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We tested the applicability and signal quality of a 16 channel dry electroencephalography

(EEG) system in a laboratory environment and in a car under controlled, realistic

conditions. The aim of our investigation was an estimation how well a passive

Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The

evaluation considered speed and accuracy of self-applicability by an untrained person,

quality of recorded EEG data, shifts of electrode positions on the head after

driving-related movements, usability, and complexity of the system as such and wearing

comfort over time. An experiment was conducted inside and outside of a stationary

vehicle with running engine, air-conditioning, and muted radio. Signal quality was

sufficient for standard EEG analysis in the time and frequency domain as well as for

the use in pBCIs. While the influence of vehicle-induced interferences to data quality

was insignificant, driving-related movements led to strong shifts in electrode positions. In

general, the EEG system used allowed for a fast self-applicability of cap and electrodes.

The assessed usability of the system was still acceptable while the wearing comfort

decreased strongly over time due to friction and pressure to the head. From these results

we conclude that the evaluated system should provide the essential requirements for

an application in an autonomous driving context. Nevertheless, further refinement is

suggested to reduce shifts of the system due to body movements and increase the

headset’s usability and wearing comfort.

Keywords: autonomous driving, passive BCI, EEG, usability, ERP

INTRODUCTION

Driving has become a part of everyday life, which makes the drive to work or for recreational
activities a simple routine task. However, the effects of the mental workload and effort required
by driving often go unnoticed. A study by Borghini et al. (2014) found that mental workload,
fatigue, and drowsiness are significantly increased while driving. Especially long periods of constant
driving, as often performed by professional truck drivers, result in an accumulation of these effects
over time, decreasing the driver’s cognitive capabilities and driving performance, thus increasing
the chances of traffic accidents.
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The field of automotive human factors and ergonomics is
concerned with minimizing safety risks depending on human
performance in driving tasks. Today, many automations and
small devices have found their way into cars in order to help
reduce the mental workload required to operate the vehicle
(Young and Stanton, 1997; Tadaka and Shimoyama, 2004; Ma
and Kaber, 2005). A different approach aims to fully or at least
partly automate the task of driving, so the human driver can be
eliminated as a risk factor in most instances. The scientific field
working toward this goal is called Autonomous Driving (Franke
et al., 1998) and has grown more important over the past years.

One particular problem with autonomous driving is the
question of responsibility: Who is accountable in case of an
accident? Most countries still define the human driver of a car
as the entity responsible for anything that happens while driving
(Beiker, 2012). Therefore, experts believe it would be best to only
automate some of the tasks that arise while driving, but to leave
the most complex tasks to a human driver for the time being.
According to Sukthankar et al. (1997), the task of driving consists
of different levels, which are the strategic level (route planning),
the tactical level (maneuver selection), and the operational level
(maneuver operation). Automation of the lowest, operational
level is thus legally the least complex, and also technically possible
(Dickmanns and Zapp, 1987; Pomerleau, 1992). Driving along
a highway could relatively easily be automated, but once the
traffic situation changes, the human may be required to take
over control. This approach thus requires an important exchange
of information between the human driver and the automated
system: The human must be timely and appropriately informed
of the pending takeover. As stated by Llaneras et al. (2013), people
tend to focus their attention on secondary tasks once the primary
objective of driving has been taken over by automation. As a
consequence, in a situation where the car drives autonomously,
a signal given by the system to indicate the necessity for takeover
might be missed, or might catch the human by surprise. This may
result in loss of control over the vehicle.

As a solution to the above problem, the car could monitor
the driver’s mental state, and adapt the notification process
to the current context. A completely attentive driver might
quickly perceive and understand even simple signals, whereas
for example a sleeping driver may need to be woken carefully
by the car in advance of leaving the highway. Passive brain-
computer interfaces (passive BCIs, Zander and Kothe, 2011)
are promising approaches for such monitoring and automated
adaptation (Zander et al., 2011). This technology enables real-
time detection of mental conditions like fatigue, workload, and
degree of relaxation (Blankertz et al., 2010; Gerjets et al., 2014),
which offer a good estimate of whether or not the driver is
ready to take over control of the car. But the passive BCI
approach during autonomous driving is not limited to this. More
general information—like mood or situational awareness—and
also very specific information about the subjective interpretation
of the current context—that might be reflected in the driver’s
brain as error responses—could be assessed by the passive
BCI (Zander and Jatzev, 2012). This information could then
be integrated in the autonomous decisions of the car. The
car learns how the driver interprets the context and gains a

degree of context-awareness by utilizing the driver’s brain as a
sensor.

Passive BCIs are commonly based on electroencephalography
(EEG). Traditional EEG systems are relatively cumbersome to
apply and use, requiring preparation of the skin, application of
conductive gel, and cleaning of the cap afterwards. To make
EEG applicable for non-scientific uses, e.g., to be used by drivers,
its application and handling needs to be as easy as possible.
This is why alternative electrode systems (e.g., described in
Zander et al., 2011; Liao et al., 2012) are an important focus
of autonomous driving related BCI research. Primarily, the use
of gel is eliminated, and the caps containing the electrodes are
made for quick application, resulting in less preparation time
and, ideally, more comfortable for the wearer. Recent laboratory
studies provided evidence of good signal quality, comparable to
that of standard gel-based electrodes. It is still unclear however
that the signal quality can be maintained in real-world contexts.

This study focused on evaluating the use and application
of a dry electrode EEG system in the context of a running
vehicle. It was assessed how easy it is for untrained person to
apply the system on their own head, how well the electrodes
can be positioned and remain in place, and whether the signal
quality is sufficient for BCI usage when the system is self-applied.
Two common features in the EEG, an N200-P300 ERP and the
parietal alpha rhythm, were analyzed as examples of signals that
potentially can be used in a passive BCI application. Furthermore,
interference in the EEG signal resulting from usage inside a
running car—a noisy environment—was investigated. Finally,
wearing comfort over a prolonged period of time as well as
general user acceptance were evaluated.

MATERIALS AND METHODS

Participants
Ten participants, five male, participated in the experiment. The
mean age was 28 years (SD = 3.4). Two participants reported to
have sensitive skin. All participants gave their written informed
consent to participate in the study and were paid 20 euros as
expense allowance. The overall duration of the experiment was
on average 165min (SD= 39min.), including breaks.

