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Background: Deep brain stimulation (DBS) is a neurosurgical intervention with
demonstrated effectiveness for treatment resistant depression (TRD), but longitudinal
studies on the stability of cognitive parameters following treatment are limited. The
objectives of this study are to (i) identify baseline cognitive predictors of treatment
response to subcallosal cingulate gyrus (SCG) DBS for unipolar TRD and (ii) compare
neurocognitive performance prior to and 12 months after DBS implantation.

Methods: Twenty unipolar TRD patients received SCG DBS for 12 months.
A standardized neuropsychological battery was used to assess a range of
neurocognitive abilities at baseline and after 12 months. Severity of depression was
evaluated using the 17 item Hamilton Rating Scale for Depression.

Results: Finger Tap-Dominant Hand Test and total number of errors made on the
Wisconsin Card Sorting Test predicted classification of patients as treatment responders
or non-responders, and were independent of improvement in mood. Change in verbal
fluency was the only neuropsychological test that correlated with change in mood from
baseline to the follow up period. None of the neuropsychological measures displayed
deterioration in cognitive functioning from baseline to repeat testing at 12 months.

Limitations: This was an open label study with a small sample size which limits
predictive analysis. Practice effects of the neuropsychological testing could explain
the improvement from baseline to follow up on some tasks. Replication using a
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larger sample of subjects who received neuropsychological testing before and at least
12 months after DBS surgery is required.

Conclusion: These preliminary results (i) suggest that psychomotor speed may be a
useful baseline predictor of response to SCG DBS treatment and (ii) support previous
suggestions that SCG DBS has no deleterious effects on cognition.

Keywords: treatment-resistant depression, cognition, deep brain stimulation, neurostimulation,
neuropsychology, mood disorders

INTRODUCTION

Treatment resistant depression (TRD) occurs in 30% of depressed
patients attending hospital clinics (Rush et al., 2006) and has
a prevalence of 22% in Canadian community samples (Rizvi
et al., 2014). Despite advances in drug development to treat
major depressive disorder (MDD), there is no evidence that
newer drugs have higher efficacy compared to first generation
tricyclic antidepressants (Baghai et al., 2011). On the other hand,
functional neuroimaging research has provided evidence for
abnormal neuronal circuits in MDD (Mayberg et al., 1999) which
has contributed to the emerging interest in deep brain stimulation
(DBS) and other targeted neurostimulation techniques to provide
alternative treatment options for TRD.

Deep brain stimulation is an experimental neurosurgical
procedure that was initially developed for use in movement
disorders (Deep Brain Stimulation for Parkinson’s Disease Study
Group, 2001) as well as advancing knowledge about neuro-
circuitry dysfunction in relation to depression (Russo and
Nestler, 2013). The first DBS study in TRD to modulate
subcallosal cingulate gyrus (SCG) over-activity was published
in Mayberg et al. (2005), and subsequent open-label trials have
demonstrated that it is safe and effective in small open-label trials
for treatment of TRD (McNeely et al., 2008; Holtzheimer et al.,
2012; Merkl et al., 2013; Bogod et al., 2014). A recent systematic
review of DBS for TRD including a range of stimulation targets
reported an overall response rate of 40–70% (Morishita et al.,
2014).

The underlying mechanism of SCG DBS is not yet fully
understood, but is thought to cause both local and distributed
effects through its modulation of the mood-regulatory network
that is considered dysregulated in MDD (Mayberg et al., 2005).
In previous pharmacologic and non-pharmacologic treatment
studies of depression (Mayberg et al., 1999, 2000; Goldapple
et al., 2004), clinical response appears to best correlate with
limbic/paralimbic decreases involving the orbital frontal cortex
and subgenual cingulate regions (Mayberg et al., 2005). Based
on these findings, we hypothesized that DBS to the subcallosal
region would result in deactivation of the local SCG (BA25)
region and normalization of hypoactive cortical regions. We
further hypothesized that this combination of limbic-paralimbic
decreases and dorsal cortical increases are necessary for clinical
remission (Mayberg, 2003; Mayberg et al., 2005).

Cognitive deficits are present in the majority of patients with
MDD (McIntyre et al., 2013), and these deficits are not necessarily
reversed by antidepressants (Biringer et al., 2007; Baune et al.,
2010; Godard et al., 2012). To address concerns that neurosurgery

may worsen or create new cognitive deficits, it is important to
measure the effects of DBS on cognition and explore cognition
indices as potential predictors of DBS response. Stimulation
of the SCG could impact neurocognitive performance through
its direct connections to the nucleus accumbens, amygdala,
ventral striatum and prefrontal cortex, regions involved in the
dopaminergic networks associated with psychomotor processing
(Johansen-Berg et al., 2008).

