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Upper limb function, essential for daily life, is often impaired in individuals after stroke
and cerebral palsy (CP). For an improved upper limb function, learning should occur,
and therefore training with motor learning principles is included in many rehabilitation
interventions. Despite accurate measurement being an important aspect for examination
and optimization of treatment outcomes, there are no standard algorithms for outcome
measures selection. Moreover, the ability of the chosen measures to identify learning is
not well established. We aimed to review and categorize the parameters and measures
utilized for identification of motor learning in stroke and CP populations. PubMed, Pedro,
and Web of Science databases were systematically searched between January 2000
and March 2016 for studies assessing a form of motor learning following upper extremity
training using motor control measures. Thirty-two studies in persons after stroke and 10
studies in CP of any methodological quality were included. Identified outcome measures
were sorted into two categories, “parameters,” defined as identifying a form of learning,
and “measures,” as tools measuring the parameter. Review’s results were organized as
a narrative synthesis focusing on the outcome measures. The included studies were
heterogeneous in their study designs, parameters and measures. Parameters included
adaptation (n = 6), anticipatory control (n = 2), after-effects (n = 3), de-adaptation (n = 4),
performance (n = 24), acquisition (n = 8), retention (n = 8), and transfer (n = 14).
Despite motor learning theory’s emphasis on long-lasting changes and generalization,
the majority of studies did not assess the retention and transfer parameters. Underlying
measures included kinematic analyses in terms of speed, geometry or both (n = 39),
dynamic metrics, measures of accuracy, consistency, and coordination. There is no
exclusivity of measures to a specific parameter. Many factors affect task performance
and the ability to measure it—necessitating the use of several metrics to examine
different features of movement and learning. Motor learning measures’ applicability to
clinical setting can benefit from a treatment-focused approach, currently lacking. The
complexity of motor learning results in various metrics, utilized to assess its occurrence,
making it difficult to synthesize findings across studies. Further research is desirable for
development of an outcome measures selection algorithm, while considering the quality
of such measurements.
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INTRODUCTION

Neurological disorders affect a significant amount of people
worldwide. Two common disorders are stroke and cerebral palsy
(CP). Stroke occurs due to interruption of the blood supply to
the brain or as a result of ischemia or bleeding (WHO, 2006),
and has a prevalence of ~795,000 new or recurrent events in
the United States each year (Lloyd-Jones et al., 2010). CP is the
most common neurodevelopmental motor disorder in children,
which begins in early childhood and persists throughout lifespan
(Bax et al., 2005), with a prevalence of 2-2.5 per 1,000 live
births (Himmelmann, 2013). A common problem experienced by
these populations is impaired upper extremity function. About
70% of stroke survivors lose motor skills of the paretic arm and
hand (Lloyd-Jones et al., 2010). Even mild impairment results in
significant daily function limitations and has a negative impact
on the quality of life (Lai et al., 2002; Nichols-Larsen et al.,
2005). Thirty-five percent of children with CP are diagnosed with
hemiplegia, with their upper limb usually more affected than
the lower extremity (Wiklund and Uvebrant, 1991). Regaining
optimal upper extremity function is essential for participation
in daily life, and for this reason, is one of the goals of
neurorehabilitation.

During rehabilitation, “a process of relearning how to move
to carry out their needs successfully” (Carr and Shepherd,
1987), patients improve their activity by either development
of compensatory strategies (i.e., generation of the motor task
with alternative movement patterns) or by reacquisition of the
pre-lesion patterns, defined as recovery (Levin et al., 2009).
Despite the difference in the underlying neuronal mechanisms
of compensation and recovery (Tanaka et al, 2011), they
both require learning (Kitago and Krakauer, 2013). Therefore,
a great amount of therapeutic interventions apply motor
learning principles, assuming these principles can enhance motor
recovery and that permanent improvements in motor function
can be achieved by training (Kitago and Krakauer, 2013). Motor
learning was defined as “a set of internal processes associated
with practice or experience, leading to a relatively permanent
change in the capability for movement” (Schmidt, 1988). As
these internal neural and cognitive processes cannot be directly
observed nor measured at the behavioral level, motor learning
can be estimated only by observing the performance (Cahill et al.,
2001; Schmidt and Wrisberg, 2008).

The questions whether neurological patients are capable of
learning and whether they have specific motor learning deficits
are difficult to definitively answer due to the variety of motor
tasks that rely on different learning processes, all associated with

Abbreviations: AMI, active movement index; ARAT, action research arm test;
BAT, bilateral arm training; BBT, box and block test; CP, cerebral palsy; CIMT,
constrained induced movement therapy; CT, continuous tracking; CV, coefficient
of variation; FMA, fugl-meyer motor assessment; FIM, functional independence
measure; ICE international classification of functioning, disability and health; MD,
mean distance; MGA, maximum grip aperture; MS, movement smoothness; MT,
movement time; MV'T, maximal voluntary torque; NMT, normalized movement
time; NMU, normalized number of movement units; nPL, normalized path length;
PV, peak velocity; RMSE, root mean square error; RT, reaction time; SRTT, serial
reaction time task; %TPV, percentage time to peak velocity; WMFT, wolf motor
function test.

various functional and anatomical brain structures (Krakauer
and Mazzoni, 2011; Kitago and Krakauer, 2013). Moreover, the
heterogeneity of patients, some having additional impairments
masking their learning abilities, can make it difficult to
demonstrate learning abnormalities (Krakauer, 2006; Kitago and
Krakauer, 2013).