Apparatus
Vehicle
The vehicle we used to evaluate the influence of vehicle-
induced noise on the recorded EEG was a Volkswagen Touran
(year of manufacture 2003). The car was stationary during the
experiments, but had the engine running, the radio switched on
(though muted), and the air conditioning enabled. A 7.6′′ TFT-
display was mounted to the right of the steering wheel near the
center console.

Experimental Room
The experimental room used for baseline recordings was a non-
frequented room at the TU Berlin with constant light, right next
to the parked car. Diversions and disturbances were kept to a
minimum.
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FIGURE 1 | Overview of the used EEG system, the Brain Products

actiCAP Xpress. Image courtesy of Brain Products GmbH.

Computer System
The EEG system was connected to a laptop (Sony Vaio Z, 2012)
and EEG data was recorded using the BrainVision Recorder,
BrainVision RDA (Brain Products GmbH, Munich, Germany),
and LabRecorder (as part of the BCILAB framework, Delorme
et al., 2010). The experimental paradigms were run using SNAP1

(Iversen and Makeig, 2013). To analyze the data, we used the
EEGLAB toolbox (Delorme and Makeig, 2004), an open source
toolbox embedded in MATLAB. For classification we used the
open source toolbox BCILAB (Kothe and Makeig, 2013), also
embedded in MATLAB.

EEG System
The system examined in this study was the Brain Products
actiCAP Xpress dry-electrode EEG system (see Figure 1)
provided by Brain Products GmbH for the duration of the
experiment. The system included 16 active data electrodes plus
one reference and one ground electrode. Electrodes were applied
to one of two differently-sized flexible caps, depending on the
head circumference of the participant (52–58, or 58–64 cm). To
ensure fixation on the participant’s head, a chin belt was attached
to the cap. Each cap provided 78 possible electrode positions
most of the extended international 10% system, with additional
options to set up regions of interest. We used electrode positions
Fp1, Fp2, Fz, FC5, FC6, C3, C4, Cz, CPz, Pz, CP5, CP6, PO3, PO4,
POz, and Oz.

To adjust the system to an individual participant, the
electrodes can be extended to different shapes and sizes by
attaching so-called QuickBits (see Figure 2). The kit used in
the study came with six T-shaped flat tips (with a diameter of
7mm) to be attached to the forehead and earlobes, as well as
32 mushroom-head tips for application on the scalp. These latter
come in different lengths of 8, 10, 12, and 14mm, which can be
attached to the electrodes according to head shape and required
pressure. This enabled a personalization of the system: Optimal

1Simulation and Neuroscience Application Platform (SNAP). Available:

https://github.com/sccn/SNAP.

FIGURE 2 | The different QuickBit types provided with the actiCAP

Xpress. Image courtesy of Brain Products GmbH.

sensor lengths for electrode positions can be noted, stored and
re-applied in follow-up experiments.

Prior to applying the actiCAP Xpress, the electrodes were
cleaned using a disinfectant spray. This was done even in case
the electrodes and sensors had not been used before to remove
dust and particles to improve connectivity.

The electrode array was connected to a V-Amp EEG signal
amplifier (Brain Products GmbH, Munich, Germany), which in
turn was connected to a laptop computer through a universal
serial bus (USB) 2.0.

Experimental Procedure
Experimental Rationale
This study was designed to assess different requirements to an
EEG system for application in real-world driving scenarios. We
defined the following requirements: (1) self-applicability of the
system, (2) impact of interfering noise signals inside a running
vehicle on EEG signal quality, (3) stability of cap and electrode
positions after context-related movements, and (4) usability and
wearing comfort of the system.

The experiment was divided into four blocks covering these
four issues, answering the following questions.

1. How easy and accurate is self-application of the system in
comparison to application by another person? (Block I)

2. How strong is the effect of interfering signals in a running car
on EEG recording? (Block II)

3. How do electrode positions change during typical body
movements inside a car? (Block III)

4. How do participants rate the system’s usability? (Block IV)

Figure 3 summarizes the experimental session. After arrival of
the participant, the experiment was explained and a demographic
survey was conducted. While the cap was personalized by the
investigator by exchanging electrode tips where necessary, the
participant was asked to read the instruction manual of the
system, in preparation for Block I.

Block I: Self-application
Self-application of the cap, as opposed to having the cap fitted to
you by a trained operator, may take a different amount of time
and may affect the positioning of the electrodes and the signal
quality. To estimate these effects, we compared cap application
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FIGURE 3 | Experiment timeline.

in two conditions: Application by the experimenter, and self-
application by the participant. Customization of the cap was not
included here, as it is assumed to be a one-time effort.

Participants were seated in the experimental room, in front of
a laptop. A stopwatch was used to first measure the time required
by the experimenter to apply the EEG cap to the participant’s
head.

Once the cap and ground/reference electrodes were in place,
electrode positions were measured using the Polaris Vicra system
(Northern Digital Inc., Waterloo, ON, Canada), allowing for
measuring 3-dimensional electrode locations.We chose to record
the 16 electrode positions, as well as the inion, the nasion and
the left and right preauricular points. The latter three were
used as coordinate references to allow the transformation of
coordinates taken from different measuring sessions into one
coordinate system to allow comparison (described below in the
section “Analysis Procedures”). To achieve comparable, stable

positions for the reference points in each measurement during
the experiment, we marked them by a small dot on the respective
positions on the participant’s skin using a removable eudermic
marker.

Following this, signal quality was optimized by relatively
fine-grained adjustments to the electrodes. As the system did
not provide an objective measure of signal quality or electrode
contact (e.g., impedance), signal quality was assessed visually.
The signal was monitored using the BrainVision Recorder
software, with all 16 channels displayed at once, set to a resolution
of 50 µV. A display filter was enabled, bandpass-filtering the
visible signal from 0.1 to 40Hz, not affecting the recording. The
duration of this optimization was again timed using a stopwatch.
The resulting signal quality was also recorded, as rated by the
experimenter. The indication for signal quality was the visual
form of the signal on the display, artifacts had to be recognized
visually. The rating followed predefined guidelines and was done
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on a 5-point scale with 5 meaning “perfect signal” and 1 meaning
“no signal at all” (see Figure 4). This rating was done twice: Once
for the signals with the display filter switched on, and once based
on the unfiltered raw signal.

