS could also augment response
to language therapy by enhancing learning skills.

Here, we report behavioral and neural effects of right
cerebellar tDCS with behavioral spelling treatment in a
participant who sustained bilateral MCA infarct resulting in
aphasia and complete anarthria. Participant SMY is mute
following his second stroke but has retained some ability to
write and type. Because he depends on writing to communicate,
recognizable spelling is critical for effective social function.
Therefore, cerebellar tDCS plus behavioral spelling treatment

could improve spelling recovery through its roles in language
and learning.We sought to evaluate the following hypotheses: (1)
Improvement in spelling to dictation (in treated and untreated
words) will be greater with tDCS + spelling treatment than with
sham + spelling treatment; (2) Improvement will last longer
after tDCS treatment than sham treatment at 2 months post-
treatment; (3) Improvement in other language tasks (written
picture naming) will be greater after tDCS than sham; (4)
Functional connectivity between the right cerebellum and the
residual left and right hemisphere language regions of interest
will be greater post-treatment compared to pre-treatment.

CASE REPORT

Patient History
SMY is a 57-year-old, right-handed man with a master’s degree,
employed as an architect until he had an ischemic stroke
due to carotid dissection. MRI revealed left MCA territory
infarct, involving frontal, temporal, and insular cortex. This
stroke resulted in right hemiparesis and aphasia. He underwent
extensive inpatient and outpatient rehabilitation, and showed
resolution of hemiparesis and substantial improvement in
language. He survived a second (right hemisphere) stroke due
to carotid dissection 4 years later. MRI revealed acute infarct of
right MCA territory, involving the fronto-parietal and insular
cortex (Figure 1). His second stroke resulted in left hemiparesis,
dysphagia necessitating PEG placement, aphasia, and no speech
production due to anarthria. Please see Figure 1 for lesion
location.

He was enrolled in the study in 2015, 5 years after his second
stroke. At the time of his enrollment, SMY was independent in
activities of daily living and resided with his wife. SMY scored
26/28 on the auditory comprehension subtest on the Aphasia
Diagnostic Profile test (Helm-Estabrooks, 1992). Participant
SMY is mute and communicates by writing in a book or on an
iPad, augmented with a variety of gestures. This study was carried
out in accordance with the recommendations of the ‘Johns
Hopkins Medicine Institutional Review Boards’ with written
informed consent from all subjects. SMY gave written informed
consent in accordance with the Declaration of Helsinki.

Spelling and Naming Performance
Given that SMY is mute and the focus of treatment was on
spelling, only written language was assessed in detail. SMY’s
narrative writing consisted of simple sentences with frequent
phonologically implausible nonword errors (center → cect),
semantic errors (garage → house), and letter omissions (piano
→ pian). SMY was able to write simple and common 3-letter
words and some 4-letter words without difficulty. He was not able
to identify his errors in writing. The Johns Hopkins Dysgraphia
Battery (Goodman and Caramazza, 1985) was administered (See
Supplementary Material).

Spelling to dictation of words and pseudowords was very
impaired (12% accurate on words and 0% accurate on
pseudowords). On words, he showed a significant effect of
grammatical word class (e.g., verbs vs. nouns 36 vs. 21% accurate;
χ
2
= 4.8; p < 0.05), and concreteness (concrete vs. abstract 57
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FIGURE 1 | Lesion map of SMY.

vs. 33% accurate; χ2
= 6.8; p < 0.05). Spelling was significantly

influenced by word-length: 78% correct on 4-letter words, 57%
on 5-letter words, 50% on 6-letter words, 36% on 7-letter words,
and 28% on 8-letter words (e.g., 4-letter vs. 5, 6, 7, 8 letters;
p < 0.05). There was no effect of regularity.

Errors in spelling to dictation were mostly phonologically
implausible nonword errors (e.g., parent → parpe) and some
unrelated word errors (palace → pea). His 0% accuracy
on nonword errors indicates impairment at the level of
sublexical mechanisms for phoneme-grapheme conversion
(PGC), although he was also impaired in access to written
word forms. His word length effect can be explained by greater
opportunity to err on longer words in his attempts to rely on
(impaired) PGC.We decided to treat sublexical spelling—PGC—
as a first step, to give him some rules he could rely on to at least
produce a plausible spelling.

SMY’s written picture naming performance was assessed
using the Philadelphia Naming Test (PNT, Roach et al., 1996)
to examine generalization from spelling-dictation to written
picture naming. SMY’s performance on the written picture-
naming task was impaired. He scored 121/175 on the PNT
prior to treatment. Errors in written naming were predominantly
phonologically implausible nonword errors: 63% (candle →

calc), some semantic errors: 13% (hose→ cable), some unrelated
word errors: 13% (mustache → mustang), and some no
responses: 11%.