Several systematic reviews looked into measurable parameters
in the rehabilitation process. Huang and Krakauer (2009)
reviewed studies that explored the change in rehabilitation
outcome as a function of different aspects of the intervention,
such as amount, type, timing, and intensity of practice, and
their effects on post stroke rehabilitation. Because motor learning
is compiled from various processes (Krakauer and Mazzoni,
2011), diverse parameters are used to assess different learning
types and aspects. For evaluation of an intervention’s efficacy
it is important to choose the appropriate measure (Huang and
Krakauer, 2009). Huang and Krakauer (2009) distinguished
between the adaptation and motor skill learning processes,
placing the learning at a higher level of the motor control
hierarchy. Also, various clinical outcome measures of functional
performance [e.g., the Action Research Arm Test (ARAT; Carroll,
1965; Lyle, 1981), the Wolf Motor Function Test (WMFT;
Wolf et al., 1989), Functional Independence Measure (FIM;
Hamilton et al., 1994) etc.] were compared to a measurement
of impairment [the Fugl-Meyer Motor Assessment (FMA; Fugl-
Meyer et al., 1975; Gladstone et al., 2002)] (Huang and Krakauer,
2009). Sivan et al. (2011) identified outcome measures utilized
in robot-assisted exercise therapy in stroke patients. Measures
were clustered based on which domain within the International
Classification of Functioning, Disability and Health (ICF) they
evaluate. From the ICF framework, the patient characteristics and
the reliability and validity of measures, an algorithm for selection
of outcome measures was suggested. Kinematic measures, FIM,
FMA, and the WMEFT were identified as suitable for use in
robot trainings, each for a different ICF domain, severity of
impairment and time since stroke (Sivan et al, 2011). Only
stroke patients undergoing a robot therapy intervention were
included. The time of performance evaluation throughout the
training and the relation of these measures to motor learning
were not focused on. On the other hand, Kantak and Winstein
(2012) highlighted that performance during acquisition might be
transient and influenced by independent factors. They suggested
that implementation of retention or transfer tests, which measure
lasting improvements of motor execution of a skill, are essential
in order to infer learning (Kantak and Winstein, 2012). Overall,
these reviews focused little or not at all on application of common
measurements to understanding the motor learning process.

Currently, there are no standard procedures regarding the
choice of outcome measures (Huang and Krakauer, 2009).
Inaccurate deduction of learning, caused by inadequate metric
selection, might for example suggest a failure of training, when
in fact inaccurate choice of measure is at fault. Moreover,
reliable assessment and understanding of patients motor
learning process may reveal the impaired component within the
process, and therefore facilitate the development and selection
of an adequate and specific treatment to enhance recovery
(Kitago and Krakauer, 2013). The assessments and measures
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of motor learning should demonstrate sensitivity to relevant
change and remain invariable when there is no change in
function.

Our main goal was to review the different parameters
and underlying measures used in available studies to assess
and measure the occurrence of motor learning following
an intervention. We aimed to categorize the different
parameters depending on the type and process of learning
they evaluate, and to present the characteristics of the different
parameters. Understanding the timing, purpose, advantages,
and disadvantages of parameters and measures, will help both
researchers and clinicians to better design studies, evaluate
patients and treatment efficiency, compare interventions and
better understand the underlying mechanisms of recovery. To
the best of our knowledge no such comprehensive collection of
information has previously been done.

METHODS
Search Strategy

PubMed, Pedro, and Web of Science databases were searched
for studies published between January 2000 and March 2016.
For PubMed and Web of Science databases the following key
words were searched: (1) learning OR motor learning OR motor
control AND (2) stroke OR cerebral palsy AND (3) parameter
OR measure OR assessment OR adaptation OR acquisition
OR retention OR transfer AND (4) upper limb OR upper
extremity OR arm OR hand AND (5) rehabilitation OR treatment
OR training. Due to the considerable number of key words,
modification of the search strategy was made for the Pedro
database, to match the database requirements. The following
searches were performed: (1) cerebral palsy AND learning AND
hand (2) cerebral palsy AND motor control and hand (3)
stroke AND learning AND hand (4) stroke AND motor control
AND hand. The key word “hand” was chosen to represent the
upper limb studies, as from overview of the retrieved records,
it included results of most studies performed on the upper
extremity.

Study Selection
To be included in the review, a study had to: (1) involve either
stroke survivors or persons with CP, (2) assess process or type
of learning after an intervention with motor learning principles,
(3) be applicable for rehabilitation, (4) use outcome measures
relevant for motor control, (5) focus on the upper extremity,
(6) be written in or translated to English. Studies were excluded
from the review if the study: (1) did not focus on human
subjects, (2) used only clinical outcome measures, (3) included an
intervention of virtual reality, transcranial magnetic stimulation
or of electric muscle stimulation.

Titles and abstracts of retrieved records were merged into one
database on the reference management software, and duplicates
were removed.

Quality Assessment
Titles and potential abstracts were screened independently by two
researchers (First and last authors). Titles that contained any of

the exclusion criteria were excluded based on title only. Relevant
full text articles and full texts of abstracts that were inconclusive
regarding their relevancy were assessed, and studies that did
not correspond with the inclusion criteria were excluded. Fitting
articles were also extracted from reviews relevant to the topic and
from full text article references. Data regarding studies’ designs
was extracted. All study designs of any methodological quality
were included. Due to our objective to perform a comprehensive
data collection of the various parameters and measures, we did
not factor the strength of experimental evidence provided by the
studies. In addition to studies that examined the efficacy of an
intervention, we included studies that explored the feasibility of
tools, hypotheses regarding mechanisms of learning and recovery
and the implementation of mathematical models. In such studies,
assessment of the methodological quality would yield no benefit,
due to their different objectives. A narrative synthesis of the
literature was performed.

Data Collection and Synthesis

First, all included articles were reviewed. Data was extracted
and compiled from each research on: (1) studies’ characteristics
and methodology, (2) the grouping method, (3) type of
intervention, (4) study protocol (5) outcome measures. We
further gathered information regarding the characteristics of the
outcome measures utilized to assess learning. Parameters utilized
to infer learning were clustered according to the motor learning
principle or form of learning that they assessed. Underlying
measures for each parameter were defined as the measures used
to quantify the parameter.

RESULTS

The database search retrieved 1,029 records. After removal of
duplicates and eligibility assessment of the remaining articles,
32 studies were included in the review. Ten additional studies
were identified by scanning the reference lists of relevant full test
articles and of reviews relevant to the topic. In total, 42 studies
were included in the review (Figure 1).