The effects of SCG DBS on cognition have been evaluated in
four smaller longitudinal studies, although none have evaluated
baseline neurocognitive measures as moderators of response or
non-response to DBS (McNeely et al., 2008; Holtzheimer et al.,
2012; Merkl et al., 2013; Bogod et al., 2014). Moreines et al.
(2014) reported that TRD (mix of unipolar and bipolar) patients
had poorer performance than healthy controls on processing
speed tasks at baseline but following SCG DBS, there was
no deterioration of neuropsychological function and in fact
improvement in processing speed and executive function after
6 months occurred. Similarly, another SCG DBS for TRD study
found no deterioration of cognitive functioning following 1 year
of stimulation and no relationship was found between depression
rating and cognitive testing (Serra-Blasco et al., 2015). The
purpose of the present study was to investigate the effect of
DBS on cognition and to determine whether cognitive indices at
baseline predicted DBS outcome.

MATERIALS AND METHODS

Participants
Details of the trial methodology have been published previously
(Mayberg et al., 2005; Lozano et al., 2008). Twenty TRD patients
were enrolled in a 12 month open label trial of SCG DBS
between 2003 and 2006, during which no new psychotropic
medications were added. Response was defined as 50% or
greater reduction in the 17-item Hamilton Rating Scale for
Depression (HRSD-17) 12 months after surgery (Hamilton,
1960). The selection criteria for patients have also been reported
in a previous paper (Lozano et al., 2008). Referrals came from
hospital and community psychiatrists who were aware of the
protocol and were not directly involved in its implementation.
All patients met criteria for a more intractable form of TRD
(see below) and were in a current major depressive episode
(MDE) for a minimum of 1 year with a minimum score of 20
on the HRSD-17. Research Ethics Board approval and informed
consent were obtained as previously outlined (Mayberg et al.,
2005).
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Inclusion and Exclusion Criteria
For the protocol, treatment resistance was defined as failure
to respond to a minimum of four different treatments
including antidepressant pharmacotherapies of sufficient dose
and duration, evidence-based psychotherapy and ECT (unless
otherwise contraindicated). Exclusion criteria included comorbid
Axis I psychiatric disorders (with the exception of Generalized
Anxiety Disorder), a cluster B Axis II diagnosis as determined by
the Structured Clinical Interview for DSM-IV Axis II Personality
Disorders (SCID-II) (American Psychiatric Association, 2000),
suicide attempt within the past year or a score of 3 or more on
the HRSD-17 suicide item, or an unstable medical condition.

Surgery and Stimulation Settings
Deep brain stimulation electrodes were implanted in SCG white
matter under local anesthesia using magnetic resonance (MR)
imaging guidance. Monopolar stimulation was used at 90us pulse
width and 130 Hz. Voltage was adjusted to a maximum of 9.0 V
at each of the eight electrode contacts based on effectiveness and
tolerability (Lozano et al., 2008). Stimulation parameters were
adjusted at follow-up visits based on symptom improvement or
adverse effects, with patients receiving stimulation between 3.5
and 5.0 V.

Neuropsychological Assessment and
Study Protocol
A battery of neuropsychological tests was administered at
baseline (before surgical implantation) and 12 months post-
operatively. The neuropsychological tests conducted have been
described in an earlier study on a smaller sample of this
cohort (McNeely et al., 2008) and are listed in Table 1
with the dependent variables for each neuropsychological test
illustrated. The neuropsychological assessment battery was
designed to assess general cognitive performance as well
as detailed frontal lobe functioning. The test battery was
carefully designed to differentiate dorsolateral, superior medial,
and ventrolateral/orbital frontal cognitive functions, as it was
anticipated at the outset of the study that different frontal regions
may be differentially affected by activation or disruption of
SC tracts by chronic DBS. To address re-test learning effects,
alternate versions of neuropsychological tests were used when
available.

