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The Processing Fluency Theory posits that the ease of sensory information processing in

the brain facilitates esthetic pleasure. Accordingly, the theory would predict that master

painters should display biases toward visual properties such as symmetry, balance, and

moderate complexity. Have these biases been occurring and if so, have painters been

optimizing these properties (fluency variables)? Here, we address these questions with

statistics of portrait paintings from the Early Renaissance period. To do this, we first

developed different computational measures for each of the aforementioned fluency

variables. Then, we measured their statistics in 153 portraits from 26 master painters,

in 27 photographs of people in three controlled poses, and in 38 quickly snapped

photographs of individual persons. A statistical comparison between Early Renaissance

portraits and quickly snapped photographs revealed that painters showed a bias toward

balance, symmetry, and moderate complexity. However, a comparison between portraits

and controlled-pose photographs showed that painters did not optimize each of these

properties. Instead, different painters presented biases toward different, narrow ranges

of fluency variables. Further analysis suggested that the painters’ individuality stemmed

in part from having to resolve the tension between complexity vs. symmetry and balance.

We additionally found that constraints on the use of different painting materials by distinct

painters modulated these fluency variables systematically. In conclusion, the Processing

Fluency Theory of Esthetic Pleasure would need expansion if we were to apply it to

the history of visual art since it cannot explain the lack of optimization of each fluency

variables. To expand the theory, we propose the existence of a Neuroesthetic Space,

which encompasses the possible values that each of the fluency variables can reach in

any given art period. We discuss the neural mechanisms of this Space and propose that

it has a distributed representation in the human brain. We further propose that different

artists reside in different, small sub-regions of the Space. This Neuroesthetic-Space

hypothesis raises the question of how painters and their paintings evolve across art

periods.

Keywords: complexity, symmetry, balance, processing fluency theory, neuroaesthetic space, neuroaesthetics,

image statistics, portrait paintings
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INTRODUCTION

An important recent theory in art cognition is the Processing
Fluency Theory (PFT) of esthetic pleasure, which claims the
ease with which the brain processes the perceptual properties
of an object contributes to its esthetic value (Reber et al.,
2004); specifically, the hedonic value increases as the fluency
of processing rises (Winkielman et al., 2003). The PFT has
been highly influential, even though its mechanisms are unclear
(Albrecht and Carbon, 2014; Graf and Landwehr, 2015) and its
scope has limitations (Leder et al., 2004; Locher et al., 2007; Leder,
2013; Chatterjee and Vartanian, 2014). The theory has found
applications in the cognitive studies of clarity (Whittlesea et al.,
1990), marketing (Lee and Labroo, 2004), recognition memory
(Whittlesea, 1993), and judgments of truth (Begg et al., 1992;
Reber and Schwarz, 1999). In this paper, we propose to extend
the applications of the PFT to the study of some aspects of the
history of visual art.

Of the many visual properties studied under the PFT,
symmetry, balance, and complexity have received much
attention. Numerous studies have shown that individuals prefer
objects with greater symmetry (Palmer, 1991; Enquist and
Arak, 1994; Humphrey, 1997; Jacobsen et al., 2006) and balance
(Poore, 1903; Arnheim, 1954; Locher et al., 1996). The brain has
mechanisms dedicated to deal with visual symmetry because of
its biological importance, e.g., in the processing of faces (Wolfe
and Friedman-Hill, 1992; Gangestad et al., 1994; Herbert and
Humphrey, 1996; Rhodes et al., 1998). Therefore, the brain
inherently processes symmetry with fluency. Similarly, the brain
has special mechanisms for detecting balance, as its absence
indicates the need of attention (Itti et al., 1998). The case for
complexity is less straightforward but largely consistent with the
PFT. Some studies indicate that the preference for complexity
lies on an inverted “U” curve, with people liking moderate
amounts of complexity (Berlyne, 1971; Aitken, 1974; Nicki
and Moss, 1975; Saklofske, 1975; Imamoglu, 2000) while other
studies have found linear relationships (Stamps, 2002; Nadal
et al., 2010). In general, the brain likes complexity because it has a
direct relationship with the amount of information in the input.
Accordingly, certain circuitries in the visual pathways of the
brain have evolved to deal with as much information as possible
(Atick and Redlich, 1992; Bialek et al., 1993; Stemmler and Koch,
1999; Balboa and Grzywacz, 2000). This is especially relevant in
an evolutionary context, with the brain’s inclination to extract
the maximum amount of intelligible information from a natural
scene (Kaplan and Kaplan, 1989; Heerwagen and Orians, 1995).
These circuitries function best with image statistics related to
natural scenes, which are orderly (Field, 1987; Ruderman and
Bialek, 1994; Balboa and Grzywacz, 2003). This connection with
the natural world provides a possible explanation for the inverted
“U” behavior. Too much complexity may be violating the natural
order, hurting fluency processing. Therefore, the behavior of
visual complexity in relation to the PFT is a reflection of the
struggle between the brain’s attempt at maximizing information
while still maintaining comprehensibility.

In accordance with the principles of the PFT, we raise
the hypothesis that visual artists, especially master painters

will show biases toward optimizing fluency variables (i.e.,
those measuring visual properties like symmetry, balance, and
complexity). Although the PFT is a theory for observers, visual
artists also function as perceptual agents when performing their
work (Bryson, 1983). They often struggle and revise their pieces
until the right esthetic appeal emerges (Gombrich et al., 1977).
Moreover, certain disturbances in perceptual abilities in artists
are reflected in their artwork (Bogousslavsky, 2005; Rose, 2006;
Chatterjee, 2015). However, even if the PFT were right, artists
might not be able to optimize the various fluency variables
independently. One reason is the complex relationship between
the variables. For example, making a painting more symmetric
may reduce its complexity. Another reason is that different
painters may use different media, which may favor one variable
over another. Hence, another hypothesis is that painters may be
forced to make choices to optimize some variables at the cost of
others.

To test these hypotheses, we first developed computational
measures of symmetry, balance, and complexity. We then
investigated the statistics of the relationship between these
variables in both master paintings and control photographs to
study the choices that artists make about these characteristics.
Our control photographs consisted of both photos of individuals
in controlled poses, as well as quickly taken photos with
minimal artistic intent. Comparison of the latter with master
paintings allowed us to test whether painters produced art
with more symmetry, balance, and complexity than what one
would get in spontaneous, quickly snapped photographs. On
the other hand, comparison of master paintings with the ideally
balanced and symmetric frontally posed controls allowed us
to test whether artists optimized their work with respect to
these fluency variables. Our investigation adds to previous work
that has probed statistical properties of visual art (Graham and
Redies, 2010). That work found, for example, interesting overlap
in the power spectra of both faces in portrait paintings and
natural scenes in photographs (Redies et al., 2007a). Here we
concentrated on different statistical variables, which were more
closely related to the PFT. The focus of the study reported here
was on portrait paintings during the Early Renaissance period.
We limited our studies to portraits because they were relatively
simple (e.g., typically composed vertically). This simplicity
aided in both avoiding contextual complexity and reducing the
computational difficulty in the measurements. We chose to focus
on the Early Renaissance since portraiture as an art form first
emerged during this period (Pope-Hennessy, 1966).

MATERIALS AND METHODS

Images Analyzed
General Properties of the Images
All images were digitized to a maximum resolution of 1,024 ×

1,024 pixels due to computational cost. The minimum number of
pixels in the horizontal dimension, i.e., the number of columns
was 500. Such a minimum was necessary to allow enough
precision in the estimation of the indices of symmetry, balance,
and complexity along this dimension. If the number of columns
was uneven, one column was detracted from the end of the image
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to allow precise computation of left-right symmetry and balance
in the image. Finally, although the images were originally in color,
we converted them into 8-bit grayscale through the colorimetric
method (Poynton, 1998). This conversion was necessary because,
in this paper, we focus on symmetry, balance, and complexity for
the relative intensities of the images.

Portrait Paintings
We analyzed 153 portrait paintings of 26 master painters from
the Early Renaissance, which we defined as those born between
1370 and 1450. Portrait paintings were only included if they
each contained one main individual as the subject. They were
painted in oil, tempera, frescos, or a mixture of these materials.
All paintings were obtained from the online database, “Artstor
Digital Library” (library.artstor.org). If the painting in Artstor
had a frame, we removed it before the statistical estimations,
except if the painter had painted it.