Following this, the cap was removed and participants, who
read the instructions manual, were asked to put on the cap by
themselves, after all of their questions about the procedure had
been answered by the experimenter. Application time was again
measured, as were the electrode positions and the resulting signal
quality.

Block II: EEG Recording
For investigating signal quality in standard EEG analyses we
chose the well-known N200 and P300 components of the visual
event-related potential and the parietal alpha rhythm. Both
time- and frequency domain parameters are well-examined
phenomena in EEG research. Hence, clear expectations about
morphology, topography and signal strength can be drawn, that
build the baseline of comparison for our results.

In order to assess the EEG signal and the possible influence
on it of the electromagnetically noisy environment that is the
car, participants performed in two established experimental
paradigms of BCI research (Zander et al., 2011), once in the
experimental room, and once inside the car. The order of these
two conditions was randomized between participants.

The first paradigm focused on the elicitation of visual event-
related potentials (ERPs) using a standard oddball approach: An

infrequent deviant stimulus sometimes appeared instead of the
frequent standard stimuli (Duncan-Johnson and Donchin, 1977;
see Figure 5). This is a common approach when researching
ERPs referred to as the N200-P300 complex (Polich and Kok,
1995; Linden, 2005). ERP detection during autonomous driving
can be useful, as they may allow a car to detect how drivers react
cognitively to perceived stimuli/information.

On the screen, participants saw a circle divided by lines into
30◦ angles. First, a bar appeared, like a clock’s arm pointing 12
o’clock. This bar then rotated clockwise in discrete steps, once
every second. A standard stimulus had it rotate by 90◦; a deviant
consisted of an initial 60◦ rotation, followed by a 100ms pause
and a 15◦ counterclockwise rotation. After each deviant, the bar
disappeared and reappeared at the 12 o’clock position.

10% of all stimuli were deviants. In total 400 trials were
displayed (360 standard, 40 deviant).

The second paradigm focused on features in the spectral
domain, specifically the parietal alpha rhythm. This feature is
of special interest to autonomous driving, as parietal alpha can
be used as an indicator of whether the participant is currently
in a relaxed state or performing some mentally demanding task
(Berka et al., 2007). It also is a standard example for features in
the spectral domain.

The paradigm (see Figure 6) presented to the participant
was designed to induce changes in parietal alpha activity by
alternating between two states of mind: Engaged and relaxed.
To engage the participant, a six-letter word was presented letter

FIGURE 4 | Examples for signal quality ratings on a scale from one to five. Green colored parts indicate adequate signal quality, yellow parts moderate signal

quality, and red parts unacceptable signal quality.

Frontiers in Human Neuroscience | www.frontiersin.org 5 February 2017 | Volume 11 | Article 78

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Zander et al. Passive BCI for Autonomous Driving

FIGURE 5 | Oddball Paradigm.

FIGURE 6 | Induced Alpha Paradigm.

by letter, with letters appearing on random locations on the
screen amidst visual noise. Each letter was only visible for
1 s. Participants were instructed to read the word. After each
engagement trial, the participant was instructed simply to relax
for 6 s with their eyes open. This relaxation phase was introduced
using an auditory signal and ended by a similar one with lower
pitch.

There were 32 trials of each condition. The order of words in
the engaged condition was randomized across participants.

These two paradigms were presented in fixed order to the
participants in the two conditions (room vs. car).

Block III: Driving-Related Movements
The third block investigated the influence of movements on the
position of the electrodes.

Electrode positions were recorded, using again the Polaris
system mentioned earlier, at the start of this block. Participants
then performed a series of three different types of driving-
related movements inside the car, and the electrode positions
were measured again after each group of movements. Because
measurements were not done inside the car but in a nearby
room, some walking was required. Electrode cables were
bundled together and fixed to the participant’s clothing in
a relaxed way to minimize their strain on the cap while
walking.

To make movements comparable between participants, we
placed markers (sticky notes) at certain places in the car: One
on the left rear window, one above the driver’s seat, one in
the legroom of the front passenger seat and one in the center
of the rear bench seat. Before seating the participant in the
driver’s seat, the markers were shown to them. The EEG system
was not connected to the amplifier during the movements.

All instructions for different movements were given through
pre-recorded audio files played back using a laptop and speakers
inside the car.

Block IV: Usability
To assess the usability of the system, the participants were
asked to fill out a questionnaire right after Block I. This
questionnaire was the System Usability Scale (SUS; Brooke, 1986)
was employed, also used in other BCI related studies prior to
this one (Pasqualotto et al., 2011; Duvinage et al., 2012). SUS is a
standardized questionnaire consisting of ten questions based on
Likert scales with five options ranging from “strongly disagree”
to “strongly agree.” In total, SUS contains five positively and
five negatively formulated questions about the system being
assessed, for example “I think that I would like to use this system
frequently” or “I found the system unnecessarily complex.” From
the answers given, a SUS score is calculated, ranging between
0 (worst possible system) and 100 (best possible system). This
score has to be interpreted taking the individual context of system
usage into account. In contrast to qualitative assessments, the
SUS does not yield any insight into which usability problems
exactly are present within the system. It provides however a quick
and reliable way to determine whether or not major changes are
necessary in order to make the system safe and comfortable to
use.

Additionally, the participants were asked to rate the level
of comfort wearing the system after each of the previously
described experimental blocks (I–III) on a scale from 1 to 10,
one meaning “extremely bad” and ten “very comfortable.” We
acquired these three subjective impressions to gather insight into
how the system’s perceived comfort changed over the course of
the experiment.
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To get an even deeper insight into the comfort of wearing the
system, participants were asked to fill out another questionnaire
after the third experimental block, after roughly 140min
of wearing the system almost constantly. We adapted a
questionnaire for the evaluation of the wearing comfort for
firemen helmets (Fabrizio and Cimolino, 2014), by only keeping
questions deemed fitting to our context. All questions were rated
on a five point Likert scale. In addition to these questions, we
asked two yes-no questions: Whether or not the participant
believed the cap had moved, and whether or not it induced the
feeling of dents on their head. Finally, we asked the participants
to mention any discomfort associated with wearing the system,
like the feeling of pressure on the head, headaches, or nausea.

Analysis Procedures
Block I: Self-application
Comparison of time needed by the experimenter and the
participant to apply the system and to adjust the electrodes was
done by two-sample t-tests.