PROCEDURE

tDCS Treatment
We used a double-blind, within-subject crossover trial design,
with random order of treatments. There were two experimental
conditions: “right cerebellar tDCS + behavioral (spelling)
treatment” and “sham tDCS + behavioral treatment.” Each
condition consisted of 15 consecutive training sessions, 3–5 per
week, separated by 2 months. Evaluation took place before,
immediately after, and 2 months post-treatment for each
condition (Tsapkini et al., 2014). SMY was randomized to the

“sham” condition first followed by the “tDCS” condition. tDCS
was administered for the first 20 min of the 45-min treatment
session of behavioral spelling treatment. tDCS was delivered at a
constant current of 2 mA for 20 min via two 25 cm2 saline soaked
sponge electrodes using a ActivaDose II stimulator (ActiveTec
Inc., Salt Lake City, Utah). The anode was centered on the
right cerebellum (1 cm under, and 4 cm lateral to the inion:
Pope and Miall, 2012) and the cathode was placed on the right
deltoid muscle. Sham tDCS was applied using the same electrode
configuration, but current intensity was ramped down to zero
after 30 s (Gandiga et al., 2006).

Behavioral Spelling Treatment
We employed a spelling treatment protocol previously described
(Tsapkini et al., 2014) that specifically targeted PGC in spelling
to dictation. We selected 80 words from the Johns Hopkins
Dysgraphia Battery that SMY misspelled. Words were divided
into two sets: trained words (n= 40), practiced during treatment
(sham and tDCS), and untrained words (n = 40), only tested
prior to the start of treatment, end of treatment, and 2 months
post-treatment. Stimuli in both sets were matched for lexical
frequency, letter length, and concreteness.Words were 4–8 letters
long and consisted of nouns, verbs, and adjectives. For each
treatment condition (sham and tDCS), we compared the correct
responses (1) pre-treatment and immediately after treatment, (2)
pre-treatment and 2 months post-treatment on each stimulus
type (trained words, untrained words, or written picture naming)
with McNemar’s test for correlated responses (see Table 1).

The behavioral spelling treatment consisted of training PGC
in the context of each dictated word practiced. For each trained
word, SMY was asked to point to the letter corresponding to
each phoneme (from a set of letters). If he was correct, he was
reinforced. If he was incorrect, the clinician pointed to the correct
letter. Then SMY was asked to write the letter(s) corresponding
to a particular phoneme for the trained word. If he was incorrect,
the clinician wrote the correct letter. Finally, SMY was explicitly
instructed in PGC for all letter-sounds of the word. Each session
consisted of teaching the PGC of five trained words; when SMY
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TABLE 1 | Raw scores for trained words, untrained words, and written picture naming prior to the start of treatment, immediately after treatment and 2

months post-treatment for each condition.

Task Sham tDCS

Pre-treatment Immediately after 2 months post-treatment Pre-treatment Immediately after 2 months post-treatment

Trained words 0/40 21/40 (p < 0.0001) 13/40 (p < 0.0001) 13/40 39/40 (p < 0.0001) 39/40 (p < 0.0001)

Untrained words 0/40 11/40 (p = 0.0026) 11/40 (p = 0.013) 11/40 33/40 (p < 0.0001) 36/40 (p < 0.0001)

Written naming 121/175 121/175 (p = 0.75) 122/175 (p = 0.76) 122/175 143/175 (p = 0.0003) 145/175 (p = 0.0004)

McNemar’s test results (two-tailed, p-value) comparing the correct responses between (1) pre-treatment and immediately after treatment, (2) pre-treatment and 2months post-treatment,

on each stimulus type (trained word, untrained word, or written naming) are shown in italics. Shading indicates significant improvement.

met criteria (90% accuracy across three sessions), newwords were
introduced. It should be noted that SMY did not receive any other
therapy except for support groups, including during follow-up
periods.

Modeling Current Flow in the Right
Cerebellum
To understand the electric field distribution of right cerebellar
tDCS, we completed a modeling study. One high resolution
T1 MRI-scan (1 mm3 voxels) of a healthy control extending
between the c7 vertebra and the vertex was segmented
into 11 tissue compartments using automated algorithm and
manual segmentation techniques using ScanIP (Simpleware) as
previously described (Datta et al., 2009). Specific conductivity
values were assigned to the individual tissue compartments.
The MRI-based Finite Element Method (FEM) models were
generated using COMSOL Multiphysics to predict current flow
in volume conductor physics studies involving two 5 × 5 cm
sponge pad electrodes. A 2 mA stimulation boundary condition
was applied to the anode (right cerebellar cortex, 1 cm under, and
4 cm lateral to the inion) and a ground condition was applied to
the cathode (right deltoidmuscle). An electric isolation condition
was applied to the remaining boundaries. Plots of the electric field
profile (0–1.2 V/m) were displayed in a false color scale (blue-
red) on a 3D rendering of the brain. The results indicate that
the maximum electric field amplitude was generated in the right
cerebellum with some spread to the left cerebellum but without
spread to adjacent occipital cortex or other cortical areas (see
Figure 2).