Table 1 presents the study characteristics and methodological
information of the 42 reviewed studies. Thirty-two of the
studies addressed stroke patients, and 10 examined children or
adolescents with CP. Our decision to focus on stroke and CP
patients was due to their relatively high prevalence (Bax et al,
2005; Lloyd-Jones et al., 2010; Himmelmann, 2013). Also, they
are a topic of considerable research because of their commonly
affected motor skills of the upper extremity (Lai et al., 2002;
Nichols-Larsen et al., 2005; Lloyd-Jones et al., 2010). Twenty-
one studies trained and assessed learning of the paretic hand,
seven studies of the less affected hand, and in 14 of the studies
both hands were either trained, evaluated or both. In 16 of the
35 studies that assessed the motor learning by examining only
the affected or both hands, the affected arm was reported to
be supported against gravity, in the remaining studies the arm
was not supported. Additionally, 17 studies reported minimizing
compensatory strategies of the upper limb or trunk (by a belt,
harness etc.). Only two studies (Cirstea and Levin, 2007; Massie
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virtual reality.

FIGURE 1 | Flow diagram of the studies’ selection process for the review.

et al,, 2009) reported measurement of the compensations as part
of the study protocol (Table 1).

The parameters utilized to infer learning varied across
the studies (Table2) and included: adaptation, anticipatory
control, after-effects, de-adaptation, performance, acquisition,
reacquisition, retention, and transfer. Underlying variables used
for measurement of the parameters included kinematic metrics
in terms of timing, position, velocity, and acceleration, dynamic
metrics of force generation, measures of accuracy, consistency,
dexterity, and coordination. In all apart from three of the
reviewed studies (Patton et al., 2006; Hemayattalab and Rostami,
2010; Sterpi et al, 2012), additional clinical measures were
mentioned. In 17 of them clinical tests were performed only
before the intervention, or before the beginning of the study
for assessment of subjects’ eligibility for participation (ie.,
based on inclusion criteria). In 13 studies clinical measurements
were taken before and after treatment, and in nine studies
additional correlations were analyzed, or relationships examined,

between the clinical and motor learning measures (Table 2).
Apart from three studies (Hemayattalab and Rostami, 2010;
Geerdink et al., 2013; Hemayattalab et al, 2013), all of the
reviewed studies performed kinematic analysis of some sort for
measurement of the parameter. In 18 of them both the velocity
and accuracy components were evaluated, whereas in nine of
them only the accuracy component of the movement was tested;
12 studies examined only the velocity component (Table 2). Six
of the reviewed studies addressed measures of force generation
(Raghavan et al, 2006; Chang et al., 2007; Colombo et al.,
2008; Mawase et al.,, 2011; Bourke et al.,, 2015; Gilliaux et al.,
2015).

The synthesized data provides an outline of the various
parameters utilized in the studies for assessment of motor
learning through an overview of each study. Parameters are
emphasized in bold throughout the text. Measures used to
assess the parameter are stated for each study, and underlined
throughout the text.
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Assessment of Adaptation and
Anticipatory Control

Six of the reviewed studies examined the adaptation process
(Dancause et al., 2002; Takahashi and Reinkensmeyer, 2003;
Patton et al., 2006; Scheidt and Stoeckmann, 2007; Masia
et al, 2011; Bourke et al, 2015). Two studies assessed the
predictive control (Raghavan et al, 2006; Mawase et al,
2011).

Patton et al. (2006) and Takahashi and Reinkensmeyer (2003)
evaluated stroke subjects performing robotic reaching movement
training. A baseline phase without perturbations was followed
by a learning phase with constant exposure to forces. Then,
after-effects were measured by a catch trial phase that included
intermittent removal of the force field. Finally, when forces were
completely removed (i.e., washout period), de-adaptation was
assessed (i.e., tendency of the after-effects to disappear). Patton
et al. (2006) measured the initial direction error, testing the
effectiveness of the shift of the early part of the movement, and
the average shift in initial direction from the un-perturbed
baseline trials to the after effects catch trials to establish the
adaptation capacity. Takahashi and Reinkensmeyer (2003)
also assessed the adaptation capacity of stroke subjects by the
spatial reaching error from baseline. But the late correction (the
distance from the maximal and final deviation from the reference
path) was also measured, to assess the whole movement
following applied and removed force fields. Performance
improvement was assessed as the reduction in reaching error
from baseline to final phase (Takahashi and Reinkensmeyer,
2003; Patton et al., 2006). Scheidt and Stoeckmann (2007)
examined the adaptation to velocity dependent perturbations
with pseudo-random magnitude, using measurement of the
initial direction error, and the end point accuracy. The
compensatory response acquired during training was measured
by the hand movement onset speed, peak speed point,
penultimate position point (i.e., the moment the speed dropped
below 20% of its maximal value) and by the final position point.
Dancause et al. (2002) explored error correction strategies
following an unexpected spring-like load presented in 30% of
elbow flexion movement trials. The strategies were identified by
comparison between the angular positions and torques of the
initial movement before the load was applied and the correction
following the load. Bourke et al. (2015) assessed the corrective
responses after unexpected external perturbations to the elbow
or shoulder, while instructed to maintain their hand at a spatial
goal. The response was quantified by the posture speed before
the perturbation, deceleration time and maximal displacement
after perturbation, return time to baseline position,
end point error and by the joint velocity offset that represents
the multi-joint coordination. Masia et al. (2011) explored
the ability of children with CP to adapt to randomized
center-out movements while performing reaching movements
toward peripheral targets. For each reaching movement
lateral deviation from straight line, acceleration peak, and
peak and average speeds were measured at familiarization,
force field adaptation, and washout phases. Directional analysis
was performed for all measures to assess the anisotropy index

(i.e., the roundness or flatness of the ellipse). The learning index
was established as the degree of adaptation measured by the
lateral deviations in force field and catch trials.

