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Motor variability is an inherent feature of all human movements, and describes the

system‘s stability and rigidity during the performance of functional motor tasks such

as balancing. In order to ensure successful task execution, the nervous system is

thought to be able to flexibly select the appropriate level of variability. However, it remains

unknown which neurophysiological pathways are utilized for the control of motor output

variability. In responding to natural variability (in this example sway), it is plausible that the

neuro-physiological response to muscular elongation contributes to restoring a balanced

upright posture. In this study, the postural sway of 18 healthy subjects was observed

while their visual and mechano-sensory system was perturbed. Simultaneously, the

contribution of Ia-afferent information for controlling the motor task was assessed by

means of H-reflex. There was no association between postural sway and Ia-afference in

the eyes open condition, however up to 4% of the effects of eye closure on themagnitude

of sway can be compensated by increased reliance on Ia-afference. Increasing the

biomechanical demands by adding up to 40% bodyweight around the trunk induced

a specific sway response, such that the magnitude of sway remained unchanged but its

dynamic structure became more regular and stable (by up to 18%). Such regular sway

patterns have been associated with enhanced cognitive involvement in controlling motor

tasks. It therefore appears that the nervous system applies different control strategies

in response to the perturbations: The loss of visual information is compensated by

increased reliance on other receptors; while the specific regular sway pattern associated

with additional weight-bearing was independent of Ia-afferent information, suggesting the

fundamental involvement of supraspinal centers for the control of motor output variability.

Keywords: hoffman-reflex, postural sway, sample entropy, DFA, Lyapunov exponent, motor output variability,

adaptive resource-sharing framework

INTRODUCTION

During standing, the human sensory motor system (HSMS) gathers sensory inputs from
proprioceptive, vestibular and visual receptors, and continually transforms this information into
the appropriate motor output (Prieto et al., 1996; Taube et al., 2008a). However, the output neural
signals and the resulting motor actions are never constant, but rather exhibit a certain level of
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variability (Singh et al., 2012a; König et al., 2016).While standing,
variability is exhibited as the non-constant or fluctuating
behavior of the body’s center of mass (CoM) relative to the
base of support (BoS), i.e., postural sway. Such motor variability
might partly be explained by the noisy behavior at each and
every stage of HSMS processes including e.g., sensory perception
at the receptor, information transmission via neural signaling,
or non-constant motor-neuron firing (Faisal et al., 2008).
Interestingly, recent investigations indicate that motor variability
is not detrimental for the quality of motor actions, but rather
a prerequisite for successful motor performance. For example,
during motor learning, a U-shaped relationship can be observed,
with variability reducing through the early stages of learning a
task toward low levels after sufficient practice, but final stabilizing
on higher levels in expert performance (Harbourne and Stergiou,
2003; Wilson et al., 2008; Fetters, 2010; Kyvelidou et al., 2013).
Furthermore, it has been shown that individuals are able to
regulate the magnitude of variability based on the demands of
the specific motor task at hand (Loram et al., 2001; Wu et al.,
2014; Pekny et al., 2015). From a theoretical perspective it has
also been shown that the optimal levels of motor variability are
sufficiently low to ensure stability, but sufficiently large to avoid
rigidity in motor performance (Stergiou et al., 2006). Together,
these findings suggest that the HSMS exhibits adaptability in
the regulation of motor output that is dependent upon task
demands, rather than adopting e.g., a simple minimization-of-
error-strategy, thus indicating that variability in motor outputs
are at least partially under dynamic control of the HSMS.

In order to maintain balance, the HSMS requires central
nervous system (voluntary) control capacity, as demonstrated by
cognitive dual-task experiments influencing postural sway (Mitra
and Fraizer, 2004; Taube et al., 2008a). Such experiments propose
an adaptive resource-sharing framework claiming that flexible
allocation of HSMS resources consider (a) the precision required
for the task, (b) the quality of sensory information available, (c)
the effort required to collect this information, and (d) whether
there is the requirement for active attention (Mitra and Fraizer,
2004). Depending upon their relative importance, the HSMS
can regulate motor variability in order to prioritize for example,
stability (i.e., by reducing the level of postural sway) or flexibility
(i.e., releasing tight control of postural sway to free resources for
other tasks). However, it remains to be investigated whether the
HSMS uses differentmotor control strategies in order tomaintain
suitable levels of variability based on the demands of a particular
task.