A complete list of the paintings and controls in this paper
appears in the Supplementary Materials, including the values
of some of the most relevant measurements (using the same
conventions as in Figures 6, 7).

Posed Controls
Six graduate students and three professors from Georgetown
University were chosen as volunteers for these controls.
Photographs of the volunteers were taken while sitting at
frontal, 45◦, and 90◦ poses. Thus, we obtained 27 posed-control
photographs (three each of nine subjects). Our control posed
photographs had the direction of the face, shoulders/chest, and
eyes fully congruent, and always rotated around a vertical axis.
These well-controlled conditions served to reduce statistical
variability in the fluency variables in this group, allowing us
to use a relatively small number of photographs. To reduce
variability further, all the photographs were taken indoors with
identical lighting conditions by using a Canon EOS 700D/Rebel
T5i camera fitted with an EF-S 18-55 mm F3.5-5.6 IS STM lens
(Canon USA, Inc., Melville, New York, USA).

Each volunteer signed a written consent based on an approved
Institutional Review Board protocol.

To compare these controls with the master paintings more
directly, we attempted to classify the poses in the latter. Such
a classification in artistic paintings could only be approximate.
Artists varied at least three different variables within the pose
structure, including rotating the face, shoulders/chest, and
the eyes separately. Furthermore, these three variables were
occasionally modulated parametrically along both the vertical
and the horizontal axes. Artists most likely exploited these
modulations to increase complexity in their works (Pope-
Hennessy, 1966). This large number of artistic degrees of freedom
created a difficult problem for an objective, unambiguous
classification of pose. Nevertheless, to get an approximation, each
of the three authors performed a subjective classification in a
single-blinded manner with a priori exclusion criteria. One of
these criteria were the use of only the direction of the face and
shoulders (i.e., excluding the eyes because of their small sizes).
Furthermore, the criteria allowed rotation only around a vertical
axis. Finally, to be classified, the directions the face and shoulders

needed to be subjectively congruent. Otherwise, the painting was
considered unclassified. The subjectively classified poses were
limited to three categories to match the posed controls, namely,
frontal, angled, and profile. After the three authors independently
classified the paintings, we used only those that had unanimous
classifications. This process resulted in 103 classified paintings.
Of these, 69 were angled, 31 were profile, and 3 were frontal.

Quickly Snapped Photographs
We wanted the last set of controls to be images in which
no deliberate artistic effort existed. Therefore, instead of using
publicly available photographs that may contain artistic intent,
we selected photographs from a collection of casual, quickly
snapped, and as-unposed-as-possible photographs taken by the
authors with their iPhone 6 (Apple, Cupertino, California, USA).
Rejection criteria were similar to those of portrait paintings
and posed controls, i.e., photographs had to contain one main,
recognizable subject and not be more than 90◦ in pose. We
also rejected photographs with any blurred portions. Two of
the authors blindly selected appropriate photographs from a
pool of 230 images. After consensual selection, only 38 survived
the rejection criteria, thus having minimal posing, framing, and
artistic effort. Each of the subjects signed a written consent to
have his or her photograph used in this study based on an
approved Institutional Review Board protocol.

All control photographs, posed or quickly snapped, are
available upon request.

Statistical Measures
We developed computational measures of symmetry, balance,
and complexity, and analyzed them statistically using MATLAB
R2015a (MathWorks, Natick, Massachusetts, USA), using scripts
developed specially for this project.

To make the reading of the following sections on the
computational measures more accessible, we begin each text with
a paragraph that provides the physical intuition of the proposed
calculations. We hope that these paragraphs will allow the reader
to understand the rationale even by skipping the equations.
These, in turn, appear after the introductory paragraphs.

Symmetry and Asymmetry Indices
Symmetry in images has previously been defined in a
variety of manners. The definitions include different types
of symmetry, especially rotational, reflectional (along different
axes), or translational. While many algorithms exist for these
measurements, our method is similar in nature to the ones
concerning vertical bi-lateral symmetry (O’Mara and Owens,
1996). In this paper, we only address vertical symmetry, since
it is the predominant form in faces and portrait paintings.
We specifically focus on symmetry across the center of the
canvas, irrespective of the location of the face. To measure
the index of symmetry, we subtract the intensities of each
pixel and its pair across the midline. For identical intensities,
the result is zero, indicating that those pixels are symmetric.
If the intensities are not identical, the difference can range
up to the maximum intensity in our image, namely, 255. To
normalize these results, we take the root mean square of all
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of the subtractions and divide the result by this maximum.
This normalization procedure results in an Index of Asymmetry
that goes from 0 (no asymmetry) to 1 (complete asymmetry).
The Index of Symmetry, therefore, is one minus the Index of
Asymmetry.

Let Ik, j be the intensity of the pixel in Row k and Column j. Let
the number of rows and columns be Nr and Nc respectively. The
latter is even. Finally, let I∗ be the maximally possible intensity.
We build pair-of-pixels asymmetry measures as:

Ak, j =
Ik,Nc2 + 1− j − Ik,Nc2 + j

I∗
, 1 ≤ j ≤

Nc

2
.

We define the overall (medial vertical) asymmetry index from
this equation as:

A =

√

√

√

√

2

∑Nr

k = 1

∑Nc
j = 1 A

2
k, j

NrNc
. (1)

This asymmetry index is what appears in Figures 4, 6, 7. The
corresponding (medial-vertical) symmetry index is 1 – A.

Balance and Imbalance Indices
The main idea behind pictorial balance is that features of
the image have a spatial distribution that is as homogeneous
as possible. Because portraits are vertical, one reasonable
measurement of balance is along the horizontal dimension,
which is what we do here. There are multiple definitions of
pictorial balance, from which we consider three prominent
ones. The first is suggested by the bodies of literature from
Art, and History and Psychology of Art (Ross, 1907; Arnheim,
1954). This statistic measures artistic balance as commonly
conceptualized in Physics, i.e., weighing masses with the distance
to the fulcrum. Therefore, something further away from the
fulcrum has a greater perceived weight. For our measurement,
light intensities and the balance line are the equivalents of masses
and the fulcrum respectively. Second, we consider a statistic that
bypasses the distance weighing and simply compares the sum
of the total mass (integrals) on the two sides of the balance
line. This measure is similar to the comparing of intensities at
the excitatory and inhibitory regions of an orientation-selective
receptive field (Hubel and Wiesel, 1959; Hirsch and Martinez,
2006; Rapela et al., 2010). Such receptive fields basically perform
the comparison by weighing one side with a +1 and the other
with a −1. If the sides have similar content, then the receptive-
field integral yields a zero response, indicating balance. Lastly, we
consider a measure that compares mean intensities at the two
sides of the balance line. This measure takes into account the
spatial normalization common in somemodels of visual function
(Heeger, 1992). We call these three measures the physicalist,
integral, and mean models of pictorial balance respectively.
Unlike themeasurement for symmetry, these types of balance can
be measured from different points other than the midline itself.
We consider the simplest case, balance through the middle of
the image, in Figures 4–7. In Figure 2, we explore other possible
locations of balance lines as related to important features of the
face.

Let the xb be the location of the balance line (1 < xb < Nc). To
define the integral balance, integrals of the intensities of each side
of this line are taken:

J
(i)
L (xb) =

∑Nr

k = 1

∑

j< xb
Ik, j, J

(i)
R (xb) =

∑Nr

k = 1

∑

j> xb
Ik, j,

(2)

where the superscript “(i)” indicates “integral,” and subscripts L
and R mark left and right of the midline respectively. We define
the integral-imbalance index as:

B(i)
∗ (xb) =







∣

∣

∣
J
(i)
L (xb) − J

(i)
R (xb)

∣

∣

∣

J
(i)
L (xb) + J

(i)
R (xb)

if J
(i)
L (xb) + J

(i)
R (xb) > 0

0 otherwise

, (3)

and the integral-balance index as one minus this quantity.
Thus, defined, both the integral-balance and imbalance indices
are between 0 and 1. In Figures 4–7, we display the Integral-
imbalance index by the medial vertical line, i.e.:

B
(i)
V = B(i)

∗

(

Nc + 1

2

)

. (4)

The physicalist-imbalance index is similar to Equations (2) and
(3), except that it weighs the intensities with the distances to the
balance line, i.e.:

J
(p)
L (xb) =

∑Nr

k = 1

∑

j< xb

∣

∣xb − j
∣

∣ Ik, j,

J
(p)
R (xb) =

∑Nr

k = 1

∑

j< xb

∣

∣xb − j
∣

∣ Ik, j,

and

B
(p)
∗ (xb) =







∣

∣

∣
J
(p)
L (xb) − J

(p)
R (xb)