The signal quality ratings were subjected to a three-way mixed
measures ANOVA with the two within-subject factors visual
filters (no filters vs. 0.1–40Hz bandpass) and electrode (Fp1 vs.
Fp2 vs. vs. Fz vs. FC5 vs. FC6 vs. C3 vs. C4 vs. Cz vs. CPz vs.
Pz vs. CP5 vs. CP6 vs. PO3 vs. PO4 vs. POz vs. Oz) and the
between-subject factor applicant (investigator vs. participant).

Because a total of six different measurements of electrode
positions were taken during the course of this experiment, these
measurements were first transformed into one coordinate system
to allow a unified comparison. To this end, all measurements
were re-referenced to a mean head middle and radius, within
participants, as follows.

1. All coordinates of recording j, j = 1, ..., 6 were referenced to
the head midpoint hmj, which is calculated with the recorded
reference points (nasion nj and left and right preauricular
points, lpj and rpj) by

a. Drawing a line through both preauricular points lpj and
rpj:

Calculate the slope by computing new coordinates

(uj)i : = (lpj)i − (rpj)i, for i = 1, 2, 3 denoting the

scalars of the three-dimensional vector uj.

Define the line by

gj := lpj + rjuj with rj to be determined.

b. Construction of a plane Hj through nj, which is
perpendicular to the line gj:

Find the variables x, y, z to determine the plane equation
for Hj

Hj : (uj)1 x + (uj)2y + (uj)3z := e.

To find e, insert the coordinates of the nasion reference
point nj into the equation

Hj(nj) : (uj)1 (nj)1 + (uj)2 (nj)2 + (uj)3 (nj)3 = e.

c. For the purpose of finding the intersection of the line gj
with the planeHj, insert the coordinates of gj into the plane
equation above and solve for rj:

Hj

(

gj
)

: rj =
e− (uj)1(lpj)1 − (uj)2(lpj)2 − (uj)3(lpj)3

(uj)
2
1 + (uj)

2
2 + (uj)

2
3

.

Inserting rj into the plane equation yields the head
midpoint:

hmj = lpj + rjuj.

2. After calculating the head midpoints hm1 to hm6, we compute

the arithmetic average hm over all recordings as the final
reference point in order tominimize the error ofmeasurement
in the system.

3. The deviation of the recorded head midpoint hmj to hm is
calculated for each recording:

dj := hmj − hm , j = 1, ..., 6.

4. Then, all recorded electrode positions (epk)j, k = 1, ..., 16

are re-referenced to hm by addition with dj and the euclidean
distance edj1j2 between different recordings j1, j2 is calculated:

(dj1j2 )i := ((epk)j1 + dj1 )i
− ((epk)j2 + dj2 )i

,

edj1j2 : =

√

(dj1j2 )
2
1 + (dj1j2 )

2
2 + (dj1j2 )

2
3

The value used for comparison of different recordings j1, j2 was
this euclidean distance edj1, j2 .

For Block I, recorded positions from the investigator-applied
cap were compared to the positions from the self-applied cap.
Mean differences of electrode positions were then compared to
the expected value of no difference in positions using a one-
sample t-test against zero.

Block II: EEG Recordings

Oddball paradigm: ERP analysis
EEG data was first preprocessed by applying a bandpass-filter
from 1 to 30Hz, retaining all frequencies relevant for later
analyses. Then, epochs of 1100ms were extracted, starting 100ms
before stimulus onset of the standard and deviant events. Baseline
correction was performed with a 100ms pre-stimulus interval.

To compare event-related activity between car and indoor
recordings, amplitudes and latencies of the N200’s and P300’s
were extracted.

First, the indoor condition was used as a baseline as it
conforms to laboratory conditions. Inspection of the grand
average revealed a global negative minimum at 300ms over
the centro-parietal lead (Pz) and a global positive maximum
at 400ms over the centro-central lead (Cz). Based on these
peaks, a search window was defined around 300 ± 70 and
400 ± 70ms to search for maxima in the individual averages.
Once for each individual the global peaks were identified, the
peaks on individual channels were identified using a ± 25ms
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window around the individual global peak. Mean amplitudes and
latencies were extracted for all channels. This procedure resulted
in a 4 x 16 vector for each participant, consisting of the mean
amplitudes and the latencies of the two components at each
channel.

For comparison of mean peak amplitudes two repeated
measures ANOVAs were performed. Mean amplitudes from
electrode Pz were used for the negativity and from Cz for the
positivity. Each 2x2 ANOVA had the two within-participant
factors recording condition (indoor vs. car) and stimulus
(standard vs. deviant).

In order to examine disparities ofmean peak latencies between
conditions (indoor vs. car), mean difference peak latencies were
calculated by subtracting the negative from the positive peak
latency. The mean difference was taken per participant for the
two conditions and subjected to a paired sample t-test.

To test for equivalence of EEG measures between recording
conditions the two one-sided tests (TOST, Schuirmann, 1981,
1987; Westlake, 1981) procedure was applied to mean peak
amplitudes and mean difference peak latencies with an epsilon
of the standard deviation of the indoor condition, which was
regarded as the control group (R-package “equivalence” May 14,
2016; V0.7.2). A p-value of 0.05 was taken as the significant
threshold for all TOST.

Induced alpha paradigm: frequency analysis
To compare oscillatory features between car and indoor
recordings, three different measures were taken: The
power spectral density function covering 0.1–40Hz, single
measurements of the band power in the alpha band, and the
time course of the alpha band power during the 6-s trials of the
paradigm (engaged vs. relaxed).

Fluctuations in alpha power occur with a broader distribution
over posterior areas of the scalp (Sauseng et al., 2005). Since we
were interested in parietal alpha as potential indicator of mental
load, analyses were restricted to five posterior electrodes, namely
Pz, PO3, PO4, POz, and Oz. The data was bandpass filtered from
0.1 to 40Hz and time epochs of 6 s were selected, covering each
full trial.

Power spectral densities (PSD) were calculated for each entire
epoch and averaged per participant, resulting in 2 x 2 x 5 PSD
distributions for each participant (2 experimental conditions x 2
mental states x 5 channels). We used these participant-individual
PSDs as well as the averaged PSDs over all participants (grand
average), resulting in a total of 11 (2 x 5+1) PSD-distributions
for each experimental condition.