Mawase et al. (2011) explored the predictive control
of CP subjects using a grasp and lift task of a virtual
object. A sequence of increasing weights appeared randomly
within trials of random weights. The planning of grasp
precision was assessed by measurement of the grip force at
the beginning of the lifting task and by the vertical trajectory
of the object estimating the motor command. The precision
of grasp execution was assessed by measurement of the
temporal coordination. Raghavan et al. (2006) also explored the
planning of precision grasp and precision of grasp execution
among stroke patients. The peak grip and load forces and
the timing and efficacy of grip load force coordination were
measured respectively.

Assessment of Performance and Skill

Acquisition
Chen et al. (2012) examined the reaching
performance of children with CP by measurement

of reaction time (RT), normalized movement time (NMT),
normalized number of movement units (NMU) and the
peak velocity (PV). Three studies assessed the performance
of stroke patients performing a reaching movement task
following an intervention (Wu et al., 2007; Caimmi et al., 2008;
Durham et al., 2014). Wu et al. (2007) measured the RT, PV,
movement time (MT) and the total displacement. Caimmi et al.
(2008) measured the movement duration, end of movement
angle, mean angular, and target approaching velocities,
consistency of the target approaching and the movement
smoothness (MS). The study objectives were to examine
whether kinematic analysis is a sensitive and reliable
measure, whether it can identify the mechanisms leading
to improvement and quantify the functional improvement.
Durham et al. (2014) measured the movement duration,
PV, percentage time to peak velocity (%TPV), or to peak
deceleration and to peak aperture, peak aperture size, peak
elbow extension, and the MS. Wu et al. (2011) assessed the
performance of stroke patients during pressing a desk bell and
pulling a drawer tasks by measurement of the NMT, NMU,
PV, percentage of movement time where peak velocity occurred,
and the MS. Christopher and Johnson (2014) examined
the performance of stroke patients performing a
drinking task by measuring time to completion and
the MS. Aluru et al. (2014) evaluated the performance
of stroke subjects by measuring the movement speed,
electromyographic activity of wrist extension, activation of wrist
extensor and flexor, and co-activation of antagonist muscles
during a wrist flexion-extension task.

While Wu et al. (2007), Aluru et al. (2014), Caimmi et al.
(2008), Christopher and Johnson (2014), and Durham et al.
(2014) studied only the performance, which is an individual
execution of a skill (Krakauer and Mazzoni, 2011; Kitago and
Krakauer, 2013), four studies (Thaut et al., 2002; Colombo
et al., 2008; Massie et al., 2009; Geerdink et al., 2013) explored
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the skill acquisition, which depends on extended practice
of the performance (Krakauer and Mazzoni, 2011; Kitago
and Krakauer, 2013). Colombo et al. (2008), Thaut et al.
(2002) assessed the performance change of stroke patients’
reaching movements. Colombo et al. (2008), with the purpose
of better understanding the learning mechanisms of stroke
patients, measured the efficacy [the active movement index
(AMI)], accuracy [mean distance (MD) from theoretical path],
efficiency [normalized path length (nPL)], MS, MT, and
the force control (error in orientation of force generation) of
reaching movements. Massie et al. (2009) measured
the trajectory variability, MT, reach velocity of reaching
movements and the difference in compensatory strategies
during treatment. Thaut (2002) measured the
movement durations, arm kinematics, variability of timing,
reaching trajectories, and rhythmic synchronization. Geerdink
et al. (2013) assessed the learning curve of manual dexterity
of children with CP to establish the time during the
intervention when maximal effects were reached using the
box and block test (BBT) (counts the number of blocks that are
transferred with a single hand from one compartment to another
within 60 s).

et al

Assessment of Transfer and Retention
Retention and transfer tests vary in the information received
regarding the obtained learning. The transfer test assess a skill
that was not practiced, whereas the retention test examines the
trained task after a time interval (Schmidt and Lee, 2004; Kantak
and Winstein, 2012).

Six studies explored whether trained movement generalized
to untrained movement using transfer tests (Dipietro et al,
2007, 2009; Senesac et al., 2010; Dipietro et al., 2012; Krebs et al.,
2012; Kitago et al., 2015). Dipietro et al. (2007, 2009, 2012),
and Krebs et al. (2012) examined the generalization of trained
reaching movements to untrained circle drawing movements
by measurement of the axes ratio metric (ie., indication
for shoulder-elbow coordination). Additionally the studies
measured speed profiles, MS, and measures of submovements
[i.e., discrete ballistic movements that are a part of a more
complex movement (Rohrer et al, 2004)] (not all measures
were used in all studies, see Table 2). Dipietro et al. (2007) also
examined changes in flexor-extensor abnormal synergies by
measuring the joint angles correlation metric (independence of
elbow and shoulder movements), orientation (best fitting line of
hand path) and the major and minor axes of the drawn ellipse.
Senesac et al. (2010) assessed the spatial generalization
of improved proximal inter-joint coordination to two
untrained reaching tasks, one spatially similar and the other
different. Reach end-point kinematics (hand path curvature,
time to peak velocity, PV, MS, and acceleration) were measured.
Kitago et al. (2015) measured the reaching trajectories and
their quality (i.e., trajectory analysis), MT, directional error,
MS and and-point accuracy to assess the transfer of trained
goal-directed reaching movements to untrained out-and-back
straight movements. Two studies suggested that motor recovery
after stroke and motor habilitation of children with CP resembles

a motor learning model more than an adaptation model, as the
trained movements generalized to the untrained movements
(Dipietro et al., 2012; Krebs et al., 2012).

While previously discussed studies implemented transfer
tests assessing the generalization from trained to untrained
movements (Dipietro et al,, 2007, 2009, 2012; Senesac
et al, 2010; Krebs et al., 2012; Kitago et al, 2015), Sterpi
et al. (2012) implemented a transfer test that assessed the
generalization of movements trained in a certain workspace
(reaching movements to form a path of a square) to a
different workspace (within and outside the square) of
stroke subjects. The AMI, MT, MD (error of movement
accuracy), nPL (error of movement efficiency) and the MS were
measured. Gilliaux et al. (2015) examined the performance
of children with CP by measuring the amplitude and
coefficient of variation (CV) of straightness for a reaching-as-
far-as-possible task, the speed index metric for reaching toward
a target task, and the CV of jerk and speed metrics for drawing
a square and a circle tasks. In addition, BBT and a wide range
of clinical and functional measures of activity and participation
were performed (see Table 2). As some of the tasks included
movements that were not trained, the described measures
were also included as part of the transfer parameter (Table 2).
Schaefer et al. (2013) measured the performance during a
feeding task by measuring the number of successful repetitions,
defined as spooning and transferring at least one bean
from one cup to another. Transfer was assessed by sorting
(BBT, spatiotemporally similar), dressing (spatiotemporally
different), and dual tasks. The dual task conditions assessed
whether automaticity transferred across tasks, measured by
the difference between the reported and correct number of times
a letter was heard in a sequence of letters.