∣

∣

∣

J
(p)
L (xb) + J

(p)
R (xb)

if J
(p)
L (xb) + J

(p)
R (xb) > 0

0 otherwise

,

(5)

where the superscript “(p)” indicates “physicalist.”
Similarly, themean-imbalance index is as in Equations (2) and

(3), except that it uses the mean instead of the integrals, i.e.:

J
(m)
L (xb) =











∑Nr
k = 1

∑

j < xb
Ik,j

Nr(xb−1) if xb is integer
∑Nr

k = 1

∑

j < xb
Ik, j

Nrfloor(xb)
otherwise

,

J
(m)
R (xb) =

∑Nr

k = 1

∑

j > xb
Ik, j

Nr

(

Nc − floor (xb)
) ,

where the function floor rounds numbers downwards, and:

B(m)
∗ (xb) =







∣

∣

∣
J
(m)
L (xb) − J

(m)
R (xb)

∣

∣

∣

J
(m)
L (xb) + J

(m)
R (xb)

if J
(m)
L (xb) + J

(m)
R (xb) > 0

0 otherwise

,

(6)
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where the superscript “(m)” indicates “mean.”
As for the integral-balance index, the physicalist- and mean-

balance indices are one minus the corresponding imbalance
indices.

Finally, in order to determine the optimal balance lines, we
seek positions that minimize the imbalance indices, i.e.:

Λi = argminxbB
(i)
∗ (xb) , Λp = argminxbB

(p)
∗ (xb) ,

Λm = argminxbB
(m)
∗ (xb) . (7)

In this paper, we looked for the columns achieving these minima.
Both Λi and Λp emerged from unique minima, but on occasion,
we observed two local minima in the estimation of Λm. In
those cases, we selected the minimum with the lowest value
of imbalance. Other selections were possible for Λm, but our
selection was good enough to capture the uncertainty inherent
in the mean-balance index.

Quality- and Thickness-of-Balance Indices
The balance and imbalance indices quantify how similar the two
sides of a balance line are overall. However, similarity may be
achieved by compensating a feature on, say, the top right of an
image, with something in the bottom left. If so, although the
image may have left-right balance overall, the balance may be
imperfect at different heights of the image.Wewanted to quantify
how careful master painters were about this fine balance. For this
purpose, we first determined the best balance position row by row
in the painting. We then measured the error in these positions
relative to the horizontal size of the image.

For the sake of brevity, we only show here how the
calculation is performed for the integral balance since the
methods are identical for the other forms of balance. We
begin by adapting (Equations 2, 3, and 7) to be row by row,
getting:

J
(i)
L

(

xb, k
)

=
∑

j < xb
Ik, j, J

(i)
R

(

xb, k
)

=
∑

j > xb
Ik, j,

B(i)
∗

(

xb, k
)

=











∣

∣

∣
J
(i)
L (xb, k) − J

(i)
R (xb, k)

∣

∣

∣

J
(i)
L (xb, k) + J

(i)
R (xb, k)

if J
(i)
L

(

xb, k
)

+ J
(i)
R

(

xb, k
)

> 0
0 otherwise

,

and

Λi

(

k
)

= argminxbB
(i)
∗

(

xb, k
)

. (8)

This function is illustrated for different images in Figure 3. From
this function, we estimate the Thickness-of-balance index as:

∆i =
MADk

(

Λi

(

k
))

Nc
, (9)

where MADk is the median absolute deviation function with
respect to k. As before, this index is a number from 0 to 1,
representing the thickness of the function Λi relative to the
canvas. Thus, we can define the Quality-of-balance Index as one
minus the result expressed in Equation (9).

Complexity of Order 1
This measure looks at the overall distribution of intensities in a
given image, with a greater spread in the distribution equating to
greater complexity of order 1. Therefore, a very complex image
would have a wide range of intensities such as white noise. In
contrast, the simplest image would be a blank canvas with only
one type of intensity. Figure 1 illustrates this measurement of
complexity in the context of art. Figure 1A is the Portrait of
a Man by Pietro Perugino and Figure 1C is the histogram of
its intensities. The histogram has a large peak close to zero,
reflecting the large portions of the canvas that are black. Thus,
if someone asks, “What is the intensity of this random pixel?” the
best guess is “zero,” because it will be often correct. This ease in
answering this question contrasts with what Figures 1B,D show.
This painting, Camillo Vitelli by Luca Signorelli has a distribution
of intensities that are much more spread, making the probability
of answering correctly much harder. The painting has much
more richness of intensities. Consequently, we should say that
it is more complex than the painting in Figure 1A. To quantify
Complexity of Order 1, we use the analog of entropy (i.e., the
degree of disorder). In this paper, we do so by using Shannon’s
definition of informational complexity (Shannon and Weaver,
1949). For discussions regarding methods of measuring visual
complexity using information theory and other definitions see
(Forsythe et al., 2008; Graham and Redies, 2010; Nadal et al.,
2010).

Let pixels have intensities [0, ..., I∗] (from 0 to 255 in our
collection). For Image Q, let intensity l have Ml occurrences in
histograms such as those in Figures 1C,D. Then, we define the
probability of Intensity l in Image Q as:

P
(1)
Q

(

l
)

=
M

(Q)
l

∑I∗

j = 0M
(Q)
j

.

From this equation, we define Entropy of Order 1 for Image Q as:

H1 (Q) = −

I∗
∑

l = 0

P
(1)
Q

(

l
)

log2

(

P
(1)
Q

(

l
)

)

.

In practice, if P
(1)
Q

(

l
)

= 0 for some l, the term is not included
in the sum, avoiding the singularity of the logarithm. This is
possible, because limx→0xlog(x)= 0.

To create an index of complexity out of this entropy, we
divide it by its largest possible value given any arbitrary image.
This largest value comes from large images for which every pixel
has an intensity randomly picked from all possible values. Thus,

P
(1)
Q

(

l
)

= 1/(I∗+ 1). Therefore, the maximal possible Entropy of
Order 1 is:

Hmax, 1 = −

I∗
∑

l = 0

1

I∗ + 1
log2

(

1

I∗ + 1

)

= log2
(

I∗ + 1
)

. (10)

Dividing H1(Q) by Hmax,1, one gets the Complexity of Order 1:

C1 (Q) = −

I∗
∑

l = 0

P
(1)
Q

(

l
)

logI∗ + 1

(

P
(1)
Q

(

l
)

)

. (11)
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FIGURE 1 | Illustration of different types of complexity. (A) Portrait of a Man by Pietro Perugino1 (Galleria Borghese, Rome, Italy; Photo © 2006, Scala, Florence,

Italy; reproduced by courtesy of the Ministero Beni e Att. Culturali, Rome, Italy). (B) Camillo Vitelli by Luca Signorelli (Berenson Collection, Villa I Tatti, Florence, Italy,

reproduced by permission of © President and Fellows of Harvard College). (C,D) Histograms of the intensities in A and B respectively. (E,F) Plots of complexity as a

function of the amount of translation (as percentage of the canvas size) in different isometric transformations for the Perugino and Signorelli paintings respectively.

Complexity of Order 1 is marked with the dashed line. Complexities of Order 2 for left and right translations are represented by the red line (both directions give

identical results). Blue and green lines present the linear combinations of horizontal reflection and translation to the left and right respectively. The solid line shows the

median of Complexities of Order 2 across all possible transformations. The figure also illustrates the Short-range Distance, i.e., the range of distances for which

Complexity of Order 2 varies with displacement. We define this distance as the threshold at which the red line crosses the median Complexity of Order 2 minus its

median absolute deviation. “1 Complexity” is defined as the difference between Complexity of Order 1 and the median Complexity of Order 2 within the Short-range

Distance. We call this latter quantity the Short-range Complexity. The figure shows that the Perugino painting has lower Complexities of Order 1 and Order 2, and

larger 1 Complexity than the Signorelli piece (see text for more details).

By the definition of Hmax,1, we have 0 ≤ C1(Q) ≤ 1, with
0 happening for single-tone images (i.e., the simplest ones)
and 1 happening for images whose intensities are spread
homogeneously through all possible values.