Individual and grand average Pearson Correlation of the PSD
in the frequency band of 0.1 Hz to 40Hz were calculated for
each electrode between indoor and car conditions and tested for
significance using one sample t-tests against zero.

The alpha band (7–13Hz) being of prime interest here, we
also calculated a single bandpower value in this frequency range
for each participant, electrode, and trial. We used epochs of 4 s
length, starting 2 s after stimulus onset. Logarithmic variances
of each trial per electrode of each participant were calculated
and normalized with the maximum value of each electrode.
These measures were then averaged over all trials, resulting in

a normalized mean alpha band power for each participant under
each experimental condition on the five investigated electrodes.
Effects between recording conditions, stimuli and electrodes were
investigated in a 2 x 2 x 5 ANOVA with the three within-
participant factors recording condition (indoor vs. car), stimulus
(standard vs. deviant) and electrode (Pz vs. PO3 vs. PO4 vs.
POz vs. Oz). The factor electrode is a repeated measure here as
EEG measures at one electrode depend on values measured by
other electrodes. Again, the TOST procedure with an epsilon of
the standard deviation of the indoor condition was applied to
normalized mean alpha band power values to test for equivalence
between recording conditions.

As a third measure, the time course of the band power in
the alpha band was used. It was calculated by shifting a 500ms
window over each single trial and calculating the band power
for each window position. To avoid leakage effects, the window
was multiplied with a Gaussian bell curve of the same size.
Afterwards the single-trial measurements were normalized with
themean of all band powers. The normalizedmeasurements were
averaged, resulting in 2 x 5 time courses for each participant (2
experimental conditions x 5 channels). As above, we also took the
grand average into account, resulting in 11 time courses in total
per experimental condition.

To examine the difference in the time course of the
band power in the alpha range between conditions, Pearson
Correlations were calculated for each participant, channel and
condition.

BCI Analysis of both paradigms
BCILAB’s built-in classification approaches were used to evaluate
the offline single-trial accuracies as an estimate of potential online
performance.

For the oddball paradigm, data was bandpass filtered from 0.1
to 15Hz and downsampled to 100Hz. Epochs of 800ms were
extracted starting at each stimulus marker. A windowed-means
approach (Blankertz et al., 2011) was used to extract features,
using 8 consecutive windows of 50ms starting at 300ms post-
stimulus. As a classifier we used linear discriminant analysis, LDA
(Webb, 2002). Mean ERP classification error rates of all eight
participants were subjected to a paired samples t-test.

Logarithmic band power was used for feature extraction (Solis-
Escalante et al., 2010; Zander et al., 2011) of the data of the
second paradigm. This was applied to epochs of 6 s, as above. We
performed a (10 x 10)-fold cross-validation, and classified using
LDA. Mean classification error rates were subjected to a paired
samples t-test.

Classification error rate results from both paradigms were
subjected to a TOST procedure with an epsilon of the standard
deviation of the indoor condition to test for equivalence between
recording conditions.

Block III: Driving-Related Movements
Each of the three movement groups had one electrode position
measurement before, and one after it. Mean differences of
electrode positions prior to and after each movement group were
compared to the expected value of no difference in positions
using a one-sample t-test against zero.
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Block IV: Usability
The System Usability Scale was interpreted following the
guidelines set by Brooke (1986). To determine the resulting SUS
score of the system, all given answers were weighted accordingly
and added up. This resulted in a total score per participant, which
then was multiplied by the factor 2.5.

After experimental blocks I to III, participants were asked to
give a subjective estimate of how comfortable the system felt. The
median of the comfort ratings of all participants was used as the
overall comfort rating here. To test for differences between the
three time points, a Wilcoxon Signed-rank test was applied. The
wearing comfort questionnaire was evaluated descriptively.

RESULTS

Block I: Self-application
Application Time
A two-samples t-test indicated that the mean time needed
for application of the cap did not differ significantly between
experimenter (M = 123.2 s, SD = 43.8) and participants (M =

104.9 s, SD = 49.0), t(9) = 0.880, p = 0.391, though showing a
tendency that participants perform faster. Mean times needed for
adjustment of electrodes also did not differ significantly between
investigator (M = 256.3 s, SD = 221.3) and participants (M =

310.2 s, SD= 285.1), t(9) = 0.472, p= 0.642, showing a tendency
that experimenters are faster.

Electrode Signal
The three-way mixed measures ANOVA on signal quality ratings
revealed no significant main effect of applicant, F(1, 18) = 0.341,
p = 0.341, η

2 = 0.019. The main effect of filter was significant,
F(1, 18) = 66.861, p = 0.000, η

2 = 0.788. Since the main effect
of electrode violated the assumption of sphericity Greenhouse-
Geisser corrected values were used. The main effect electrode was
significant, F(5.167, 93.012) = 2.876, p = 0.017 η

2 = 0.138. None of
the interaction effects were significant, all ps > 0.281.

Electrode Positions
The t-test against zero performed on mean differences of
electrode positions (M = 13.76mm, SD = 5.12mm) between
investigator- and self-applied cap yielded significance, t(9) =

8.498, p = 0.00001. The electrode positions varied most on
the midline of the head, with 15.5mm variation (averaged over
all 10 participants) at Oz to 16.1mm averaged variation at Fz.
This could be due to the structure of the cap: It has two holes
for the ears, so electrodes in this area are fixated more clearly
than electrodes elsewhere. Electrodes on the forehead can be
positioned up to 1 cm higher or lower without any obvious effects
on the cap like inconvenience or ill-fittingness, so it was hard for
both participants and investigators to position the cap correctly
around the midline of the head (see Figure 7).

For Block I, recorded positions from the investigator-applied
cap were compared to the positions from the self-applied cap.
Mean differences of electrode positions were then compared to
the expected value of no difference in positions using a one-
sample t-test against zero.

FIGURE 7 | Shifts in electrode positions after self application in mm

compared to application by investigator.

Block II: EEG Recordings
Due to software problems on a laptop EEG data of two
participants had to be excluded. Analyses of the EEG data were
based on the remaining eight participants.