Within the framework of a biomechanical inverted pendulum
model, an efficient feedback control mechanism for maintaining
balance, particularly when focus on other tasks is required,
could be provided by monosynaptic Ia-afference (Peterka and
Loughlin, 2004). This neuro-physiological mechanism causes
innervation of a muscle after stretch to its muscle spindles (e.g.,
due to sway) (Zehr, 2002). However, this reflex-loop, including
the efferent neuro-muscular response, is additionally regulated
by presynaptic inhibition (PSI) through various supraspinal and
spinal influences (Zehr, 2002; Knikou, 2008), thereby rendering
this reflex-loop an adaptable control element instead of an
invariant mechanism. For example, dynamic modulation of the

reflex occurs during the gait cycle, where larger reflex responses
fulfill the requirements for increased stability in the stance and
reduced responses the necessity for mobility during the swing
phase (Hodapp et al., 2007). Therefore, regulation of the Ia-
afference-loop could be a potential mechanism for governing
motor variability, as inhibition would lead to a relaxation in
control (i.e., flexibility), while facilitation of this reflex would
cause tighter control (i.e., stability) of postural sway, albeit
maybe at a higher level of “resource” consumption (Todorov
and Jordan, 2002). Following a perturbation to the HSMS
(e.g., eyes closed), sway is known to increase (Singh et al.,
2012b), but overall balance is still maintained. It is therefore
plausible that the HSMS becomes more reliant on other forms
of sensory input (e.g., vestibular and proprioception), but in
order to maintain low control costs, a different level of optimum
variability is established, which could be achieved through
adaptive regulation of the Ia-afferent input. Measurement of the
Hoffmann reflex (HR), under standardized conditions, is able
to provide a quantification of synaptic transmission resulting
from an electrical stimulus evoked at a peripheral nerve onto
the α-Motor units (α-M). Here, change in the magnitude of the
synaptic response indicates interference from other (e.g., cortical)
nervous system entities. Such an approach would therefore allow
an assessment of the contributions of Ia-afference on governing
motor output variability (Pierrot-Deseilligny and Mazevet, 2000;
Zehr, 2002; Knikou, 2008). Through observing postural sway and
H-reflex during visual and mechano-sensory perturbations to
the HSMS, the goal of this study was there-fore to establish the
level of contribution of Ia-afference on the regulation of motor
variability.

MATERIALS AND METHODS

In this study, the regulation of variability was assessed
by measuring postural sway and H-reflex from the soleus-
muscle (SO) in healthy adults while performing tasks under
visual and mechano-sensory perturbations. In the first task,
postural sway was perturbed by occluding visual information.
It was hypothesized—according to the re-weighting of sensory
information principle (Peterka and Loughlin, 2004)—that the
contribution of peripheral sensory information (as determined
by the H-reflex) will increase when no visual information is
available (i.e., during eye closure). In the second condition,
additional load around the CoM was applied during the standing
task. Since the muscular torque that is required to maintain
stability in the inverted pendulum model is characterized by
the relationship between the lever arm (i.e., distance of the
vertical projection of the CoM relative to the BoS) and body-mass
(Robinovitch et al., 2002;Winter et al., 2003), a reasonable control
strategy to avoid increasing muscular demands under increased
body-weight would be to avoid the occurrence of large lever
arms, i.e., maintain the CoM closer to the center of the BoS. This
can effectively be realized by lowering the magnitude of postural
sway, which likely suggests the requirement for tighter control (or
increased precision) of the postural sway (i.e., stability) strategy.
In order to better understand this mechanism, we have therefore
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explored the contribution of Ia-afference for regulating postural
sway during the loaded limb condition.