Complexity of Order 2
A limitation of Complexity of Order 1 is that it does not
capture the change in complexity due to spatial organization.
If one scrambles the positions of the pixels in a painting,
it looks more complex. However, because the distribution of

1The attribution of this painting has been in dispute by connoisseurs like Morelli,

Springer, and Müntz (Pagden, 1986). It was previously thought to be by either

Hans Holbein or Pietro Perugino. More recently, scholars began attributing it

to Raphael (Raffaello Sanzio da Urbino) (Dussler and Cruft, 1971). Raphael was

an apprentice at the workshop of Perugino and this painting is from that period

(Vasari, 2007). Artstor, the source of paintings for this study attributes the portrait

to both Perugino and Raphael. We decided to include ie period, and was either by

Perugino or under his supervision.

intensities remains the same upon scrambling, the Complexity
of Order 1 does not change. To capture the observed change
of complexity, one must ask, “Given the intensity of a pixel,
can one predict the intensity in another?” For nearby pixels, the
answer is typically yes, because they often represent portions
of the same surface (Field, 1987; Ruderman and Bialek, 1994;
Balboa and Grzywacz, 2003). But the answer could also be yes
for distant pixels if, e.g., the image was symmetric or periodic.
To answer this question generally, one must perform arbitrary
isometric (i.e., distance preserving) transformations of the image
and ask if two juxtaposed pixels predict the intensities of each
other. These transformations are generally linear combinations
of translation, rotation, and reflection. However, here, we
only include horizontal-translation and horizontal-reflection
transformations, because we are dealing with vertical portraits.
We then use entropy to quantify complexity, but this time using
conditional probabilities of the intensity of a pixel predicting the
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intensity of another after the transformation. Because we use
two pixels, we call the emerging quantity Complexity of Order
2. It has many interesting properties illustrated in Figures 1E,F.
The colored lines in these panels illustrate Complexity of
Order 2 for the Perugino and Signorelli paintings for different
transformations, parametric on the amount of translation. One of
the properties of Complexity of Order 2 that we will demonstrate
mathematically is that it is always less or equal than that of Order
1. In addition, as predicted above, Complexity of Order 2 is low
for short translations, rising for longer ones. The panels show
that the median Complexity of Order 2 is lower for the Perugino
painting (because of its larger darker areas). They also illustrate
the range of distances for which Complexity of Order 2 varies
with displacement (the translation required for the colored lines
to reach the uncertainty of the median complexity). The fall in
complexity fromOrder 1 to the median in the short range (Short-
range Complexity) is larger for the Perugino painting because of
its symmetry.

To define Entropy of Order 2 for Image Q and Isometric

Transformation T, we begin by letting M
(Q, T)

l1 , l2
be the number

of times a pixel with Intensity l1 is juxtaposed with a pixel with
Intensity l2 after the transformation. From this number, we define
the following conditional probabilities:
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From this definition, we define Entropy of Order 2 for Image Q
and Transformation T as:
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The maximal value of Entropy of Order 2 occurs when the

pixels are independent of each other. Thus, P
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, which makes H2(Q,T) = H1(Q). This equality has two
consequences of interest: First, Entropy of Order 2 is smaller than
Entropy of Order 1. Second, the maximal Entropy of Order 2 is
the same as that from Order 1, namely, Hmax,1 (Equation 10). A
corollary of these two consequences is that Complexity of Order
2, i.e.:

C2 (Q,T) =
H2 (Q,T)

Hmax,1
. (12)

is always smaller than Complexity of Order 1, i.e.:

C2 (Q,T) ≤ C1 (Q) . (13)

Important Face Features
We wished to determine the balance definition (integral,
physicalist, or mean) best capturing what artists used for their
portraits. For this purpose, we compared the optimal balance
lines (Equation 7) to important features in the face. We wrote
a special MATLAB function to perform this comparison. This

function first determined the positions of the primary eye (the
eye closer to the center of the canvas, Tyler, 1998), secondary eye,
and tip of the nose. The function did so by allowing the authors
to click on these facial features and recording the pixel locations.
We then calculated the horizontal distances between each of
these facial features and the optimal balance lines. Distances were
also calculated to the median position of the facial features and
the center of the canvas. The balance line yielding the smallest
distances to the facial features gave a clue to the strategy that
artists used to balance their portraits.

RESULTS

How Master Painters Balance Their
Portraits
Best Definition of Balance
In this study, we developed computational measures of
symmetry, balance, and complexity, and investigated the
relationship between these variables to probe the choices that
artists of the Early Renaissance made about these quantities when
painting portraits. Of these visual properties, the understanding
of balance has perhaps been the most highly debated. Based
on this debate, we have identified three different definitions of
balance. They are the integral balance, physicalist balance, and
mean balance (Equations 3, 5, and 6 respectively). Consequently,
we began this study by determining which of these definitions
matched best what we observed in portrait paintings. To do
this, we first determined the positions in paintings in which
each definition resulted in the greatest amount of vertical
balance, or least imbalance (Equation 7). Not surprisingly, we
found statistically significant positive correlations between these
positions according to the different definitions of balance. For
example, the Pearson linear correlation coefficients were 0.96
and 0.94 when plotting the best position of integral balance
against those for the physicalist and mean balances respectively.
We observed similar correlations for posed controls and quickly
snapped photographs. These correlations make intuitive sense.
They arise from the mathematical overlap of the definitions.
However, a correlation between two definitions of balance does
not mean that one of them is not better when inspected in
detail. An illustration of the best positions obtained with the
different definitions of balance can be seen in Figures 2A,B.
Next, we compared these positions with important features in
the paintings. These features were the center of the canvas, the
primary eye, the tip of the nose, and the median of nose and
eyes positions. Our aim was to determine which of the definitions
yielded balance lines nearest to the salient features of the face.
This definition would be deemed the best measure for balance.
In the examples of Figures 2A,B, the integral-balance lines were
closer to the tip of the nose or the middle of the face than
the other lines. Was this advantage of the integral-balance line
true for the majority of paintings? The answer can be seen in
Figures 2C,D.

As suggested by Figures 2A,B, the different types of balance
were not equal in their ability to approximate the positions of
important facial features, with the advantage going to the integral
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FIGURE 2 | Comparison of the different definitions of balance. (A,B) Examples of where each of the best balance lines fall (Equation 7) for Portrait of a Man by

Giovanni Bellini (Musée du Louver, Paris, France; reproduced by permission of © Reunion des Musees Nationaux, Paris, France) and Portrait of a Young Man by

Sandro Botticelli (reprinted here with permission by the © National Gallery, London, Great Britain) respectively. These are Integral (green), Physicalist (blue), and Mean

(red) balance lines. The integral balance line is closest to the center of the face in these two examples. (C) Number of times that Integral or Physicalist balance line was

closest to the indicated feature of interest in 153 paintings. (D) Number of times that Integral or Mean balance line was closest to the indicated feature of interest. The

Integral Balance line was significantly closer to important facial features, whereas the physicalist line was significantly closer to the center of the canvas.

lines. We reached this conclusion by calculating the number of
times in 153 paintings that a specific balance line was closest to
the facial features of interest. Because we had three candidate
definitions of balance, under the null hypothesis that they were
all equally good, we expected each candidate line to win about
153/3 = 51 times. This hypothesis set up a 3 × 2 χ2 test.
With it, we rejected the hypothesis statistically for the tip of the
nose (p < 0.03), primary eye (p < 0.0002), and the median of
facial features (p < 0.04). Hence, the candidate balance lines
do not approximate the work of artists equally well. We were
then justified to make pairwise statistical comparisons between
the different balance lines. As these comparisons showed, the
integral balance line was significantly closer to the facial features
of interest than the physicalist and mean lines. Statistical χ2

tests confirmed this conclusion for every spatial feature, except
for the integral-physicalist comparison relative to the primary
eye. For that comparison, the integral balance line was also
better (Figure 2C), but the result was not statistically significant.
(However, the physicalist balance line was always the closest to
the canvas center. That was easy to explain, since if a candidate

physicalist balance line is off-center in a particular direction, the
larger distance weights in the opposite direction pull the line thus,
bringing it back toward the middle of the canvas.)

Therefore, we conclude that the integral definition of balance
captures what artist do better than the physicalist and mean ones.
Hence, all of our subsequent analyses use the integral definition
of balance.