Statistical Analysis
The Statistical Package for the Social Sciences (SPSS), Edition
20 for Windows was used (IBM Corp. Released, 2011). Scores
were corrected for age, sex and education and converted
into z-scores in order to assess patients’ performance relative
to a normative population (Strauss et al., 2006). A z-score
greater than 1 standard deviation (SD) below the norm was
interpreted as below average and z-scores more than 1 SD
above the norm were above average, in keeping with profile
interpretation methods used in other psychiatric populations
(Matsui et al., 2007; Kim et al., 2009). We conducted the
Shapiro–Wilk test and examined QQ plots to assess whether
data were normally distributed. We proceeded to carry out

TABLE 1 | Neuropsychological tests.

Assessment Test Dependent variable

Executive
Function

Wisconsin Card
Sort Test (WCST)

• Number of categories completed
• Total number of errors

Verbal Learning
and Memory

Hopkins Verbal
Learning Test
(HVLT)

• Total word recall over three trials

Verbal Fluency Controlled Oral
Word Association
Test (COWA)

• Total number of words

Processing
Speed

Finger Tap Test • Mean of five consecutive 10 s trials

Attention Stroop Test • Stroop word, color, and interference

TABLE 2 | Demographic and clinical characteristics of patient cohort.

N %

Sex

Male 9 45

Female 11 55

Past ECT 17 85

Mean SD

Age (years) 47.4 10.4

Duration of MDE (years) 6.9 5.6

Lifetime Number of MDE 3.9 3.1

Number of Medications 4.2 4.1

HRSD Baseline 24.3 3.5

HRSD 12 Month 12.3 6.6

NAART-IQ 110.8 8.5

Student’s t-test analysis on all normally distributed data from
the completed neuropsychological tests. Where data were
not normally distributed, the non-parametric Mann–Whitney
U-test was performed. Significance of change between baseline
and 12 months was analyzed via paired t-test for each
neuropsychological test.

RESULTS

Demographic and Clinical
Characteristics
Patient demographic and clinical characteristics of responders
and non-responders are shown in Table 2. All patients had
received psychotherapy and 85% (n = 17) had received ECT,
with eight patients (47%) having had a clinical response to ECT.
55% (n = 11) of the patients were female, with an average
age of 47 years (SD 10) and range 29–71 years. The average
duration of MDE was 6.9 years (SD 5.6). Patients had a NAART
mean estimated Full Scale IQ score of 110.8 (SD 8.5) which
was reflective of general or above normal range intelligence. The
average HRSD-17 score at baseline was 24.3 (SD 3.5) and at follow
up was 12.3 (SD 6.6).

Patients were classified as responders or non-responders after
12 months of chronic SCG DBS. There were 11 responders
(55%) and 9 non-responders (45%). There were no significant
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differences between responders and non-responders in relation
to age, gender, duration of depressive episode or number
of depressive episodes. Baseline HRSD-17 scores were not
significantly different between responders and non-responders,
t(18) = 0.11, p = 0.92. There was a significant reduction in
HRSD-17 scores from baseline to follow up, N = 20, t(19) = 8.5,
p= 0.001.

At the time of surgery, patients were receiving mean 4.2
medications (median 4). Two patients were only receiving
a benzodiazepine but had discontinued all antidepressant
medications, two patients were receiving only one antidepressant,
five patients were receiving an antidepressant augmented with
an antipsychotic agent or benzodiazepine, and 11 patients
were receiving two antidepressants from two different classes,
combined with lithium or an atypical antipsychotic and
a benzodiazepine. Attempts were made to keep patients’
medications constant throughout the study, so as to reduce
confounders to treatment response. Four patients (20%)
had their antidepressant dosage reduced and all of these
patients were responders. One patient had the dose of
antidepressant treatment increased (from citalopram 20 to
30 mg) at the 6 month period and this patient was a non-
responder.

Neuropsychological Performance at
Baseline and 12 months
The mean North American Adult Reading Test (NAART)
for this sample was 1 SD above the mean (see Table 2).
Using profile interpretation methods in this sample whose pre-
morbid cognitive function would be expected to fall 1 SD
above the mean corresponding to general intellect, we found
1 SD below the normative mean to be a reasonable cut-
off for clinically significant relative cognitive impairment. All
patients completed neuropsychological testing at baseline. After
12 months, four of the twenty patients were unavailable for
neuropsychological retesting; two had the device explanted,
one left the country and one was lost to follow up. The
remaining 16 patients as a group displayed no evidence of
deterioration of cognitive functioning over the 12 month
follow up period (see Table 3). At 12 months, performance
on the Wisconsin Card Sorting Task (WCST) improved
significantly in three of the four subscales (see Supplementary
Table S1).