MRI Acquisition
Resting state fMRI was acquired twice: prior to the start of
the study and 2 months after the completion of the study
(6 month interval between scans). Scans were acquired on a
3-T Philips Achieva MRI scanner with a 32-channel head coil.
Resting state images were acquired using EPI and the following
scan parameters: TR = 2000 ms, TE = 30 ms, flip-angle =

90, matrix = 64 × 64, FOV = 240 × 240 mm, 35 3 mm
parallel axial slices covering the whole brain, 210 volumes. High
resolution 3DMPRAGEwas acquired in the sagittal plan utilizing
a multishot, turbo field echo pulse sequence and the following
scan parameters: TR = 6800 ms, TE = 31 ms, matrix = 256 ×

256, FOV = 256 × 240 × 240 mm, 170 1 mm slices covering
the whole brain. One normal control (59/Female) was scanned
longitudinally using the same scan interval as SMY.

FIGURE 2 | Back and lateral views of the modeling data of the electric

field distributions below the stimulating electrode on the right

cerebellum.

Changes in connectivity were examined between the right
cerebellum and peri-lesional language regions of interest
(ROIs) in the LH and RH. Only non-lesioned regions
were included in the ROI. The ROI included: superior
frontal gyrus (SFG), superior frontal gyrus_prefrontal cortex
(SFG_PFC), middle frontal gyrus/dorsolateral prefrontal cortex
(MFG_DLPC), middle temporal gyrus pole (MTG_pole), inferior
temporal gyrus (ITG), fusiform gyrus (FG), left and right
cerebellum. For a full description of resting state-processing
steps see Sebastian et al. (2016a). Briefly, the structural scan
was segmented using the multi-atlas mapping and parcellation
approach, co-registered to the motion and slice timing (SPM8)
corrected resting state dynamics. Time courses were extracted
from the specific ROIs, which were regressed for physiological
nuisance by applying CompCor (Behzadi et al., 2007). From the
“nuisance-corrected” time courses we obtained the parcel-by-
parcel correlation matrices, z-transformed by Fisher’s method.
The whole procedure was performed automatically in BrainGPS
(Li et al., 2015).

RESULTS

Treatment Data
SMY showed an overall improvement in spelling with a notable
increase in writing speed. Trained words were the same for the
sham and tDCS conditions. However, out of the 40 trained words,
SMY reached criterion for only 17 trained words during the sham
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condition. On an average, he required 4.5 (range: 3–7) sessions
to reach criterion for each trained word. SMY reached criterion
more quickly during the tDCS condition. He was able to reach
criterion in 3.2 sessions (range: 3–4).

SMY correctly spelled to dictation 21/40 trained words
and 11/40 untrained words after sham treatment, whereas
he correctly spelled to dictation 39/40 trained words and
33/40 untrained words after tDCS treatment. Therefore, both
sham and tDCS treatments were effective for trained and
untrained words immediately post-treatment, but there was
significantly greater improvement with tDCS than with sham
for both trained and untrained words (trained words: χ

2

= 14.77, p = 0.0001; untrained words: χ
2
= 15.758, p <

0.0001). At 2 months post-treatment, SMY showed maintenance
of learned PGC rules in spelling to dictation on trained
and untrained words in both tDCS and sham conditions;
however, significantly greater maintenance was noted in the
tDCS condition compared to the sham condition (trained
words: χ

2
= 26.97, p < 0.0001; untrained words: χ

2
=

23.22, p < 0.0001). In addition, generalization from spelling to
dictation to written picture naming was noted only in the tDCS
condition.

SMY showed a notable change in spelling error types post-
treatment, especially after the tDCS condition. Before treatment,
SMY’s spelling to dictation was 0% correct (40/40 errors) for
both trained and untrained words (trained words: 33/40 or
82.5% phonologically implausible nonword errors; 3/40 or 7.5%
phonologically plausible nonword errors; 4/40 or 10% unrelated
word errors, untrained words: 35/40 or 87.5% phonologically
implausible nonword errors; 2/40 or 5% phonologically plausible
nonword errors; 3/40 or 7.5% unrelated word errors). After sham
treatment, SMY made 19 errors on the 40 trained words (15/19
or 79% phonologically implausible nonword errors; 1/19 or 5%
phonologically plausible nonword errors; 3/19 or 16% unrelated
word errors) and 29 errors on the 40 untrained words (26/29
or 90% phonologically implausible nonword errors; 1/29 or 3%
phonologically plausible nonword errors; 2/29 or 7% unrelated
word errors). After tDCS treatment, he made one error on the
trained words and seven errors on the untrained words. All
errors were phonologically plausible nonword errors (e.g., pigeon
→ peigon), and were thus more functional than pretreatment
errors.