Quality of Integral Balance Lines
A prediction of the PFT is that master painters would show biases
toward optimizing balance in their portrait paintings. However,
even if the PFT were right, artists might not optimize balance
independently of other fluency variables. Our next goal was to get
an understanding of exactly how well artists were balancing their
paintings. We used two procedures to achieve this goal. In the
one covered in the next section, wemeasured the imbalance index
for all paintings. Here, we wanted to determine the precision of
balance at different vertical heights of the image. To carry out
this determination, we calculated the optimal position of balance
as previously indicated, however in a row-by-row analysis. The
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result is a line of balance points (Equation 8) for each row as seen
in Figure 3.

Figure 3 shows that master painters of the Early Renaissance
made an effort to balance their portraits better than if just
capturing a spontaneous image of their subjects. We appreciate
this point by comparing the thicknesses of the balance lines in
Figures 3A,B. The painting line shows more variation than that
in the quickly snapped photograph. Thus, in Figure 3B, which
shows a young man with his dog, the balance was pulled to the
right at the top because of the bright wall. In turn, at the bottom,
the white sleeve pulled the line to the left. By contrast, the balance
line of the portrait painting showed less variation (Figure 3A).

However, Early Renaissance artists might not have balanced
their paintings as well as they could. The balance points of the
frontally posed photograph had much less variation (Figure 3C).
Because the portrait painting was not frontal, controlling the
position of balance was difficult. For example, the bright chin
pulled the balance line to the left more than at other positions,
increasing the variation of the balance positions.

A quantitative analysis of 153 portrait paintings, 38 quickly
snapped photographs, and 9 frontally posed images confirmed
that artists worked to balance their paintings but not to
perfection. In this analysis, we compared the precision of balance
in the three different categories of images. For each image, we
calculated the line thickness (Equation 9). The analysis showed
that portrait paintings yielded a lower line thickness than the
quickly snapped photographs (Figure 3D). This difference in
thickness was highly statistically significant (two-sided t-test, t =
5.4, 190 degrees of freedom, p < 2 × 10−7). However, portrait
paintings yielded a larger line thickness than the frontally posed
controls (Figure 3D – two-sided t-test, t = 3.4, 161 degrees of
freedom, p < 0.0008).

Quantification of the Balance, Symmetry,
and Complexity Indices
Do master painters also show biases toward high symmetry
and complexity, but not optimize them independently of
the other fluency variables? To answer this question, we
quantified symmetry and complexity. In addition, we studied
the relationship of these fluency variables with balance. Here,
we begin with the quantification of the Indices of Asymmetry
(Equation 1) and Imbalance (Equation 4) for all the images in
our study (Figure 4).

Figure 4 shows that the master painters also made an
effort to symmetrize (balance) their portraits, but did not
optimize symmetry (balance) independently of the other fluency
variables. The result with the Imbalance Index (Figure 4A) was
similar to that of precision-of-balance measures, confirming the
conclusions derived from them (Figure 3D). The conclusions
were then extended to the Asymmetry Index (Figure 4B). We
confirmed this similarity with four statistical comparisons (two-
sided Mann-Whitney tests), all showing significant differences.
Two of the comparisons were for imbalance: Portraits-Quick (p
< 0.001) and Portraits-Posed (p < 0.0007). The other two were
for asymmetry: Portraits-Quick (p < 5 × 10−18) and Portraits-
Posed (p < 0.01).

One reason for painters not to optimize balance and symmetry
independently was that these variables showed a degree of
correlation. A weak positive correlation between the Indices
of Asymmetry and Imbalance was apparent for both portrait
paintings and quickly snapped photographs in Figure 4C.
Performing a Spearman’s rank-order test, we confirmed that
this correlation was statistically significant. The correlation test
yielded ρ = 0.19 and p < 0.02 (under the null hypothesis that ρ

= 0) for portraits, and ρ = 0.55 and p< 0.003 for quickly snapped
photographs. On the other hand, frontal posed photographs did
not show a significant correlation.

We additionally looked at the population of artists to
determine if they showed individuality and choice in terms of
these variables. An illustration of the individuality encountered in
our data is shown in Figure 4D. This figure shows data for three
example artists, namely, Antonello da Messina, Hans Memling,
and Andrea del Castagno. The Imbalance and Asymmetry
Indices for these artists appeared to cluster in different, small
sub-regions of the scatterplot in the figure. For example, the
da Messina portraits appeared to be less asymmetric than the
others were. In turn, those by del Castagno appeared to have
less imbalance. To confirm these appearances, we used two-
sided Mann-Whitney tests to compare the indices of Imbalance
and Asymmetry for these three painters. We found that there
was no significant difference in imbalance between Messina and
Memling. On the other hand, Castagno had lesser imbalance
than both Messina and Memling (p < 0.007 and p < 0.001
respectively). In terms of asymmetry, da Messina and del
Castagno did not show a difference. However, both da Messina
and del Castagno had less asymmetry than Memling did (p <

0.003 and p < 0.02 respectively). This sample of artists illustrates
that master painters show a complex relationship in terms of their
asymmetry and imbalance. The paintings do not necessary show
overlap in statistical properties, indicating individual choices for
each artist.

Next, we looked at the different measures of complexity to
test whether master painters showed biases to increasing it, tried
to optimize it, or made individual choices about it. In addition,
we investigated the relationship between different indicators of
complexity and the Index of Imbalance (Equation 4). One of the
indices of complexity that we studied was that of Order 1, which
captured the richness of the distribution of intensities (Equation
11). We also studied Complexity of Order 2 (Equation 12).
This index captured how much spatial organization reduced the
amount of information in the painting. As Equation 12 indicates,
Complexity of Order 2 is a function of the Transformation T.
Because an infinite number of such transformations are possible,
Complexity of Order 2 is not just a simple index (Figures 1E,F).
We thus defined in Figures 1E,F several indicators that captured
the dependence of Complexity of Order 2 on the transformation.
One of those indicators was the median of Complexities of
Order 2 across all possible transformations. Another index was
the Short-range Distance, i.e., the range of distances for which
Complexity of Order 2 varied with displacement. Next, we
defined Short-range Complexity, i.e., the median Complexity of
Order 2 within the Short-range Distance. Finally, we defined “1
Complexity” as the difference between Complexity of Order 1
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FIGURE 3 | The precision of integral balance in paintings. (A–C) Examples of row-by-row balance lines (Equation 8) in Portrait of a Lady by Paolo Uccello

(reprinted here thanks to the Open Access for Scholarly Content designation by the © Metropolitan Museum of Art, New York, United States), a quickly snapped

photograph, and a frontally posed control respectively. The superimposed red curves are the balance lines. (D) Mean and standard error of balance-line thicknesses

(Equation 9) for the different categories of images. Portrait artists of the Early Renaissance balanced paintings to a greater precision than quickly snapped

photographs but not as well as in frontally posed controls.

and Short-range Complexity. The results of the analysis using
these various indicators of complexity can be found in Figure 5.

The results in Figure 5 showed that artists composed their
portraits such as to increase their complexity. To understand
this conclusion, begin by considering Complexity of Order
1 (Figure 5A). This complexity showed substantial overlap in
portrait paintings, quickly snapped photographs, and frontally
posed controls. However, a substantial number of paintings had
less Complexity of Order 1 than the other classes of images
(Figure 5A). Statistically, portrait paintings had less Complexity
of Order 1 than quickly snapped photographs (two-sided Mann-
Whitney test, p < 0.004). We address a possible reason for
this “deficiency” of portrait paintings in the next section. Here,
we simply point out that the deficiency disappears when one
takes the spatial organization of the painting into account.

Complexity of Order 1 refers to the distribution of intensities
regardless their spatial organization (Figures 1A–D). In turn,
Complexity of Order 2 also takes into account how much spatial
organization simplifies the image. (Thus, Complexity of Order 2
is always smaller or equal than Complexity of Order 1—Equation
13.) As observed in Figures 5B–D the Complexity of Order
2 of paintings is no longer less than that of quickly snapped
photographs and frontally posed controls. The disappearance of
the complexity deficit of paintings by spatial composition was
confirmed statistically. Not only were paintings not lesser in
complexity, but as seen in Figures 5B–D many of the portraits
had more complexity than all quickly snapped photographs and
posed controls. Consequently, artists appeared to be making
special efforts to maintain a high degree of complexity through
spatial composition.
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FIGURE 4 | Quantification of the Asymmetry and imbalance Indices. (A,B) Mean and standard error of the Indices of Imbalance (Equation 4) and Asymmetry

(Equation 1) respectively for the different categories of images. Artists balanced and symmetrized paintings more than quickly snapped photographs, but not as well as

in frontally posed controls. (C) Scatterplots of the Indices of Asymmetry vs. the Indices of Imbalance for 153 paintings, 38 quickly snapped photographs, and 9 frontally

posed. Both paintings and quickly snapped photographs exhibited positive correlations, while posed controls did not. (D) Same plot as in C but for three example

artists, namely, Antonello da Messina, Hans Memling, and Andrea del Castagno. The indices for these artists cluster in different small sub-regions of the scatterplot.