Twenty-five healthy volunteers were recruited from the local
community. Inclusion criteria were healthy physical and mental
states. In seven subjects the experiment could not be performed,
because subjects were either unable to tolerate the necessary
stimulation intensities or the electrode location could not be
properly identified to clearly elicit an H-reflex response. As a
result, 18 participants (9 females and 9 males, age 26 (±4) years,
height 175 (±7) cm, and weight 71.7 (±9.1) kg) were analyzed.
The study was approved by the institutional ethics committee and
was performed in accordance with the Declaration of Helsinki,
and all subjects provided written, informed consent prior to
participation in the study.

Each participant performed six different standing conditions
in a randomized order; normal standing with eyes open (EO),
standing with eyes closed (EC), standing with additional 20 and
40% bodyweight with eyes open (EO-BW20 and EO-BW40)
and with eyes closed conditions (EC-BW20 and EC-BW40). To
achieve the appropriate loading, vests with attachable sandbags
(Gorilla Sports, Switzerland) were placed symmetrically around
the participant’s upper body.

During each of these six different conditions, participants
stood barefoot on a force plate (Kistler, Winterthur, Switzerland;
sampling frequency 1000 Hz), with feet together and hands
crossed in front of their chest. Each participant was requested to

focus on a black circle (15 cm diameter) placed 5m anteriorly at
eye level, and was asked to stand as still as possible. After testing
each condition, the participants were given a short break of up to
5 min to prevent fatigue. The total duration of the experimental
session was∼60 min.

HR Measurements
Before placing the EMG or stimulation electrodes, relevant skin
areas were shaved, abraded with preparation gel (Nuprep, NR
Sign Inc., Canada), and cleaned with water in order to ensure
a low skin impedance of <1 k� (Hermens, 1999). The wireless
EMG electrodes (Trigno, Delsys, United States) were placed on
the SO according to the SENIAM protocol (Hermens, 1999).
The HR stimulation electrode was attached while the subjects
assumed a prone position. The cathode (1 cm diameter, Hellige,
GE medical systems, Germany) was moved within the popliteal
fossa of the right leg, until the largest H-response without an M-
response could be evoked (Palmieri et al., 2004). Once located,
this area was marked and the electrode was fixed with tape
and an elastic bandage to prevent relative movement during the
measurement. The anode (Spes Medica, 40 × 90 mm, Italy) was
placed 2 cm above the patella.

As HR response depends on body position during postural
sway (Tokuno et al., 2008), the mean sway position in the
anterior-posterior (AP) direction from the first minute of every
condition, was set as the sway-threshold (Nexus, VICON, United

FIGURE 1 | Example of the sigmoid (black) and Gaussian (red) fit to evaluate H/M-recruitment curve. Top-left: The position of the stimulation cathode and

anode, as well as the EMG electrodes on the tibials and soleus muscle.
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Kingdom) in order to trigger the HR-stimulation. Subjects were
stimulated using a constant-current stimulator (DS7A, Digitimer,
United Kingdom), which was only triggered when the participant
swayed in a forward direction crossing the sway-threshold value,
thereby ensuring similar muscle geometry in each stimulation
and condition. Additionally, a minimal inter-stimulus interval of
8 s was used to avoid post activation depression (Chen and Zhou,
2011). To obtain full a H/M-recruitment curve, stimulus intensity
(0.5 ms square-wave-pulses) was increased in increments of 0.5
mA around the H-max and M-max until they could clearly be
identified.

Sampling frequency of the EMG was set at 4 kHz and
the signal was band-pass filtered (10–500 Hz, Butterworth 2nd
order). The recording window to obtain the background EMG
(bEMG), was set at 50 ms prior to each stimulus (Knikou,
2008). bEMG recordings were processed in the Imago software
(IMAGO, pfitec, Germany) and extracted as root mean squares
(RMS) values of the full rectified signal. The maximum H and
M responses were assessed offline using a custom Matlab code
(Matlab, Mathworks, United States) and a Gaussian function was
fitted to the recorded H-amplitudes to receive a more robust H-
response (Figure 1). Each function was weighted, with higher
weights for the largest 30% of H-amplitudes, in order to best
fit the curve over the region of interest (i.e., max H-responses)
and thus most accurately determine the H-max value. Finally,
a sigmoid function was used to fit the M-wave amplitudes for

each condition (Brinkworth et al., 2007). The corresponding
H-response at 20% of M-max was then identified for each
condition and normalized to the bEMG (HR-bEMG). Thus, HR
was represented as the gain of the reflex-loop, in order to address
the problem of increasing SO-bEMG due to increasing weight
and to allow standardized comparisons across the different
experimental conditions (Palmieri et al., 2004).