Not all neuropsychological data were captured at the
12 month follow up period. Therefore, Table 3 includes the
number of patients who completed each test at both baseline

FIGURE 1 | Scatterplot of change in HRSD and change in verbal
fluency.

and follow up. At baseline, there was clinically significant
impairment in the total sample (Z = −1 SD below the
normative mean) in information processing/attentional speed
(Stroop color reading, color-word speed; see Supplementary
Table S2) and executive functioning (WCST category score
and number of perseverative and non-perseverative errors).
There was no impairment relative to normative data in
psychomotor speed (finger tapping), verbal memory [Hopkins
Verbal Learning Test (HVLT)] or verbal fluency [Controlled
Oral Word Association Test (COWA)]. There was no statistically
significant deterioration in cognitive functioning on any of the
tests over the 12 month follow up period. Paired t -test revealed
significant improvements (p < 0.05) in executive function
(WCST category score, total number of errors, perseverative
but not non-perseverative errors) and approached significant
improvement on verbal memory (HVLT recall) (p < 0.06).
There was no deterioration in psychomotor speed (finger-
tapping test) (see Table 3). The only neuropsychological
variable associated with change in HRSD-17 score over
the 12 month period was verbal fluency [r(13) = −0.63,
p < 0.01], such that improvement in verbal fluency was
associated with a larger change in depression rating (see
Figure 1).

TABLE 3 | Neuropsychological test results from baseline to 1 year follow up.

Scale Baseline
Mean (SD)

1 Year
Mean (SD)

t-test p Baseline
Z

1 Year
Z

Change
Mean

Finger Tap (n = 13)

Dominant Hand 44.4 (10.8) 47.5 (5.8) −1.2 0.23 −0.4 −0.3 +0.1

Non-Dominant Hand 39.8 (8.6) 43.1 (6.8) −1.8 0.08 −0.59 −0.24 +0.35

Hopkins Verbal Learning Test (n = 14) 25.3 (4.4) 27.3 (4.6) −2.2 0.06 −0.63 −0.41 +0.22

Verbal Fluency (n = 13) 43.3 (14.5) 44.1 (13.5) −0.16 0.87 −0.14 0.07 +0.21
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TABLE 4 | Summary of t-test of baseline responders to DBS at 1 year
follow up.

Test Mean SD T p

Finger Tap Dominant Hand

Responder 50.1 6.8 −2.5 0.03

Non-Responder 39.3 12.2

Finger Tap Non-Dominant Hand

Responder 44.2 4.0 Z = −2.6 0.007

Non-Responder 34.9 8.9 Non-Parametric (Mann–Whitney U)

WCST Total Errors

Responder 52.0 12.4 −2.1 0.048

Non-Responder 41.3 8.9

Responder-Non-responder Differences
in Neuropsychological Testing
Baseline scores differed significantly between responders and
non-responders on the WCST -Total errors (U = 19, Z = −2.1,
p = 0.035) and Finger Tapping Test scores with both the
dominant hand [t(18) = −2.5, p = 0.03] and non-dominant
hand (U = 15, Z = −2.6, p = 0.007). Correlations were carried
out between each of these tests and baseline HRSD-17 scores
(n= 20). No correlation was found between WCST -Total errors
and HRSD-17 scores at baseline [r(18) = −0.05, p = 0.85].
Similarly, there was no correlation between depression scores
and scores on either the dominant [r(19) = −0.26, p = 0.28] or
non-dominant [r(19)= 0.09, p= 0.7] hand Finger Tap Test.

Predictors of Response to DBS
We conducted t-test analyses to examine which baseline
neuropsychological variables discriminated responders from
non-responders. Three variables were found to have a statistically
significant difference between responders and non-responders.
Table 4 shows the performance of responders and non-
responders bilaterally on the Finger Tap Test and WCST -Total
errors in mean values following t-test analysis.

Despite our small sample size of 20 (11 responders and 9
non-responders), we utilized machine learning protocols as a
proof of concept exercise to test a model including WCST-
Total errors, Finger Tap Dominant Hand and Non-Dominant
Hand for prediction of response to DBS treatment. Two of these
variables, WCST-Total errors and Finger Tap Dominant Hand
were selected via a feature selection (FS) protocol (Zhao et al.,
2011).

Cross-validation (CV) has been proposed in situations where
an attempt at a true replication would be premature (Kohavi,
1995). This process allows one to construct a model on a portion
of data while testing it on a portion that has been left out.
For the models reported here we use a 10-fold cross-validation,
though other proportions were checked and the results remained
consistent. In a 10-fold validation, 18 patients are chosen to
be modeled and two are left out to be tested. The overall
reported accuracy reflects the performance of this process for the
aforementioned variables.