Resting State Data
Resting state functional connectivity analysis data for SMY
and the normal control are shown in Figure 3. For SMY, pre-
treatment, weak correlations (connectivity) were noted between
the right cerebellum and the left and right hemisphere ROIs,
and also between the LH and RH ROIs (indicated by dark blue
on the graph in Figure 3). For example, SMY showed weak
connectivity (low z scores) between the right cerebellum and the
left MFG_DLPC before treatment (dark blue color, 1st column
5th cell from bottom left). At 2 months post completion of
treatment, connectivity was higher between the right cerebellum
and ROIs in the LH and RH and also between the LH and
RH ROIs (light blue and green colors). The difference map
between pre-treatment resting state connectivity and 2 months

post-treatment connectivity shows stronger correlations between
the right cerebellum and the LH and RH ROIs (red, orange, and
yellow). The control participant showed very similar connectivity
at both the time points between (1) the right cerebellum and the
LH and RH ROIs and (2) LH and RH ROIs. Difference map did
not indicate a marked difference in z scores between time point 1
and 2.

DISCUSSION

This report is, to our knowledge, the first to use cerebellar
neuromodulation to augment spelling recovery in an individual
with large bilateral chronic strokes. This case study illustrated
the potential usefulness of novel electrode placement for
tDCS augmentation of language therapy in chronic post-
stroke aphasia. Results suggest that anodal tDCS of the right
cerebellum coupled with behavioral therapy is more effective
than behavioral therapy alone in improving spelling to dictation.
Furthermore, generalization to written picture naming was
facilitated by tDCS, not sham. Finally, the resting state functional
connectivity data indicate that improvement in spelling is
accompanied by an increase in cerebro-cerebellar network
connectivity.

We found robust improvement in SMY’s spelling skills for
both trained and untrained words especially after tDCS. Robust
effects could be due to the duration and intensity of treatment
(15 sessions, 3–5 per week). Alternatively, long-term stimulation
may have induced long-term potentiation of neurons that
may have lowered the threshold of neuronal excitability and
subsequent modification in synaptic connectivity in the areas
applied (e.g., Fritsch et al., 2010). In addition, cerebellum is
a critical region involved in skill learning and repeated tDCS
along with behavioral therapy might have facilitated the learning
of writing skills and/or compensatory strategies. Facilitation of
skill learning by cerebellar tDCS has been reported earlier. For
example, Galea et al. (2011) showed that anodal tDCS applied
over the cerebellum during reaching adaptation task facilitated
learning. Similarly, Ferrucci et al. (2013) showed that anodal
tDCS applied over the cerebellum during a procedural learning
task facilitated implicit learning.

Although, right cerebellum is not traditionally considered
to be associated with spelling, we show that cerebellar tDCS
along with spelling therapy resulted in significant improvement
in SMY’s spelling abilities. Given that SMY sustained two large
strokes involving the left and right hemispheres, tDCS may have
enhanced changes in neuroplasticity resulting in modification of
networks underlying spelling.

CONCLUSIONS

This study, although preliminary, yielded interesting findings
and promising avenues for further studies on cerebellar
tDCS in post-stroke aphasia. Limitations include that this
was a case study. In addition, tDCS followed sham in this
experimental design and thus any extra benefits of tDCS
might in fact be the benefits of having a second treatment

Frontiers in Human Neuroscience | www.frontiersin.org 5 January 2017 | Volume 10 | Article 695

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Sebastian et al. Cerebellar tDCS and Language Treatment

FIGURE 3 | Fisher-transformed correlation matrix for the resting state data for SMY (top panel) at time point 1 (TP1: prior to the start of treatment) and

time point 2 (TP2: 2-months follow up time point). Control participant’s data is shown in the bottom panel. Difference map shows the difference in correlation

between the scan for the resting state data. Correlations were assessed across 14 ROIs. Regions are labeled as numbers corresponding to the left and right superior

frontal gyrus (SFG; region 1 and 2), superior frontal gyrus_prefrontal cortex (SFG_PFC; region 3 and 4), middle frontal gyrus dorsolateral prefrontal cortex (MFG_DLPC;

region 5 and 6), middle temporal gyrus pole (MTG_pole; region 7 and 8), inferior temporal gyrus (ITG; region 9 and 10), fusiform gyrus (FG; region 11 and 12), and

cerebellum (region 13 and 14).

period after already having had the first treatment period
and time for consolidation. Cerebellar tDCS may not have
comparable beneficial effects in patients with unilateral LH
lesions. Also, resting state data were not acquired before and
after completion of each treatment condition (i.e., sham and
tDCS). Therefore, it is not possible to disentangle the network
connectivity changes associated with tDCS vs. behavioral
treatment.
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