Postural Sway Measurements
Postural sway was measured during the initial minute of standing
on the force plate, when no stimulation was applied. The first
and last 7.5 s of each trial of the ground reaction force data
were removed in order to avoid transients. Before calculating
linear and frequency parameters, all data were band-pass filtered
(0.75–35 Hz, Butterworth 4th order) and detrended. Parameters
were calculated for the entire sway signal and the AP direction
separately (Figure 2). Then, in order to quantify the magnitude
of PS, multiple linear parameters were quantified, including
sway area, velocity and distance of COP travel [a comprehensive
list can be found in the literature (König et al., 2014)]. The
frequency content of the signal was evaluated by assessing the
absolute power within three frequency bands (low: <3 Hz;
medium 3–10 Hz; high: 10–30 Hz). In addition, the temporal
structure of sway was assessed using three non-linear parameters.
Here, the raw-data (no filter applied) was down sampled (100
Hz), before the following parameters were calculated: Detrended

FIGURE 2 | Example CoP data in the presumably least challenging condition with eyes open and no additional weight (A) and presumably most

challenging condition with eyes closed and additional 40% body weight (B). In (C) the time series of postural sway in anterior-posterior direction for the same two

conditions is presented. Note the difference in sway magnitude and regularity between the two conditions.
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fluctuation analysis (DFA) (Duarte and Sternad, 2008), sample
(SE) and approximate entropy (AE) (Yentes et al., 2013) and
largest Lyapunov exponent (LyE) (Ladislao and Fioretti, 2007).
For the entropy measures, the input parameters (vector length
m = 2; tolerance r = 0.2 x SD) were kept constant across all
trials, after confirming that results were insensitive to other m/r-
combinations. To determine LyE, the Wolf algorithm was used
(Wolf et al., 1985), which requires the use of defined embedded
dimensions (dim) and time lag (tau). Dim and tau were initially
identified using the false nearest neighbor and average mutual
information approaches for each trial separately. Lastly, constant
values (dim = 5, tau = 5) were used based on their sample
median (van Schooten et al., 2013) and applied for the final LyE
calculation.

Factor Analysis
In total, 25 PS parameters were calculated. In order to reduce
the dimensionality of the dataset, factor analysis (FA) using the
“VARIMAX” procedure was applied, where each condition for
all subjects (n = 18) was considered to be a case (108 cases).
Kaiser-criterion was used to extract the appropriate number of
components with Eigenvalues>1, while KMO criterion was used
for determining sampling adequacy of the factor analysis. To
ensure consistency of the original measure, the following criteria
were applied in order to remove individual parameters from the
analysis: (a) measures of sampling adequacy <0.5, (b) measures
with communality <0.5, and (c) measures that caused complex
structure (i.e., correlations>0.4 in two or more components). FA
derived component z-scores were used for further analysis as well
as for interpretation.

Inferential Statistics
Threemixed factor repeatedmeasure ANCOVAswere conducted
separately to explore the relationship between the dependent
sway components on the independent measures of weight (three
levels: No additional weight, 20 and 40% body weight) and vision
(two levels: EO and EC) with normalized H-reflex at 20% M-
max (HR-bEMG) as standardized Z-scores incorporated as the
covariate. Inclusion of HR-bEMG as a covariate in the ANCOVA
model allowed a direct contribution of H-reflex on the control
of postural sway to be assessed. In addition, changes in motor
control strategy could be identified between different standing
conditions by investigating changes in the ANCOVA regression
slopes. All statistical procedures were performed in SPSS (SPSS
23, IBM, United States) and alpha levels were set at 5%. Post-hoc
comparisons were conducted using the Least Squares Differences
(LSD) approach.