Unlike the Index of Asymmetry that correlated with the
Index of Imbalance (Figure 4C), complexity did not exhibit
the same dependence (Figures 5A–C). This lack of correlation
showed that different fluency variables related to each other
in distinct manners. The complicated interdependence between
the fluency variables extended itself further. For example,
when we made a scatterplot of 1 Complexity vs. Short-range
Distance for portrait paintings, we observed a “triangular”
shape (Figure 5D). This “triangle” had a broad distribution
of Short-range Distances for low 1 Complexity and narrow
distribution for large 1 Complexity. This “triangle” shows
that the values attained by fluency variables not only have
complicated interdependence but also form a space with intricate
geometry.

Finally, we investigated whether master painters made
individual choices about complexity, as they did for asymmetry
and imbalance (Figure 4D). The results in Figures 5E,F show
that complexity is also part of the options from which individual
artists choose. These figures show data for three example artists,
namely, Pedro Berruguete, Antonello da Messina, and Andrea
del Castagno. As for asymmetry and imbalance, the complexity
indices for these artists appeared to cluster in different, small
sub-regions of the scatterplots in the figure. For example,

da Messina portraits have less Complexity of Order 1 than
those of his counterparts (Figure 5E; two-sided Mann-Whitney
tests, p < 0.0002 for Berruguete and p < 0.0002 for del
Castagno). Hence, da Messina made paintings with less range
of intensities. Moreover, da Messina had larger 1 Complexities
that Berruguete and del Castagno (Figure 5F; two-sided Mann-
Whitney tests, p < 0.0002 for Berruguete and p < 0.0004 for
del Castagno). Thus, da Messina not only used fewer intensity
values but also did not use spatial composition to compensate and
maintain complexity as high as possible. In turn, del Castagno
painted his portraits with smaller Short-range Distances than
Berruguete (Figure 5F; two-sided Mann-Whitney test, p <

0.004). This meant that the latter did not choose to organize
his paintings with as small features relative to the canvas as del
Castagno did.

Further evidence of individuality with respect to complexity
came from an analysis of the correlation between Complexity
of Order 1 and 1 Complexity. This analysis revealed a
statistically significant negative correlation of −0.47, (p < 2 ×

10−09 – Pearson linear correlation coefficient). Therefore, artists
who painted their works with a greater range of intensities
tended to have greater spatial complexity in their paintings as
well. Interestingly, there were no significant correlations for
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FIGURE 5 | Quantification of different measures of complexity (see Figure 1 for definitions). (A) Same as Figure 4A but for Complexity of Order 1 vs. the

Index of Imbalance. (B) Same as (A) but for Median Complexity of Order 2. (C) Same as (A) but for Short-range Complexity. (D) Same as (A) but for 1 Complexity vs.

Short-range Distance. (E) Same as (A) but for three example artists, namely, Pedro Berruguete, Antonello da Messina, and Andrea del Castagno. (F), Same as (D) but

for these three artists. Although many paintings have lower complexity in terms of intensities than all photographs (A), after spatial organization, many paintings

become more complex than the photographs (B,C). As in Figure 4, artists “reside” in different areas of the possible values, indicating individuality and choice (D,F).

(See text for more details).

Complexity of Order 1 and 1 Complexity in posed controls
and quickly snapped photographs. This finding provides further
evidence for individuality on the part of artists to manipulate the
levels of complexity in their works.

Effects of Pose and Painting Medium
We have seen that when separated by artist, the distribution
of the values of the fluency variables is not homogenous
(Figures 4D–F). This inhomogeneity indicates that artists, while
limited to the boundaries of the overall spread of values, can

reside in specific regions of it. Therefore, there is a case for artistic
individuality. This individuality may be attributed to a multitude
of factors. They include among others the artist’s perceptual
system, their own preferences, and external influences and norms
(see Discussion). We wanted to explore what might cause artists
to exhibit their individuality in portrait paintings instead of
simply maximizing fluency. While there could be many different
mechanisms to their individuality, we looked mainly at two,
namely, the interdependence of fluency variables and external
constraints to the painting. Here, we explain the interdependence
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issue through the orientation of pose in portraits. Later, we
explain the effect of external constraints through the choice of
painting medium.

If two fluency variables are interdependent, they may force
the artist to choose, because increasing fluency through one
variable may reduce fluency through another. We saw an
example of interdependence in the positive correlation between
symmetry and balance (Figure 4C). However, that correlation
was positive, thus increasing fluency through symmetry helped
increase fluency through balance. To find an example of a
negative correlation, we resorted to pose. As suggested by
Figure 1, frontal poses appear to reduce complexity more
than other poses, because the former tend to be symmetric
in portraits. In symmetry, a pixel predicts another after a
reflection transformation. This extra predictive power explains
the lowering of Short-range Complexity for the frontal but not
the profile painting in Figure 1 (compare the blue and green
lines in Figures 1E,F). To quantify this apparent effect, we looked
at how the different measures of asymmetry, imbalance, and
complexity vary with controlled photographs taken at frontal
(0◦), 3 quarters (45◦), and profile (90◦) poses. The results can be
seen in Figure 6.

Figure 6A shows that the Indices of Asymmetry and
Imbalance are negatively correlated with1-complexity measures
when poses are changed, forcing artists to choose between
them. Frontal poses were the least asymmetric (one-sided one-
way ANOVA, 26 degrees of freedom, F = 7.41, p < 0.002),
followed by 3 quarters and profile. (Intriguingly, none of
our results showed any differences between the 3 quarters or
profile poses.) Similarly, frontal poses were significantly less
imbalanced than the other two (one-sided one-way ANOVA,
26 degrees of freedom, F = 3.14, p < 0.03). For Complexity
of Order 1 and Median Complexity of Order 2, the values
were nearly identical across the poses. This similarity was
expected for Complexity of Order 1, because the distribution of
intensities did not change drastically with pose. However, the
Median Complexity of Order 2 result was more unexpected. It
probably reflected large spatial features in the canvases, as the
complexity lines plateau for large displacements (Figures 1E,F).
In contrast, the 1-complexity measures gave, by definition, a
more sensitive measure of complexity at finer spatial scales. Our
results showed that frontal poses yielded larger 1-complexity
measures than the other two (e.g., one-sided one-way ANOVA,
26 degrees of freedom, F = 23.5, p < 2 × 10−6 for 1CMPLX2).
Thus, frontal poses were the least complex at short-range
scales.

We observed similar results when subjectively classifying
poses in portrait paintings (Figure 6B). Frontal poses were
statistically less asymmetric and yielded larger 1-complexity
measures than angled and profile poses. Consequently, as for
controlled photographs, symmetry was negatively correlated with
complexity in portrait paintings as poses changed. However,
balance did not show the same correlation. This was likely
due to portrait paintings not being exactly frontal like our
control images. Our balance measure was sensitive to artistic
choices such as very slight head tilts observed in these
paintings.

FIGURE 6 | Different measures of asymmetry, imbalance, and

complexity as a function of pose. (A) Control photographs and (B) portrait

paintings at frontal (0◦), 3 quarters (45◦), and profile (90◦) poses.

Horizontal-axis categories are Asym. (Index of Asymmetry—Equation 1),

Imbal. (Index of Imbalance—Equation 4), CMPLX1 (Complexity of Order

1—Equation 11), CMPLX2 (Median Complexity of Order 2—defined in

Figure 1 from Equation 12), 1CMPLX1 (1 Complexity—defined in Figure 1

from Equation 12), and 1CMPLX2 (same as 1 Complexity but starting from

the Median Complexity of Order 2 instead of Complexity of Order 1). These

statistical measures are shown as means and standard errors. Results were

largely similar for both control photographs and for portrait paintings.

Symmetry was lowest in frontal poses, with no difference between 45◦ and

profile poses. Complexity of Order 1 and Median Complexity of Order 2 were

similar for all three poses. Higher 1-complexity values meant a greater loss in

complexity, thus frontal poses were the least complex. The only difference

between control photographs and portrait paintings was in respect to balance.