Four studies examined the effect of different feedback
frequencies on motor skill learning (Cirstea and Levin, 2007;
Hemayattalab and Rostami, 2010; Hemayattalab et al., 2013;
Burtner et al, 2014). Burtner et al. (2014) assessed the
performance accuracy and consistency of an elbow extension-
flexion reversal movement, which were assessed separately on
acquisition at first day, retention (without feedback) and
reacquisition (with feedback) on the second day. Accuracy
was measured using the root mean square error (RMSE)
(i.e., the average difference between the goal movement
trajectory and the participants response), and consistency,
by the variability of the RMSE. Hemayattalab and Rostami
(2010) and Hemayattalab et al. (2013) evaluated new motor
skill learning of children with CP—darts and bean-bags
throwing tasks. The accuracy of scores was measured by the
proximity to a center-peripheral target at acquisition and at
retention, 3 days after practice. Cirstea and Levin (2007)
examined the performance and retention following 1 month
of pointing movements training to the contralateral workspace
by measurement of the angular motions of the elbow and
shoulder joints, the elbow-shoulder interjoint coordination and
by the amount of trunk’s anterior and rotational displacement.
A transfer test included pointing movements toward an
ipsilateral target.
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Molier et al. (2011) examined the effect of position
resistance feedback, provided when a deviation from a
predefined path occurred, during three reaching task
trainings (moving hand; making a curve; lifting hand to
shelf). The average use of the feedback was calculated,
and the difficultly level was established by measurement
of the reached height and diameter of predefined path. In
addition, elbow and shoulder joint excursions, positions, and
coordination, and an isometric strength task for which the
maximal voluntary torque (MVT) were measured during a
task of circular arm movements. The parameters that were
utilized to assess learning were not directly specified in the study.
Therefore, as the circular movements were not trained, we placed
the measures under the transfer principle (see Table 2). The
measured feedback frequency and difficulty level during training
corresponds with the performance change that also may be
addressed as the acquisition parameter.

Kitago et al. (2013) aimed to determine the feasibility
in implementing kinematic measurements (MT, PV,
absolute initial directional error, path curvature, systematic
error, number of submovements) of arm reaching and wrist
pointing tasks, and of clinical measures for understanding
the motor recovery process within 2 weeks after CIMT (i.e.,
retention. Chang et al. (2007) assessed the performance
and retention of stroke subjects after reaching training, by
measuring the PV, %TPV, MT, normalized jerk score,
and limb muscle strength. Chen et al. (2014) assessed
the performance and retention at 3- and 6-months
by examining the speed and dexterity during 8 object
manipulation tasks (Bruininks, 1978), by functional ability
measures (see Table2) and by kinematic analysis (RT,
NMT, MS, PV, maximum grip aperture (MGA), and
the percentage of movement where MGA occurs) during
a reach-to-grasp task. Casadio and Sanguineti (2012) examined
the performance change of stroke patients over a robot-assisted
arm extension task practice. Performance measures (i.e., speed,
precision, and smoothness), retention rate (dependence of
voluntary control on previous trials), learning rate (dependence
of voluntary control of next trials on current trial), assistance rate,
noise (voluntary control not accounted for learning) and
vision bias were measured. Retention was examined by
estimating the correlation between the retention rate during
performance to the percentage change in the FMA 3 months post
the rehabilitation trial.

Motor Sequence Learning

Five studies assessed motor sequence learning of stroke patients
(Boyd and Winstein, 2001, 2004, 2006; Pohl et al., 2006; Orrell
et al., 2007). Two of them included practice of the serial reaction
time task (SRTT), which includes a movement to press one
of four targets when cued. When the correct key is pressed,
the next cue was delivered (Boyd and Winstein, 2001; Orrell
et al., 2007). Boyd and Winstein (2001) assessed learning by
performance change over practice of the median reaction time,
whereas Orrell et al. (2007) assessed the median response time
both during performance and retention. Orrell et al. (2007)
also implemented two transfer tests, once by changing the

motor sequence and by changing the required movement from
index finger only to whole arm movement. Pohl et al. (2006)
examined the performance change during practice of an implicit
motor learning task of stroke patients undergoing a motor task
with random and repeated sequences by the mean response time
and by the CV of response time. To examine the performance
following practice, subjects were requested to perform the
sequence practiced in the repeated conditions once again. In
one study (Boyd and Winstein, 2004) subjects practiced the
continuous tracking (CT) task that included tracking of the
vertical path of a target cursor. The middle third of each
tracking trial was repeated, whereas the first and last third
were random. Reduction in tracking errors measured by the
RMSE and spatial-temporal accuracy were measured to assess
performance change over practice and retention (Boyd and
Winstein, 2004). In the final study subjects practiced both the
SRTT and CT task (Boyd and Winstein, 2006). Learning was
inferred by the median response time and RMSE respectively, at
performance and retention.

DISCUSSION

The purpose of this review was to identify the different
parameters and the variety of measures utilized in the literature
to assess motor learning, and to categorize them based on
the learning type and process they examine, while taking into
consideration the patients’ features and the studies’ methodology
and intervention. Over the past 15 years, 42 studies were
identified as directly assessing the learning process of persons
following stroke or with CP following different interventions.
The studies varied by the parameters and measures utilized
to infer motor learning. A sensible selection of an outcome
measure is an important part when planning an intervention.
The questions we raised were the studies’ methods for selection
of the relevant parameters and metrics, the differences between
the measures and the information each metric can provide.