The artificial neural networks (NNs) machine learning
method was utilized in this analysis (Azimi et al., 2014). NNs

TABLE 5 | Tabulation of the ROC for neural networks model.

Predicted

Non-Responder Responder Error

Actual

Non-Responder 8 1 1/10

Responder 1 10 1/9

FIGURE 2 | ROC for neural networks.

have the benefit of being able to capture non-linear relationships
between variables and are able to handle noisy data, although they
can be prone to over-fitting and the models are often difficult
to interpret (Azimi et al., 2014). The results of our model are
presented in Table 5 and Figure 2.

Utilizing WCST Total errors and Finger Tap Dominant Hand,
this 10-fold CV for the artificial neural net only misclassified
patients 10% of the time. The model itself was able to predict
8/9 non-responders and 10/11 responders correctly from our
population of patients. The area under the curve (AUC) of the
cross-validation procedure was found to be 92.9%.

DISCUSSION

This longitudinal study of cognitive functioning in TRD patients
who have undergone SCG DBS provides evidence for the stability
of cognitive functioning at least 1 year after surgery. Despite
this use of long-term neurostimulation, there is no evidence
of any acquired or accumulated cognitive dysfunction. Indeed,
any improvements in cognitive function over the 12 month
period were independent of improvements in mood, with the
exception of verbal fluency. The present findings of cognitive
stability following DBS are consistent with previous findings.
A previous report on six patients from this cohort also showed
no deterioration in cognition, and most patients’ performance
improved from the clinically impaired range at baseline to the
average range at follow up (McNeely et al., 2008). This is in
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contrast to the well-documented association between cognitive
impairment and ECT (Kellner et al., 2010).

Our findings are also in agreement with an extended report
on four patients who were reassessed for up to 42 months after
surgery (Bogod et al., 2014). Two additional longitudinal studies
of inpatient MDD samples have previously demonstrated that
improvement in verbal fluency was correlated with improvement
in mood on hospital discharge (Trichard et al., 1995; Neu et al.,
2001).

Evidence from a Positron emission tomography (PET) study
(Gourovitch et al., 2000) showing left frontal lobe activation
during a verbal fluency task [including dorsolateral prefrontal
cortex (DLPFC) and anterior cingulate] supports a link between
mood and activation of the DLPFC, the anterior cingulate,
or indeed an interaction of both regions. Explicit memory
deficits in MDD patients were found to be were independent of
current (state-related) mood, while the number of past depressive
episodes (trait-related) determined the hippocampal-dependent
cognitive deficits (MacQueen et al., 2002). The absence of any
other correlations between changes in cognitive measures and
mood raises the possibility that certain areas of the brain assessed
by such tests may be more sensitive to clinical state, while other
functions are more likely to be trait-related.

Cognitive Changes in Responders
Relative to Non-responders
As far as we are aware, this is the first study to explore
baseline prediction of response to SCG DBS treatment from
neurocognitive measures. Dominant-hand finger tap test and
WCST-Total errors predicted treatment response with a high
degree of accuracy. The WCST-Total errors score reflects the
sum of both perseverative errors (indicative of inability to
shift mental set in response to feedback) and non-perseverative
errors (indicative of loss of mental set, random responding, or
conceptual inability). While the WCST has long been held as a
gold standard measure of prefrontal function, with perseverative
errors considered the main index of frontal dysfunction and
number of conceptual responses also indicated, impaired WCST
performance in patients with frontal dysfunction reflected both
perseverative and random errors (Lie et al., 2006). Only WCST
Total Errors, and not the other outcome variables of this
test (number of categories completed, perseverative or non-
perseverative errors alone), were predictive of response to
treatment in TRD patients, suggesting that prefrontal function
at baseline may be driving this relationship. The anterior
cingulate may be particularly important, as this region of
prefrontal cortex is implicated in error detection during WCST
performance, though it appears that a widely distributed frontal-
posterior network is required for overall successful performance
of the many cognitive processes involved in the WCST (Nyhus
and Barceló, 2009). Improvement on the Finger Tap Test, a
measure of psychomotor speed, has support in the literature
as a marker of treatment response, whereby patients who
achieved remission had significantly less baseline psychomotor
dysfunction than subsequent non-remitters (Gallagher et al.,
2007). In our study, although baseline finger tap testing did not

correlate with change in mood over the follow up period in the
sample as a whole, the dominant hand finger tap discriminated
responders from non-responders, suggesting that psychomotor
speed may be an independent predictor of treatment response
and a potential biomarker to evaluate pre-treatment outcome.
A realistic interpretation of these results is that the variables
in this model are predictive for our population and would be
worth exploring in a larger DBS cohort considering the small
sample size. These models reinforce the hypothesis that it is
possible to predict response to DBS treatment and that the WCST
Total Errors and Finger Tap Dominant Hand scores may play an
informative role.