RESULTS

Factor Analysis
A total of seven iterations were required before obtaining the
final three components, which were loaded with a total of 15
parameters (Table 1). These were interpreted as linear sway
component (LSC), non-linear sway component (NSC), and
frequency sway component (FSC). Since NSC was loaded with
the positively correlated measures of entropy and LyE, they were

TABLE 1 | Summary of the retrieved PCA components, displaying the

communalities, explained variance by the components, and the loading of

the different measures on the component.

Parameter LSC NSC FSC Communalities

rel. SA 0.940 0.953

ellip. SA 0.977 0.976

rmsDist 0.955 0.943

rmsDist-AP 0.953 0.929

meanDist 0.961 0.956

meanDist-AP 0.955 0.932

lowFreq 0.971 0.965

mediumFreq 0.926 0.890

highFreq 0.938 0.889

lowFreq-AP 0.961 0.932

mediumFreq-AP 0.896 0.864

highFreq-AP 0.787 0.815

SE-AP 0.963 0.977

AE-AP 0.962 0.972

LyE-AP 0.945 0.897

Total variance explained (%) 64.436 20.156 8.004

Only loadings >0.4 are displayed. Abs, absolute; rel, relative; ellip, elliptical; SA, sway

area; Dist, distance; Vel, Velocity; Freq, frequency; AP, Antero-posterior direction.

interpreted as larger NSC values reflecting both irregular (based
on entropy measures) and unstable (based on LyE) postural
sway. These three components explained 92.6% of the total
variance of the entire dataset (KMO = 0.846, Bartlett-Test of
sphericity < 0.001).

ANCOVA
The occlusion of vision led to a significant increase in LSC of
0.85 standardized (Z-) score values, which corresponded to an
effect size of 0.17 (Table 2; Figure 3). Furthermore, there was an
interactive effect size of 0.04 of vision and HR-bEMG on LSC.
Post-hoc comparisons of this interactive effect showed that with
increased HR-bEMG, the effect of vision on LSC was reduced
(LSC z-score of 1.04 at 25th percent-ile HR-bEMG; 0.87 at
50th percent -ile HR-bEMG; 0.69 at 75th percent-ile HR-bEMG)
(Figure 4). No effect of weight was observed on the LSC.

The addition of weight led to significant decreases in NSC
of 1.04 Z-score values at an effect size of 0.18 (Table 2).
Specifically, additional bodyweight led to a more regular and
stable sway pattern. No interactive effect of weight or HR-bEMG
was observed on NSC. There were no significant effects of any
independent variables on the FSC.

DISCUSSION

The aim of this study was to assess whether peripheral Ia-
afference is utilized in the control of motor variability during
standing, and further to quantify the contribution of this input.
Such information would illustrate the flexibility with which
the human sensorimotor system (HSMS) employs the available
resources and their characteristics for the regulation of motor
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TABLE 2 | Results of the ANCOVA for repeated measures with the sway components as depended variable and the HR-bEMG as independent variable

and weight and vision as fixed factor with SS, Sum of Squares; N-df, Numerator degrees of freedom; D-df, Denominator degrees of freedom; and η
2G,

Generalized eta-squared.

SOURCE LSC NSC FSC

N-Df SS D-Df F SIG η
2
G

SS D-Df F SIG η
2
G

SS D-Df F SIG η
2
G

Weight 2 2.61 29.9 2.1 0.61 0.03 18.5 49.1 19.9 <0.01 0.18 6.30 40.9 2.4 0.1 0.05

Vision 1 20.38 39.1 48.0 <0.01 0.17 0.03 75.8 0.0 0.84 0 1.75 47.7 1.1 0.30 0.02

HR-bEMG 1 0.19 64.4 1.4 0.24 0 0.09 83.0 1.1 0.3 0 4.81 82.4 3.7 0.06 0.04

Weight × Vision 2 0.72 29.5 1.3 0.29 0.01 1.8 49.5 2.6 0.09 0.02 0.81 41.5 0.2 0.84 0

Weight × HR-bEMG 2 0.21 27.2 2.0 0.15 0 0.39 45.5 0.4 0.7 0 0.84 23.9 0.7 0.48 0

Vision × HR-bEMG 1 4.1 39.0 9.2 <0.01 0.04 0.01 70.2 0.0 1.0 0 0.51 31.2 0.7 0.40 0

Subject 48.67 44.23 37.56

Error 27.10 32.98 70.89

C. Total 124.36 104.87 117.57

Bold indicates significant effects at p < 0.05.