There was lower balance in the frontal poses in the former but not the latter.

External factors, such as the painting medium that artists
must use also force them to make choices. During the Early
Renaissance, artists mainly had a choice between a handful
of media (Bambach, 1999). If a patron wanted the artist to
paint a wall of a church, for example, then the painter had
to use fresco techniques. These allowed the painting of small
features relative to the large image but were less flexible than oil
or tempera. In contrast, these latter techniques but not fresco
allowed retouching of the canvas, giving the artist the ability to
experiment. However, in Early Renaissance, some pigments for
oil were expensive or difficult to get. Hence, the artist had to take
into account costs and richness of materials to choose how to
make his paintings. Our database contained paintings in fresco,
tempera, oil, or mixes of oil and tempera. We investigated how
each of the fluency variables differed in these painting media. The
results can be seen in Figure 7.
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FIGURE 7 | Measures of asymmetry, imbalance, and complexity as a

function of the painting medium. Horizontal-axis categories are as in

Figure 6, except for d, which is Short-range Distance presented as the

percentage of the size of the canvas (defined in Figure 1 from Equation 12).

These statistical measures are shown as means and standard errors. The

measures show that during the Early Renaissance, painting media affected

some fluency variables (e.g., balance, Complexity of Order 1, 1 Complexity,

and Short-range Distance). However, the painting media did not affect all

variables (symmetry).

Our analysis showed that the artists’ works were influenced by
the painting medium. For example, both oil and mixed paintings
were statistically significantly more imbalanced than frescos and
tempera paintings (two-sided Kruskal-Wallis test, 153 degrees
of freedom, χ2 = 11.9, p < 0.008). In turn, fresco paintings
had greater Complexity of Order 1 (two-sided Kruskal-Wallis
test, 160 degrees of freedom, χ2 = 9.86, p < 0.02) and the
least 1 Complexity (two-sided Kruskal-Wallis test, 153 degrees
of freedom, χ2 = 19.8, p < 0.0002). These results indicated
that frescos yielded paintings that were more complex than the
other media. In contrast, there was no significant difference in
asymmetry across media. The Discussion will analyze the some
of the possible reasons for how different media affect different
fluency variables in distinct ways.

DISCUSSION

Expanding the PFT: The
Neuroesthetic-Space Principle
In this study, we examined whether master portrait painters from
the Early Renaissance Period showed esthetic biases according to
the PFT. The theory posited that increased perceptual fluency was
associated with a greater esthetic response. Therefore, one would
expect that the painters created their works in a way to maximize
the fluency of perceptual variables. In particular, painters might
try to optimize balance, symmetry, and complexity in their
works. These biases might be the result of conscious intent
or occur unconsciously. Overall, we found that painters were
indeed displaying esthetic biases toward increasing fluency.
The painters’ work exhibited more symmetry and balance
than quickly snapped, non-artistic controls (Figures 3, 4).
Moreover, the results indicated a deliberate effort to increase the
complexity of paintings through careful compositions (compare
Figures 5A–D). However, we also found that the painters were
not optimizing all of their fluency variables independently of each

other, as shown by our comparison to posed control photographs
(Figures 3, 4). Why was the optimization not applicable to all
fluency variables?

To explain why master painters may not be optimizing all
of their fluency variables independently, we propose to extend
the PFT with the Neuroesthetic-Space Principle. This principle
begins by proposing that during an esthetic judgment, the brain
decomposes an image into its fluency variables. Our equations
give possible definitions for some of these variables, but their
exact details depend on the neural mechanisms performing the
computations. In this work, we explore three such variables,
namely, balance, symmetry, and complexity, but the Space is
likely much more complex, being highly multi-dimensional. Our
results suggest that the possible values that these variables may
attain are not likely boundless. Instead, they may reside in a
certain limited space. Cross sections of this space are illustrated
by the scatterplots in Figures 4A, 5A–D. We term this the
Neuroesthetic Space. Therefore, the Neuroesthetic Space defines
the range of possible values of all perceptual variables involved
in mediating the fluency of a sensory input (an image in our
case). Our data show that different painters reside in different
sub-regions of this Space (Figures 4B, 5E,F). We propose that
the individuality of painters within the Neuroesthetic Space is
a major reason for why they do not necessarily optimize each
fluency variable.

Artistic Individuality within the
Neuroesthetic Space
Why did master painters exhibit individuality within the
Neuroesthetic Space? We already mentioned that painters could
use different painting media. However, the choice of these
media was sometimes imposed by the artists’ patrons and
sometimes dependent on accessibility. For example, in the Early
Renaissance, some artists had to do frescos, while others could
use oil or tempera (Paoletti and Radke, 2005). We found that
the painting media had an effect on the artistic output. Across
all paintings and artists, our results indicated that oil-based
and mixed paintings had the greatest amount of imbalance
(Figure 7). In contrast, frescos showed the greatest amount of
complexity (Figure 7). The latter effect had a simple explanation:
using a large fresco as a medium, painters could increase the
amount of detail and relative finer features otherwise not possible
with alternate media. However, we have no explanation yet for
the greater imbalance in oil-based paintings. Artists used oil,
since both oil and tempera allowed retouching, thus affording
greater freedom in the composition of paintings (Bambach,
1999). But oil painting was new in the Early Renaissance and
thus getting certain types of pigments was expensive and difficult
(Kirby, 2000). This imposed a limitation in the complexity
of oil paintings, likely preventing this variable from reaching
optimal values (Figure 7). Hence, painting media could have a
measurable impact on the perceptual characteristics of a painting
and thus, in which region of the Neuroesthetic Space an artist
resided.

Another reason for individuality in the Neuroesthetic Space
is that some fluency variables show interdependence. If all the
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variables were independent, then painters couldmanipulate them
individually; nonetheless, with interdependence, the optimum of
one variable might not be the optimum of another. Thus, artists
had to choose. An example of a mild interdependence affecting
artists’ choice was the weak correlation between symmetry and
balance (Figure 4). Another stronger correlation in portraiture
was forced by pose. Considering that a portrait was a relatively
simple art form, with its inherent qualities such as the natural
symmetry of the human body and face, artists needed to innovate
to increase the amount of information and complexity to appeal
to the viewer. One simple way to do so was to change the
orientation of the pose. By changing the pose away from frontal,
artists effectively increased the level of complexity (Figures 6);
however, as a byproduct, they also increased asymmetry and
imbalance (Figure 6). Portrait painters in the Early Renaissance
generally chose to avoid frontal poses, implicating that in part,
complexity was an important factor for them (Pope-Hennessy,
1966). The exact equilibrium between complexity on one hand
and symmetry and balance on the other was an individual choice
(Figure 1). Artists, by choosing which variables they emphasized
more, ended up in different sub-regions of the Neuroesthetic
Space.

Therefore, because of media constraints, fluency-variable
interdependence, or other reasons, portrait painters must exert
individual choice. The difference in choices undoubtedly has
innate, physiological, and personal experience components. For
example, studies of preference for complexity show that different
people lie in distinct portions of an inverted “U” curve (Jacobsen
and Höfel, 2002; Güçlütürk et al., 2016). Thus, some individuals
enjoy moderate increases in complexity from a starting point,
while others dislike the same changes. This difference in
enjoyment of complexity can be attributed to various factors
including sex, age, personality and even physiological differences
in visual perception (Crosson and Robertson-Tchabo, 1983;
Chamorro-Premuzic et al., 2010; Vaughn et al., 2013; Spehar
et al., 2015). However, the difference can also be due to experience
and exposure, as when comparing artists and non-experts (Smith
and Melara, 1990). The thresholds for asymmetry and imbalance
may be lower in painters, and their desire for complexity
higher (McWhinnie, 1968; Pang et al., 2013; Else et al., 2015).
Furthermore, numerous neurological studies have shown how
alterations in the perceptual system of painters can lead to an
entirely different type of art (Chatterjee, 2004a).