Measures of Adaptation vs. Skill Learning
Adaptation was assessed in the reviewed studies using dynamic
perturbations by induced force fields during reaching movements
(Dancause et al,, 2002; Takahashi and Reinkensmeyer, 2003;
Patton et al., 2006; Scheidt and Stoeckmann, 2007; Masia et al.,
2011). Despite the variability in methodological designs (e.g.,
practice—number of trials and repetitions, utilized measures,
etc.) between the studies, all induced a change in environment
and assessed the resulted change in behavior. The manifestation
of the adaptation parameter, in all studies, was evaluated by some
sort of measurement of the extent and/or quickness in which the
performance returned to the pre-perturbation level and of the
sensory-prediction errors reduction. The changes in the after-
effects assess the update of the internal model (Krakauer, 2006;
Huang and Krakauer, 2009). Robots were described as suitable to
record movement data (e.g., position, velocity, and joint torques),
which allows quantitative reliable measurement of kinematics
and dynamics during recovery (Huang and Krakauer, 2009).
The utilized measures and methods of their implementation
can affect the obtained results. For example, Patton et al
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(2006) concluded that stroke survivors preserved the ability
to adapt, whereas Takahashi and Reinkensmeyer (2003) found
their adaptive capability to be reduced. Their different results
may be explained by the fact that Patton et al. (2006) utilized
a metric that measured only the early part of the movement,
whereas Takahashi and Reinkensmeyer (2003) assessed the whole
movement. Evaluation of the anticipatory control should include
a time limit for the movements performed. The limit’s purpose is
to minimize online corrections and focus on deficits in the feed-
forward mechanism (Kitago et al., 2013). For example, Raghavan
et al. (2006) estimated the predictive control of children with
CP by estimation of the motor command at the first 70 ms of
a grasp and lift task. Without the time limit, the prolonged
time they needed to receive sensory feedback for grip force
generation, would not have been identified (Raghavan et al,
2006). Contrarily, the findings of Patton et al. (2006) cannot
serve as a measure of feed-forward control error as it does
not consider the time between the feed-forward control and
movement initiation (Patton et al., 2006).

It is interesting to note that only studies that explored the
anticipatory control utilized measures of force generation, while
other studies used only kinematic measures. This is true of
all but four of the reviewed studies that did include force
components as part of their measurements (Chang et al., 2007;
Colombo et al.,, 2010; Bourke et al, 2015; Gilliaux et al.,
2015). Takahashi and Reinkensmeyer (2003), who did not
measure movement dynamics, suspected that the rate of force
development explains the impaired anticipatory control of the
paretic arms. Measurement of the force generation may clarify
whether the deficit in the anticipatory control is due to inability
to form internal models or to implement them (Takahashi and
Reinkensmeyer, 2003).

Scheidt and Stoeckmann (2007) found that stroke patients
adapt similarly to healthy individuals; however, they may require
more practice, as they had more influence of prior error on
subsequent movement. Dancause et al. (2002) added that severely
affected individuals might require more practice, as they required
more trials to diminish errors than mildly affected individuals. It
can be inferred that measurement of the rate at which the errors
decrease throughout trials and the influence of the prior error
on the next movement, can be used as measures to evaluate the
amount of practice an individual will require.

Adaptation may be an initial ingredient in a motor learning
model (Bastian, 2008), and was implied to be a form of
implicit learning that requires no awareness (Krebs et al., 2001).
However, skill acquisition often requires conscious awareness
and practice of the performance (Krakauer and Mazzoni, 2011;
Kantak and Winstein, 2012). Performance curves indicating
change throughout practice can be established for a variety of
measures. Geerdink et al. (2013) used the performance curve
of manual dexterity improvement to evaluate the point in time
where maximal effects are learned and achieved, finding that age
has an effect on the speed of dexterity gain. It can be inferred from
these results that the learning curve can be used as a measure to
study and evaluate the maximal effect of various interventions,
which might later on assist to better establish individualized
training timings to fulfill maximal potential.

None of the studies that examined the adaptation parameter
assessed the persistence of the after effects. Measures of
performance can be implemented at different times throughout
the training, but can also be used at a time interval after the
last practice to assess the retention. As performance might be
affected by transient factors, such as feedback, attention, fatigue
etc., performance measures may be limited to the acquisition
phase. Therefore, a retention test is preferable to infer learning,
as it assess long-lasting changes indicating constancy of the level
of performance achieved at acquisition and strength of the motor
memory (Schmidt and Lee, 2004; Kantak and Winstein, 2012).

Another important aspect of learning is the extent to which
what was learned during practice generalizes outside of practice
settings (Schmidt and Lee, 2004; Kantak and Winstein, 2012),
assessed with transfer tests and reflects the flexibility of the motor
memory (Schmidt and Lee, 2004; Kantak and Winstein, 2012).
According to the motor learning theory of Fitts and Posner
(1967), presenting a three stage model of learning—cognitive,
associative, and autonomous, achieving transfer (automatization)
and retention of a skill is necessary to indicate learning has
occurred (Cano-de-la-Cuerda et al, 2015). It was suggested
that when the trained and untrained tasks share similar neural
demands, generalization to the untrained task is increased
(Sainburg and Wang, 2002; Schmidt and Lee, 2004; Shadmebhr,
2004). This implies that the transfer test should encompass and
examine similar motor control requirements as the training. The
transfer parameter is essential, since the rehabilitation aim is
to grant the patient optimal function and independence, only
possible when improvements generalize to real-life situations.

Some prominent theories of motor learning require a
comprehensive analysis of movement that includes many of
the measurements used in the reviewed studies (Cano-de-
la-Cuerda et al., 2015). However, most of these studies did
not qualify to infer learning according to these theories. For
example, parameters and measures implemented during tasks
with restriction on degrees of freedom contradict Bernstein’s
model of motor learning (Bernstein, 1967) that requires the
learner to increase the degrees of freedom as an indication of
learning. Similarly, many of the studies evaluated the efficiency
and consistency of the movement without testing transfer and
vice versa. Both are essential to demonstrate learning according
to Gentile’s theory of motor learning (Gentile, 1972). Therefore,
studies who aim explicitly to demonstrate learning must confide
to a theory, and take it into consideration when designing the
study.