Oddball Paradigm: ERP Results
Grand average ERPs from the oddball paradigm are depicted in
Figure 8. The repeated measures ANOVA performed on mean
amplitudes of the negativity measure yielded significance for the
main factor stimulus, F(1, 7) = 21.745, p = 0.002, η

2 = 0.756.
Amplitudes of the deviant stimuli (M = −5.44 µV, SD = 6.21
µV) were more negative than in standard stimuli (M = −0.01
µV, SD = 2.66 µV). The main factor environment was not
significant, F(1, 7) = 0.101, p = 0.760, η2 = 0.014. There was also
no significant interaction, F(1, 7) = 0.261, p = 0.625, η2 = 0.036.
Results of a TOST procedure with an epsilon of the standard
deviation of the indoor condition were not significant (mean
difference = 0.145; epsilon = 3.95; confidence-interval: −6.79 to
7.08; df = 7; p= 0.166).

For the positivity measure there was no significant main
effect of stimulus, F(1, 7) = 5.001, p = 0.060, η

2 = 0.417. The
main effect environment also was not significant, F(1, 7) = 2.767,
p = 0.140, η

2 = 0.283. The interaction between stimulus and
environment was significant, F(1, 7) = 31.800, p = 0.001, η

2 =

0.820. Amplitudes of the deviant trials were higher indoors (M =

9.54µV, SD= 9.05µV) than in the car (M= 5.18µV, SD= 10.57
µV), while amplitudes in standard trials indoors (M = 0.02 µV,
SD = 1.25 µV) were only slightly smaller than in the car (M =

0.92 µV, SD= 2.27 µV). Due to this significant interaction effect
no TOST was performed.

Results from the t-test performed on mean peak latency
differences of the indoor (M = 85ms, SD = 46.3ms) and the
car condition (M = 101.5ms, SD= 75.1ms) were not significant
(p= 0.569). The TOST procedure with an epsilon of the standard
deviation of the indoor condition showed no significance for
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FIGURE 8 | Grand average ERPs of the indoor condition (top left) and the running car condition (top right) on channel Cz. Deviant (bottom left) and standard

(bottom right) ERPs in comparison between indoor and car condition.

mean peak latency differences (mean difference = −16.5; epsilon
= 46.3; confidence-interval:−68.8 to 35.8; df = 7; p= 0.158).

Induced Alpha Paradigm: Frequency Results
All individual correlation values for power spectral densities
between conditions were higher than 0.79 on all five electrodes,
with a mean correlation value of 0.97 (SD = 0.046). All t-tests of
these correlations against zero were significant with ps < 0.0001.
For the grand average, correlation values between indoor and car
condition were both higher than 0.989, with a mean of 0.997 (SD
= 0.004). T-tests against zero yielded significance (ps < 0.0001)
for both conditions (engaged/relaxed).

The three-way repeated measures ANOVA with within-
subject factors recording condition (p = 0.061), stimulus
(p = 0.177), and electrode (p = 0.24) performed on mean
alpha band powers was not significant on main or interaction
effects, with non-significant interactions (all ps > 0.272). The
TOST procedure with an epsilon of the standard deviation of the
indoor condition assigned to mean alpha band powers showed
significance on electrodes PO4 (mean difference = 0.049; epsilon
= 0.129; confidence-interval: −0.031 to 0.128; df = 7; p = 0.049)
and Oz (mean difference = 0.001; epsilon = 0.127; confidence-
interval: −0.079 to 0.076; df = 7; p = 0.009). The TOST was not
significant for electrodes PO3, POz, and Pz, all ps > 0.340.

Alpha band time course (see Figure 9) correlations between
indoor and car condition yielded a mean correlation of r = 0.27
for the relaxed condition (Pz: r = 0.43, PO3: r = 0.26, PO4: r =

0.29, POz: r = 0.30, Oz: r = 0.09). Correlations in this condition
were significant on all five electrodes for five participants (ps <

0.00001), on four electrodes for one participant (ps < 0.005), and
for the other three participants on three electrodes (ps < 0.021).
In the engaged condition the mean correlation of all participants
was r = 0.23 (Pz: r = 0.34, PO3: r = 0.19, PO4: r = 0.18, POz:
r = 0.31, Oz: r = 0.14). Tests yielded significance of correlations
on all five channels for three participants (ps < 0.043). For three
participants correlation was significant on four channels (ps <

0.00001) and for two participants on three electrodes (ps <

0.00001).

BCI Results of Both Paradigms
A paired samples t-test indicated that the error rates for ERP
classification in the indoor condition (M = 0.126, SD = 0.086)
did not differ significantly from the error rates in the car
condition (M = 0.145, SD = 0.116), t(7) = −0.68149, p =

0.518. Furthermore, the TOST procedure with an epsilon of
the standard deviation over participants in the indoor condition
confirmed significant equivalence classification results in the two
recording conditions (mean difference = 0.018; epsilon = 0.086;
confidence-interval:−0.032 to 0.069; df = 7; p= 0.020).

A paired samples t-test indicated that the error rates of band
power classification for the indoor condition was lower (M =

0.283, SD = 0.160), but did not differ significantly from the
error rates in the car condition (M = 0.351, SD = 0.137), t(7) =
−1.608, p = 0.152. The TOST procedure with an epsilon of the
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FIGURE 9 | Grand Averages of the alpha band time courses for relaxed and engaged conditions indoors and in the car. For the red and the green curve,

displaying the relaxed conditions, a similar pattern starting 1 s after onset of stimulus presentation is observed. Similarities over time are also apparent for the engaged

conditions, represented in the black and blue curve. Clear co-variation of indoor and in car alpha time courses for both relaxed and engaged conditions is proven by

high correlation between the signals.

FIGURE 10 | Shifts in electrode positions after movements of the head (A), the arms (B), and the whole body (C) in mm.

standard deviation over the participants in the indoor condition
confirmed significant equivalence for classification results in the
two recording conditions (mean difference = 0.066; epsilon =

0.162; confidence-interval:−0.012 to 0.144; df = 7; p= 0.026).

Block III: Driving-Related Movements
Figure 10 shows the shifts in electrode positions after each of the
three groups of movements.

After head-related movements the difference between
electrode positions (M = 9.6, SD = 9.1) differed significantly
from zero, t(9) = 3.3237, p = 0.009. The apparent lateralization
of this effect (25.3mm mean variation at CP5 vs. 19.6mm at
CP6) may be due to the direction of the shoulder check.