Psychomotor symptoms are regulated by dopamine rich
striatal brain regions important for motor control (Meyer et al.,
2006) and have been shown to predict response to antidepressant
medications (Caligiuri et al., 2003; Herrera-Guzmán et al., 2008).
This is supported by reports of patients with greater psychomotor
retardation demonstrating higher D2 binding (Ebert et al., 1996;
Meyer et al., 2006), as well as correlations between D2 binding
and symptom severity (Larisch et al., 1997; Lehto et al., 2008).
Therefore, subsequent non-responders to SCG DBS may exhibit
greater deficits than responders in dopaminergic symptoms such
as anhedonia and psychomotor retardation. The SCG has direct
connections to areas that are involved in the dopaminergic
networks implicated in psychomotor processing such as the
ventral striatum, nucleus accumbens, the amygdala and the
prefrontal cortex (Johansen-Berg et al., 2008). Our finding that
reduction in the severity of psychomotor retardation predicts
response to DBS suggests that SCG DBS may have a positive effect
on dopamine function. An alternate explanation of these findings
is that DBS to SCG may also impact activity of the supplementary
motor area, which plays a role in psychomotor retardation.
Modulation of this region may represent another pathway
to mediating changes in willed action that are demonstrated
through neurocognitive tests such as the Finger Tap Test.

Further support for the role of psychomotor retardation in
depression comes from a Single Photon Emission Computerized
Tomography (SPECT) study, in which dopamine D2 binding
in MDD patients was positively correlated with motor speed
and negatively correlated with verbal fluency, independent
of mood rating (Shah et al., 1997). Changes in the plasma
levels of dopamine precursors correlated with HRSD-17 scores,
cognitive disturbance and retardation factors (Martinot et al.,
2001). Three functional imaging studies clearly demonstrated
a striatal dopaminergic disturbance during depression, which
was most prominent when patients displayed motor retardation
(Shah et al., 1997; Martinot et al., 2001; Meyer et al., 2006),
corroborating findings of therapeutic effects of dopaminergic
drugs in depression associated with psychomotor symptoms
(Mann and Kapur, 1995).

Limitations
Despite the generally positive findings regarding cognitive
outcomes, certain limitations of the study must be acknowledged.
This was an open label study with a small sample size which
thereby limits the predictive analysis. While the current findings
are promising, replication in a larger sample is necessary
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in order to establish a reliable neurocognitive predictor of
response to DBS. In addition, the use of multiple two-sample
t-test due to the small sample size should be acknowledged as
a limitation. Practice effects must also be taken into account
and may have contributed to some extent to the improvements
noted at the 12 month follow-up. While attempts to minimize
practice effects were in place, including selecting memory and
verbal fluency tasks with alternate versions, as well as other
tasks known to be less sensitive to practice after long test-
retest intervals (e.g., Finger Tap, Stroop Test), non-specific and
test specific practice effects could explain the improvement
from baseline to follow up on some tasks. However, these
potential practice effects do not account for the predictive
nature of the finger tap test result that discriminates responders
from non-responders. While there was no correlation between
dose change and neuropsychological performance, the exact
role played by medication change is uncertain. The modeling
methods used in this paper are a preliminary proof of concept
that would usually be used for studies with a larger sample
size.

The strengths of the study lie in its longitudinal design
and the fact that there remain few studies on the longitudinal
neuropsychological effects of DBS for TRD. The current results
suggest that most cognitive deficits in this population are separate
from the impact of mood, and that the SCG DBS treatment may
also provide positive benefits in executive and motor functioning
to those suffering from TRD. Finally, the present findings are
the first to demonstrate baseline cognitive performance as a
preliminary predictor of treatment response with SCG DBS.
There appears to be converging evidence that psychomotor speed
may be a viable predictor though due to the limitations described
above, the findings in this study would benefit from replication in
an adequately powered sample.
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