Measures of Recovery vs. Compensation

Improved activity can arise from either recovery of impairment,
development of compensatory movements, or both. There is
a necessity to differentiate between impairment of execution
and impaired motor learning (Boyd and Winstein, 2004). The
implemented settings and outcome measures of a study may
affect the interpretation of the results. Patton et al. (2006)
supported the hand against gravity, which could decrease the
effect of the impairment in movement execution (due to
weakness, spasticity etc.) and result in detection of adaptive
capability. On the contrary, Takahashi and Reinkensmeyer (2003)

Frontiers in Human Neuroscience | www.frontiersin.org

21

February 2017 | Volume 11 | Article 82


http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

Shishov et al.

Motor Learning Metrics in Neurorehabilitation

did not support the hand, which might led to poor adaptive
capability among subjects, when in fact execution impairment
increased due to gravity.

The state of mind presented in a study by Nourrit-Lucas
etal. (2013), who explored long term retention of neurologically
intact subjects, might also be relevant to studies performed
on neurologically impaired individuals. The authors suggested
that the experimental settings in which the learning is assessed,
affects the measurements and the conclusions drawn regarding
the learning process. Performance variables usually assess
simple tasks with few degrees of freedom. They are defined
as parameters measuring performance in terms of speed and
accuracy, representing the outcome of the behavior with respect
to the goal of the task (Nourrit-Lucas et al., 2013). A more
complex task has a larger number of degrees of freedom, and
learning can be explored by coordination variables measuring the
spatiotemporal functional organization between body segments
in terms of phase relations (Kelso, 1997; Nourrit-Lucas et al.,
2013). In most of the reviewed studies, simple tasks were
examined, among the rest, to decrease the probability for
compensation. Moreover, in approximately half of the discussed
studies the arm was supported against gravity, reducing even
more the degrees of freedom. Retention tests assess the same
coordinative pattern: an improvement is expected due to the
motor plan that was established during practice, whereas a
transfer test would examine the adaptability of the motor
program. Therefore, transfer tests are more suitable to examine
the coordinative measures (Nourrit-Lucas et al., 2013). The
coordinative improvement can represent the reacquisition of the
pre-lesion patterns, addressed as recovery (Levin et al., 2009).
None of the reviewed studies assessed the coordination of a more
complex task.

Kinematic analysis of various sorts for measurement of
parameters were performed by all but three of the reviewed
studies (Hemayattalab and Rostami, 2010; Geerdink et al,
2013; Hemayattalab et al, 2013). Subramanian et al. (2010)
separated the kinematic variables to measures of motor
performance and to measures of movement quality. Two of
the discussed performance measures that were often utilized
in the reviewed studies to assess the parameters of motor skill
learning are measures of accuracy and velocity of movement.
Reduction in errors of these measures indicates improvement
of performance (Krakauer, 2006; Schmidt and Wrisberg, 2008).
However, in motor execution of a task there is a relationship
between movement speed and accuracy, and depending on
task requirements, the accuracy or speed component can be
prioritized (Fitts, 1954; Kitago and Krakauer, 2013). If only
one of them is assessed, an improvement does not necessarily
indicate an improved skill. For example, a subject can make more
errors as speed increases, or slow down for a more accurate
movement (Kitago and Krakauer, 2013). The movement quality
measures include the configuration of the examined limb and
measurement of compensatory movements, and were suggested
as able to distinguish between recovery and compensation
(Subramanian et al., 2010). Almost half of the reviewed studies
restricted compensatory movements, preventing examination
of movement quality required in real-life settings. How then,

can complex motor skills be assessed in terms of qualitative
organization for neurologic patients with a variety of heterogenic
impairments, potentially masking learning? In some of the
reviewed studies the learning following a treatment was inferred
by examination of the less affected limb (Table 1). This may
distinguish motor execution impairments due to hemiparesis,
which may mask motor learning, from deficient motor learning
(Boyd and Winstein, 2004).

Many studies evaluate the performance ability of their
subjects using functional tests (Kitago and Krakauer, 2013).
Functional tests often include more complicated movements
with multiple degrees of freedom, resemble real-life activities,
and are categorized under the “activities” domain of the ICF
classification (Sivan et al., 2011). However, clinical measures
do not consider the quality of the movement, and therefore
do not measure a decrease in impairment or return to a
normal motor control (Kitago et al., 2013). Therefore, functional
improvement in clinical measures, but not in measures of
impairment (such as the FMA and kinematic analysis), can
be attributed to compensatory strategies (Kitago et al., 2013).
Kinematic variables were suggested to be valid for differentiating
compensation from recovery and for measurement of upper limb
impairment (Subramanian et al., 2010). Huang and Krakauer
(2009) reviewed rehabilitation strategies and outcome measures
for impairment versus function. They suggested that in the
acute and sub-acute stages of recovery, rehabilitation treatment
should focus on the impairment level while refraining from
compensatory adjustments, and only after a certain level of
improvement is achieved, focus on functional performance. It
can be inferred that the measure of assessment should also
be fitted to the stage and timing within the recovery process,
and should be able to distinguish between them. Movement
quality measures can be sensitive and useful for complementing
clinical assessment (Subramanian et al., 2010). Moreover, Sivan
et al. (2011) suggested that when evaluating a rehabilitation
program it is important to measure each domain within the
ICF classification. While most clinical tests were classified as
evaluating the “activities” domain, most of the measures that we
reviewed, such as kinematic analysis and the BBT, were placed
under assessment of the body functions domain. This different
classification might explain the absence or low correlation
between the measures in some of the studies, as they might assess
different features of learning. This implies that when assessing
motor learning measures different features should be taken into
consideration.