After performance of arm movements the mean difference
between electrode positions (M = 7.6, SD = 4.8) differed
significantly from zero, t(9) = 5.0241, p = 0.001. Variations were
located mainly to the right side of the head with a maximum of
10.5mm mean variation at PO4. The cause for this may be the
direction of the rotation and/or handedness of participants.

Mean electrode position differences after whole-body
movements (M = 8.4, SD = 6.4) differed significantly from zero,
t(9) = 4.1691, p = 0.002. The greatest shift was on the forehead
with 10.1mm average variation on Fp2 and on the midline of the
head (8.2 and 9.3mm mean variation at POz and Fz). This could
be caused by the cables, which were tied together, but interfered
with the seatbelt nevertheless.

Block VI: Usability
The total SUS score of the system added up to 65. Following
the official SUS score interpretation, this is slightly above the
threshold for an acceptable system.

Due to minor delays during the experiments, the time
points of the additional questionnaires varied slightly for each
participant. On average, questions were answered after 60 (Block
I), 122 (Block II), and 137.5 (Block III) min.

After the first 60min, the system got a comfort rating of 7.5,
which then decreased significantly over the next hour resulting
in a rating of 3 after 122min. In the following quarter of an
hour needed for block III, the comfort rating stayed stable at 3.
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A Wilcoxon signed-rank test showed that there was a significant
difference between the first time point of the rating after 60min
(Mdn = 7.5) and the second rating after 122min (Mdn = 3),
(W = 0, Z = −2.69, p = 0.008). No valid Wilcoxon signed-rank
test could be performed to compare the second and third ratings,
because the number of effective samples was less than 6 after
subtraction of ratings equaled zero for six participants (W = 4,
Z = −0.82, p = 0.625). Rating scores of the first and the third
rating again showed significant differences, (W = 0, Z = −2.67,
p= 0.008).

The six examined items of wearing comfort of the system are
summarized in Figure 11. A feeling of pressure on the head was
rated as the most irritating with a mean score of 2.2. The overall
impression of wearing comfort got a mean score of 2.7, and was
therefore also perceived as bad. The overall weight of the system
on the head was on average rated as the most pleasant aspect of it
with a score of 4.2.

Furthermore, the wearing comfort questionnaire yielded the
following insights. Seven participants complained about dents
and chafe marks on their heads, four about headaches, and
one each about neck pains, nausea, and dizziness. Moreover,
one participant had the subjective impression that the system
had moved over the course of the experiments. None of the
participants reported skin irritations due to wearing the cap.

DISCUSSION

Block I: Self-application
We found that the participants were equally fast as the
experimenter in applying the cap, and equally capable in
optimizing signal quality. We thus conclude that this type of dry
electrode EEG system can indeed be used by individual end-
users. We should note, however, that there was no objective
measure of when the application was finished; it was based on
individual judgements of the experimenter.

We did not investigate the personalization of the cap by
adjusting the length of each electrode pin, because this task needs
to be done only once. Therefore, we did not investigate how easy
it is to personalize the cap while wearing it. Personalization did,
however, take up quite some time. We assume that the QuickBit
approach would benefit from improvement: Continuously
adjustable bits would probably simplify personalization and
optimize the result.

While it is not surprising that the signal quality was rated
better with active display filters, we had assumed that the signal
quality would be better after adjustments by an expert operator
than compared to that adjusted by the participant. This, however,
was not the case: Participants reached a similar, sometimes even
better signal quality. We assume the reason for this to be that
participants had a better feeling for how hard, and where exactly
the electrodes pressed against their heads, allowing them to
fit them even better to the scalp than the experimenter could
without the risk of harming the participant.

For the electrode positions, some variation in the
measurements must be taken into account. The used system
has known variations in measured data points, and for some
electrodes (primarily at the back of the head), the measuring
stylus may have moved slightly due to head shifts that were
sometimes necessary for the measurement. This problem was
addressed mathematically, as described above. It was also not
possible to point the stylus exactly at the electrode’s point of
contact with the skin, but only at the electrode’s body. It remains
unclear, whether or to what extent the differences in electrode
positions we measured, imply that the points of contact changed
as well.

Block II: EEG Recordings
For the oddball paradigm ERP analysis revealed highly similar
morphology of ERPs elicited by deviant stimuli in both recording
conditions. We found highly significant effects for the negative

FIGURE 11 | Mean score of questions about wearing comfort.
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peak in the ERP condition. The deviant trials were significantly
different from the standard trials in both the indoor and the
car condition, showing no difference between conditions. This is
not the case for the positivity. The main effect is not significant.
It should be mentioned though that we have a clear tendency
into the right direction with a p value slightly missing the
threshold criteria of 5%. Peaks of the P300 are reduced in the
car environment as a result of other signals interfering with
the recorded signal in the car. No significant differences were
found between peak latencies between indoor and car recordings.
We conclude that the main information carried in the signal
is comparable for indoor and in car recordings, but its signal
strength is attenuated slightly in the car condition.

For the alpha recordings, we have a slightly more complex
case. We clearly see a correlation between conditions—alpha
values show a similar development over time outside of and in the
car. However, there is no significant difference between relaxed
and engaged trials on average over all participants, which was
expected from the experimental design. When we take a closer
look at the individual values (see Figure 12), we see that some
participants managed to get relaxed in the corresponding task,
while others did not. This explains why we do not get significant
main effects—several participants were not able to relax in the
appropriate condition. This effect can be seen consistently on
both conditions, inside and outside the car. However, we do
perhaps see a tendency on the main effect of condition that, even
though it’s not significant, indicates a small change in alpha power
between recordings inside and outside of the car.

For all comparisons that showed no significant difference
between conditions an equivalence test was performed. Features
of the ERP were not equivalent between conditions while spectral
features were equivalent on some of the tested electrodes.

These results show that even thoughwe do not have significant
differences, the recoded data cannot be taken equivalent. For
strict neurophysiological measurements it hence might be worth
a consideration whether the tested headset should be used or not.

For ERP and spectral data classifications were not significantly
different, and were furthermore clearly equivalent. We, hence,

assume that the evaluated system measured the differences
in cognitive states, well, in both conditions. Despite small
morphological and power differences, classification results were
comparable in both domains. Therefore, a BCI can be applied
with equal reliability to data from both conditions.

The results we found on the EEG components examined
here are as expected from the literature and replicate
results from a previous comparison study (Zander et al.,
2011). Therefore, we conclude that the dry electrode system
investigated here provides comparable data to a conventional
gel-based system when used in an autonomous driving
context.