FIGURE 3 | Effect of vision and weight on the three dependent variables (A) linear sway component (indicative of sway magnitude), (B) non-linear sway

component (indicative of sway regularity), and (C) frequency sway component (indicative of sway periodicity). Asterisk indicates significant effects at p < 0.05.

output variability. During unchallenged standing (i.e., EO) there
was no contribution of Ia-afferent feedback on the magnitude
of sway. However, when challenging the available resources (i.e.,
under EC conditions) enhanced reliance on Ia-afference during
standing could partly (up to 4%) counter-balance the effects of
eye closure. The observation of a general down-regulation of
H-reflex during eyes closed standing and the low contribution
to explain LSC indicates that other resources of the HSMS
are involved in the control of postural sway during sensory
challenging postural tasks.

In order to establish the contribution of Ia-afference for
controlling motor variability, FA was firstly conducted on
postural sway parameters for a comprehensive assessment of the
standing task. Linear sway components, LSC, were interpreted
to quantify the magnitude of motor variability, whereas non-
linear sway components, NSC, quantified the dynamic structure
of the sway time series (Donker et al., 2007; Harbourne et al.,
2009). The third component, FSC, comprised of absolute power
in the high frequency bands and thus represents periodicity of the
sway signal. The independent nature of these data suggest that
the magnitude, dynamic structure, and frequency of sway are all
unique characteristics of balance performance (Harbourne et al.,
2009). Finally, the mixed factors ANCOVA revealed the level
of contribution of peripheral Ia-afferences toward the control

of LSC (magnitude of sway), in particular when input from
visual receptors was challenged. There was no contribution of
peripheral Ia-afference on NSC and FSC. As the contribution of
Ia-afference on postural sway was low, despite larger effects of
the task-demands on the linear and non-linear sway parameter,
we conclude that other resources within the HSMSmust be more
involved in the control of motor variability.

When visual input is perturbed or removed, and thereby
the available sensory information for the control of sway is
reduced, postural sway becomes larger in magnitude ((Prieto
et al., 1996; Taube et al., 2008b)), which was also apparent in
the significant effect of vision on LSC in this study. Previously
it was shown that eye closure leads in parallel to an inhibition
of the H-reflex (Hoffman and Koceja, 1995; Earles et al., 2000),
which is in accordance with the results of the present study.
Furthermore, our results indicate that the effect of removing
vision on the magnitude of sway was related to the contribution
of Ia-afferences, such that greater contribution of peripheral
sensory information (i.e., larger HR-bEMG) diminishes the effect
of vision on sway magnitude. While this contribution was
small, it results from only a single muscle and one extremity.
Further investigation is therefore required to establish whether
a more complex interplay of this Ia-afference mechanism occurs
throughout the neuromuscular system, and in other scenarios.
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FIGURE 4 | Scatter plot displaying the interactive effect of vision*

HR-bEMG on LSC. Both LSC and HR-bEMG have been converted to

standardized Z-scores. There was a significantly larger decrease (p = 0.04) in

LSC at higher HR-bEMG values with eyes closed (yellow diamonds) than with

eyes open (gray circles) condition. The dotted gray lines represent the 25th

and the 75th %-ile HR-bEMG values.

Since the maximum M response remained unchanged over the
different test conditions, we concluded that a constant number
of Ia-afferents were stimulated and therefore that any changes
of HR-bEMG were not related to variations in the experimental
setting of the test afferent volley, but rather to the physiological
mechanisms that act to depress the H-response (Palmieri et al.,
2004; Knikou, 2008). The contribution of HR-bEMG on LSC
during eye closure could therefore indicate a re-weighting of
inputs during conditions with reduced sensory information in
accordance with the hypothesis that, with removal of vision,
balance is regulated with larger inputs from (or reliance on) the
proprioceptive (as well as mechano-receptive) sources (Peterka
and Loughlin, 2004; Taube et al., 2008b). In this context,
mechano-receptive cutaneous receptors in the plantar foot have
been identified as potentially effective sway controlling entities
(Priplata et al., 2002; Zhou et al., 2016).