Reliability and Validity of Outcome

Measures

The validity and reliability are important components for a
meaningful behavioral research. The validity represents the
degree to which a study measures what it intends to measure, and
reliability is the consistency of the results (Forzano and Gravetter,
2009). Therefore, both the validity and reliability are important in
order to infer whether the parameters and measures used in the
study provide accurate representation of the change during and
after practice.
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Kinematic movement quality measures were found to be
valid and sensitive for recognizing upper limb impairments of
stroke patients performing pointing and reach-to-grasp tasks
(Subramanian et al., 2010). However, as mentioned previously,
some of the reviewed studies did not examine quality measures,
due to restriction of the upper limb during movement and of
compensatory movements, or due to measurement of solely
motor performance measures.

While the validity and reliability of the clinical measures
were mostly stated in the reviewed articles, these were less
addressed for the motor learning parameters and laboratory-
based measures. Some studies mentioned the objective behind
their motor control outcome measures. For example, Gilliaux
et al. (2015) and Durham et al. (2014) measured kinematics
previously established and described sensitive, respectively
Geerdink et al. (2013) used the BBT because of its feasibility,
validity and reliability (Jongbloed-Pereboom et al., 2013). Other
studies focused on examining the strength of their measures.
Bourke et al. (2015) found good to excellent reliability coefficients
for task performance measures. Kinematic analysis was described
as sensitive for motor control measurement (Chen et al., 2012),
and for evaluation of motor recovery (Caimmi et al., 2008).
Kitago et al. (2015) suggested that their method of analyzing
reaching kinematics, based on functional principal component
analysis (Yao et al., 2005; Goldsmith et al., 2013), is more sensitive
than measures such as the end-point accuracy or PV kinematic
measures due to its additional ability to evaluate the entire
trajectory of movement.

Across the reviewed studies, not all parameters were equally
studied and the reasoning for parameter selection was not
addressed in all but one study. The validity and reliability of
the assessed parameters were also not addressed. Kantak and
Winstein (2012) suggested that retention and transfer tests, rather
than solely the performance parameter, should be implemented
to negate transient performance changes and detect motor
learning. In this review, the performance was most often assessed,
in 24 of the reviewed studies, whereas transfer was evaluated
in 14, and retention in only eight of the studies. Retention
was examined following a time interval in all studies, but the
length of the retention interval varied. Kantak and Winstein
(2012) categorized retention into immediate and delayed (i.e.,
implemented at least 24 h after practice), and suggested that
different retention intervals can yield different conclusions
regarding the obtained learning (Kantak and Winstein, 2012).

Review’s Limitations

This review has several limitations. Firstly, we focused only
on studies of the upper limb. As the lower limb role and
function differs from the upper limb, it is important to further
address the metrics utilized for assessment of the lower extremity
with relation to their place within the motor learning model.
Secondly, only studies assessing CP and stroke subjects were
included. Important information regarding the parameters and
underlying measures might have been already studied in other
populations and settings that were excluded from the review. It
is also possible that we missed additional relevant studies when
searching the databases, despite the multiple key words, due to

inconsistency in terminology. Furthermore, the included studies
were very heterogenic in their methodology, motor tasks, and
measures. We categorized the identified measures according to
the evaluated parameters. We could not synthesize the findings
across the studies to a better extent due to the measures’ high
variability between the studies. Due to the variability in study
design, and the narrative nature of this review we did not assess
the methodological quality of the studies. Despite the broad
utilization of kinematic analysis in the reviewed studies and
despite reports of validity and reliability of some measures, we
could not evaluate the appropriateness of measures’ selection
and the quality of measurements. An additional drawback is that
we examined the evidence for the reliability and validity only
within the reviewed studies, possibly missing other studies whose
sole purpose was to establish these features rather than examine
the outcome of a treatment. We suggest that a review with that
scope in mind should include additional search of the databases
with focus on the reliability, validity, sensitivity, and specificity
of the implemented measures, while taking into consideration
the variety in the characteristics of studies. This may serve to
establish an algorithm for the selection of outcome measures.

CONCLUSIONS

Motor learning is fundamental for improvement of affected
motor skills following brain lesion. When designing a
rehabilitation training, there is a great importance in selection
of appropriate outcome measures for patients’ evaluation. In
this review, we described the diverse parameters and measures
utilized by studies for identification of motor learning in stroke
and CP patients.

We overviewed the literature and differentiated the
parameters based on the type of motor learning they assess.
There is an agreement throughout the studies regarding the
meaning and implication of the parameters. However, not all
parameters are equally studied. Despite long-lasting effects of
practice and generalization of training to real-life movements
being a fundamental part of the motor learning theory, the
majority of the reviewed studies did not assess the retention and
transfer parameters.

Similar metrics can be utilized to measure and quantify
different parameters, without evident exclusivity of measures
to a specific parameter. Different metrics, the timing and
method of their implementation, might reveal inconsistent
results regarding a patient’s ability to learn. Utilization of solely
clinical metrics or the lack of movement quality measurements
might only estimate the learning of compensatory movements,
rather than of recovery. Additionally, restriction of compensatory
movements might result in learning of solely simple movements,
with consequences of little generalization to real-life functional
movements. The necessity to differentiate between recovery and
compensation, and between learning and execution deficiencies,
suggests that a combination of measures assessing different
features of learning and function might provide a more accurate
information about patients’ abilities and progress. There is
no consensus about the relations between clinical and motor
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learning measures, and measures described in this study are
seldom available in clinical settings. Therefore, we suggest that
joint effort by researchers and practitioners should focus on
translation of research findings into feasible clinical practices.

To conclude, we have performed a comprehensive data
collection of measures used to infer motor learning. While the
extant and variability of the measurements produced a raw
descriptive review, it should be used as a stepping stone. First,
toward qualitative comparison of measurements. Ultimately, we
hope it will lead toward an algorithm of outcome measure
selection according to population, intervention and concordance
with the different motor learning theories, a tool that is currently
lacking. Researchers set to examine motor learning should
address the entire set of parameters described in motor learning
theory, and clinicians should know what measurements are the
most valid and reliable to assess treatment progress. Until such

an algorithm is developed, intelligible study design and reasoned
measurement selection can both improve current studies, and
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