It still remains unclear whether the results can be fully
transferred to a real-world autonomous driving context where
the car would most likely be moving. A driving car would bring
additional factors like increased vibration from the engine, jerks
due to uneven roads, or inertial effects induced by direction
changes. Moreover, the driving task itself could lead to additional
artifacts, such as stress related sweating on the scalp and the
user scratching their own skin. Also head movements against
the headrest might lead to changes of electrode positions in
a way that was not examined here. Another factor would be
the radio not being muted in a real-world-driving scenario:
Environmental noises between 70 and 120 decibels have been
found to increase the amplitude of measured P300 events (Nam
et al., 2008). Drivers will also be moving e.g. their heads and
hands, which they minimized during data recording. This study
however presents a first step in investigating the applicability
of dry systems in a car environment, revealing initial insights
in a scenario with controlled artifact activity. These results can
form the basis for future studies in active driving study scenarios,
where that control is further relaxed.

Block III: Driving-Related Movements
The results showed that the electrodes shifted in position when
executing different driving-related movements.

The most significant shifts occurred during movements
involving the head directly, primarily at the rear left of the head.

FIGURE 12 | Mean alpha power in relaxed and engaged trials for individual subjects.
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We assume this was due to the shoulder check, which required a
sudden, fast turn of the whole head to the left and back. We can,
however, not be sure as to whether the shoulder check or the look
at the ceiling had more effect on the electrodes positions since
they were measured together as one movement group. Either
way, the resulting differences may well-influence the quality of
the data recorded by the system.

The performed arm movements had less impact on the
electrode positions, though the shifts were still significant.

The third group of movements resulted in the least position
changes for all electrodes although the participants had to
move their whole upper body—including the head. The most
pronounced shifts were observed at the right frontal area. The
instruction to touch the marker in the legroom of the passenger
seat might offer an explanation for this, as the head had to be
moved rather far to the right and down. Also in the area around
the left ear increased shifts in position were observed. Most likely,
this was a result of fastening and unfastening the seatbelt which
may have induced some strain in that area, maybe by pulling on
the cables.

Finally, since the movements were always performed in the
same order (head, arm, and body), order effects cannot be
excluded.

For future use, the cap could be applied e.g., only after the seat
belt has been fastened, which often requires some effort. Since the
cables may also have caused some of the position shifts, a wireless
system is preferable.

Block IV: Usability
The System Usability Scale is a general questionnaire to evaluate
the usability of technical systems, and is not specifically designed
for BCI systems. As SUS provided significant insights in other
BCI-related studies, we decided to use it here as well (Duvinage
et al., 2012; Käthner et al., 2013). Some questions however,
especially about the interaction with the system, did not fit the
current purpose and even confused some of the participants.
The resulting SUS score might therefore not be entirely accurate,
but, we believe, still provides a good indication about the overall
usability of the system in an autonomous driving context.

The evaluation of the wearing comfort was better tuned to
the current context and raised no questions from participants.
The results showed that the first hour of using the system did
not bother the participants much, which qualifies it for short-
term usage at least. After the second hour of using the system,
however, the subjective comfort ratings dropped significantly and
participants began to complain about dents, slight headaches,
neck pain, even nausea and dizziness, which clearly shows that
the EEG system with the current cap design is not suitable for
long-term use. We did not investigate recovery time: How long a
break is needed, before the cap can be comfortably worn again?
This remains an open question.

The most annoying features of the system, according to the
participants, were its rather tight fit onto the head resulting in
the feeling of pressure. The overall weight of the system was, in
contrast, rated to be quite pleasant which might be caused by
the flexible, thin material of the cap. Also, participants rated the
adaptability of the cap as quite high. The cap was rated as being

fixated well, thanks to the chin belt and the holes for the ears
providing a lot of stability–only one participant had the feeling
the cap had moved at all.

CONCLUSION

Concluding in brief, the EEG system allowed for technically
sound recordings, even with car-induced interferences present.
It thus appears to be suitable for passive BCIs in autonomous
driving scenarios, allowing mental states to be detected in real
time.

In only a few minutes, individuals were able to apply and
adjust a pre-customized cap, with the help of a little mirror, like
the rear view mirror of a car. A system to better support the
evaluation of signal quality would be beneficial, however.

According to the system usability scale, the system is at
the edge of acceptability in terms of usability. This may
suffice for professional drivers, who likely stand to gain the
most from autonomous driving and supportive systems, but
room for improvement remains. In particular the reported
discomfort after longer use is unacceptable. Here, major
improvement is necessary to decrease pressure on the scalp
so the system is no longer obstructive and uncomfortable,
hindering the users from focusing on themselves and their
tasks.

Seeing now that EEG technology has made clear progress
toward ease of use and mobile scenarios, we can envision the
application of passive BCIs in the context of autonomous driving.
Passive BCIs can provide essential information about the driver’s
cognitive or affective state, which can be combined with other
sensor data of the car. In that way, the car can adapt to, and
make decisions informed by, individual aspects of the driver. As
passive BCIs do not rely on directed or even conscious actions
of the driver (Zander and Kothe, 2011), the car will still drive
autonomously but gains an additional stream of information,
pertaining to the subjective situational interpretation of the
driver.

For example, we can clearly imagine applications improving
safety and comfort. In cases where the driver is required to take
over control, the communication of this requirement can be
adapted to the current, actual state of the driver. Another scenario
would be the detection of whether or not communicated alarm
signals were perceived and processed by the driver. These are
only a few, simple examples of a broad range of applications to
be thought of.

Moreover the investigated system could be used in a broader
field of scenarios and might be of special interest for the field
of Mobile brain/body imaging (MoBI). The field’s objective is
to acquire neurophysiological recordings of human cognition
in real world environments where subjects perform real-world
tasks. A portable, wireless, high-quality data recording and fast to
prepare dry contact system would prove useful for brain activity
recordings on actively behaving participants (Gramann et al.,
2011, 2014; De Sanctis et al., 2012).

The application of passive BCI during autonomous driving
however provides an exemplary use case for technology that
adapts to the (neuronal) state of its operator during automation
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in general. Such Neuroadaptive Technology is a clear additional
step toward closing the cybernetic loop (Pope et al., 1995).
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