The addition of external load led to a main effect on the
NSC (the dynamic structure of the motor output variability),
such that increased external load led to decreased NSC values,
indicating more regular/stable sway patterns, i.e., less flexibility
and more rigidity (Table 2). This effect was larger with an
average change in regularity between weight conditions of 18%.
The NSC comprised of the three parameters: Sample entropy,
approximate entropy, and largest Lyapunov exponent. The
general positive correlation between entropy and LyE suggest
that sway regularity (i.e., low entropy values) is associated with
larger convergence of nearby sway trajectories or stability (i.e.,
low Lyapunov exponent). Similar relationships have also been

reported for healthy and pathological subjects where an increased
regularity/stability pattern was associated with worse motor
performance, and interpreted as a lack of flexibility to control
balance (Huisinga et al., 2012; Rigoldi et al., 2013; Schniepp et al.,
2013). In the current study, a similar pattern was observed in
the sense that additional load led to a more regular/stable (i.e.,
less flexible) sway pattern. Importantly, there was no effect of
additional weight on the linear sway parameters, which supports
the notion that the HSMS reacts to increased weight around the
CoM by increasing the precision of postural sway, as seen in
the constant sway magnitude (unchanged LCS) and a more rigid
control pattern (reduced NSC). Such behavior however, was not
achieved with support from Ia-afference input, as observed in the
absent interaction effect of weight and HR-bEMG on NSC.

Increasing load on the body is considered to be a perturbation
to the mechano-sensory system, affecting various receptors
such as Golgi tendon organs, cutaneous receptors or joint
receptors, all of which have been shown to be involved in the
control of movement (Gravano et al., 2011). In particular, it
has been reported that increased weight load during standing
leads to a decrease of sensory information transmission from
plantar cutaneous receptors (Lhomond et al., 2016), which are
considered to be a relevant input for maintaining sufficient
background muscle activity during balance control (Meyer et al.,
2004). Therefore, additional load not only changed the task-
demands but also challenged the mechano-receptive inputs,
thereby potentially rendering such input “unreliable.” This might
also explain why the increase in task precision was not achieved
by enhanced reliance on Ia-afference information. Interestingly,
the regularity of sway patterns has also been attributed to the
amount of attention exercised for the postural task (Donker et al.,
2007; Rigoldi et al., 2013; Schniepp et al., 2013), and it could
therefore be argued that the increased regularity in the sway
patterns observed in our study result from the increased attention
exercised to respond to the rather unusual task of carrying
up to 40% body weight. This suggests a possible influence of
supraspinal centers for the control of motor output variability
during increased precision requirements (e.g., loaded tasks).
However, the reliance on supraspinal centers for regulating sway
needs to be further investigated (e.g., under dual-task paradigm).
Unlike the LSC, the main effect of vision, as well as the interactive
effect of vision and HR-bEMG, were found to be non-significant
on the NSC, indicating that the HSMS is unlikely to rely upon
visual information to control the dynamic structure of motor
variability.

In conclusion, output variability during complex motor tasks
is characterized by magnitude, temporal structure, and frequency
components. It has been shown that the HSMS can select
the required motor variability depending on the task-demands.
When the available sensory information is challenged, the HSMS
reacts by re-weighting the remaining inputs and increasing
its reliance on Ia-afferences, thus diminishing the effects of
perturbations to the visual system on postural sway. However, the
contribution of Ia-afferences on the control of motor variability
was small, indicating the necessity for other control entities to
be involved. It also appears that when precise control of a task
is required, and Ia-afference information is rendered unreliable,
enhanced involvement of supraspinal centers is likely to be
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preferred over other peripheral mechanisms for the regulation of
motor output variability.
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