Determination of the Fluency Variables of
the Neuroesthetic Space
An innovation of our paper is the introduction of computational
methods to begin outlining the relationship between multiple
fluency variables in a Neuroesthetic Space. Other definitions
of the same fluency variables are possible and exist, of
course (Dakin and Watt, 1994; Wilson and Chatterjee, 2005;
Forsythe et al., 2008). However, we feel that our definitions
are on the right track. This feeling stems from two reasons:
First, the sub-regions occupied by individual artists within
the hypothesized Neuroesthetic Space are small (Figures 4D,
5E,F). Therefore, there is reason to believe that our measures

capture visual properties that are important to the artists
and the observers. Nevertheless, this assertion rests on the
assumption that our measures are perceptually realizable to both
artists and observers alike. Future studies could explore this
notion of “esthetic sensitivity” to our specific variables with
psychophysical measures and tests (Götz, 1985; Wilson and
Chatterjee, 2005; Chatterjee et al., 2010; Samuel and Kerzel,
2013). Second, the definitions of our variables are based on
knowledge from basic neuroscience. They arise from previous
studies that have specifically compared objective cognitive-
neuroscience measurements to subjective esthetic ratings. For
example, we can relate our measure of symmetry to one of the
earliest definitions in the field of esthetics (Mach, 1914; Birkhoff,
1933). Additionally, studies investigating visual perception,
esthetic preferences, and neural correlates of beauty have all used
similar notions of reflectional bi-lateral symmetry (Mach, 1914;
Wenderoth, 1994; Jacobsen andHöfel, 2002; Jacobsen et al., 2006;
Makin et al., 2012; Mayer and Landwehr, 2014).

As for refining the definition of the fluency variables, a
process such as the one that we used for balance suggests a
path to follow. Balance is widely attributed as necessary to the
appreciation of an image. Experiments have shown that lack of
balance can be detected in the order of just tens of milliseconds
(Locher and Nagy, 1996). While the colloquial definition of
balance is generally agreed upon, there remains a lack of a
comprehensive objective measurement for balance (Hübner and
Fillinger, 2016). To date, the most influential theory of visual
balance was derived from Arnheim, who posited a physicalist-
like definition (Arnheim, 1954). In our study, we sought to test
his theory and two other measures of balance, the Integral and
Mean methods. The integral method computes balance through
summing the relevant property (here, intensities) on each side of
the balance line. In turn, the mean method compares the mean
of the property on the two sides. To test these three methods,
we investigated at which point in the image each method led to
perfect balance, i.e., the position of the balance lines. We then
predicted that the best balance lines should fall near the most
important parts of the portrait. Thus, these lines should be near
the key facial features of the subject (Walker-Smith et al., 1977).
Previous eye-tracking studies have shown that humans tend to
look primarily at these features (e.g., the eyes) when observing
portraits (Massaro et al., 2012). As Figure 1 illustrates, of all of
the balance lines, the integral line was the closest to the main
features of the face. This result indicated that the integral line was
the closest to what artists may use unconsciously. Thus, we had
our first indication that the balance line was the correct one to
use throughout the paper.

To test further whether the integral definition of balance was
meaningful, we measured the quality, i.e., the precision, of the
ensuing balance lines. The results of a row-by-row analysis in
Figure 2 showed that master painters had a bias toward balance
everywhere in the canvas. This precise and thorough balancing
suggested that integral balance approximated the process in the
minds of artists. Therefore, we used the integral definition to
evaluate the balance of different paintings.

However, although we gained confidence about the integral
balance, we know that our definition is probably not as good

Frontiers in Human Neuroscience | www.frontiersin.org 15 March 2017 | Volume 11 | Article 94

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Aleem et al. Esthetic Biases in Master Painters

as it could be. If it were, we would expect the bar plots in
Figure 2 to show a larger advantage for the correct definition
of balance over the physicalist and the mean ones. Some simple
tweaks to the model could help improve the balance model. For
instance, all of our methods are based on the assumption that the
balance of an image is reliant primarily on its intensity values.
But the calculation of saliency underlying the computation
of balance uses other visual properties besides intensities (Itti
et al., 1998). These properties include, e.g., color contrasts and
orientation edges. Perhaps enriching the set of visual properties
used in our model of balance could help improve the results
significantly.

Finally, how confident can we be of our definitions of
complexity? The debate regarding a good psychophysical
definition of visual complexity has remained unresolved thus
far. Most existing definitions are grounded in some manner
in information theory (Shannon and Weaver, 1949). These
include looking at the amount of objects and elements in the
image, their regularities, methods of image compression, and
exploring amplitude spectra and fractal scaling (Donderi, 2006;
Forsythe et al., 2011). These definitions have been extensively
used in studies investigating subjective measures of interest,
beauty, art production, and detection thresholds (Vitz, 1966;
Nadal et al., 2010; Güçlütürk et al., 2016). For example, artistic
paintings, including portraits have similar power spectra as
natural images (Graham and Field, 2007; Redies et al., 2007b).
Both artistic and natural spectra tend to fall as the square
of the spatial frequency. Such a tendency indicates the fractal
property of self-similarity. That both art and natural images
exhibit self-similarity is interesting in the context of our findings.
We show a different behavior in artistic and natural portraits
(Figures 5A–D). The reason for this difference is that power
spectra and our definitions of complexity capture different
aspects of images. The power spectrum is the Fourier transform
of the autocorrelation function. Hence, power spectra capture
statistics of themultiplication of intensities in pairs of pixels when
translating an image relative to itself. The pairwise multiplication
means that power spectra do not capture first-order statistics
as our Complexity of Order 1 does. Similarly, the relationship
to autocorrelation means that power spectra only capture
translational statistics, as opposed to the arbitrary isometric
transformations measured by our Complexity of Order 2. Hence,
for instance, Complexity of Order 2 captures transformations
such as reflection, thus being sensitive to the effect of symmetry
on complexity (Figure 1). Moreover, that our measures of
complexity involve the logarithmic non-linearity inherent in
information theory (Equations 10–12), they can capture statistics
higher than those of second order.

Human Neuroscience of the PFT and the
Neuroesthetic Space
The focus of our study is primarily regarding the exteroceptive
variables of perception, termed “outer psychophysics” by Fechner
(Fechner, 1965). While we have not experimentally addressed the
“inner psychophysics” or neural mechanisms, we discuss them
next.

What are the possible neural mechanisms of the PFT and
the Neuroesthetic Space? We begin with the latter. Models of
esthetics usually account for dual levels of processing, e.g., a
“lower” sensory and a “higher” cognitive route. The latter which
includes semantic and emotional content (Chatterjee, 2004b;
Leder et al., 2004; Locher et al., 2007; Leder, 2013; Chatterjee and
Vartanian, 2014; Redies, 2015). In turn, the Neuroesthetic Space
highlights the importance of the former, the perceptual stream
of esthetic processing. This space represents the decomposition
of the sensory input, which is the image in our case, into its
fluency variables. Therefore, the Neuroesthetic Space should
have a distributed representation across the brain. The view
that esthetic judgments occur through a hierarchy and over a
distributed network has widespread support (see above). For
instance, the symmetry component of the Neuroesthetic Space
is processed in several areas of the extrastriate visual cortex. They
include specially V3A, V4, V7, and LO, as well as visuospatial
regions, such as superior parietal lobule and intraparietal sulcus
(Jacobsen et al., 2006). In turn, the computation of saliency,
i.e., the detection of imbalance requires interplay between the
visual cortex and the lateral geniculate nucleus of the thalamus
(O’Connor et al., 2002). Finally, the fluidity of complexity, i.e., the
ease of flow of information is part of the design of multiple parts
of the visual system. Some of its circuitry is specially designed to
maximize the flow of information given limitations of the neural
hardware (Atick and Redlich, 1992; Balboa and Grzywacz, 2000).

We now turn our attention to the possible mechanisms of the
PFT. To understand them, we reiterate that the computation of
the location of the sensory input within the Neuroesthetic Space
is distributed. Consequently, multisensory integration is required
for the estimation of overall fluency and thus, esthetic processing.
While the idea that an esthetic judgment involves distributed
computations and subsequent integration is largely accepted, its
mechanisms are unclear (Redies, 2015). Because art activates
the brain across multiple modalities and networks, studying the
underlying processing streams independently has been difficult.
The consensus, however, is that the perceptual network must
somehow interact and integrate with the cognitive and affective
networks. This interaction is supported by experimental evidence
(Kontson et al., 2015). While many models of the interaction
between these two domains exist and their details overlap,
the model proposed by Brown et al. used a meta-analysis of
neuroesthetic studies as its basis and is thus especially interesting
(Brown et al., 2011). This model postulates that an esthetic
judgment is reached through an interaction of exteroceptive
and interoceptive information, mediated by the orbitofrontal
cortex, OFC and Anterior Insula respectively. The authors
suggest that the OFC is an ideal candidate for the computing
site of exteroceptive or perceptual processing. The suggestion
stems from the OFC being implicated in both attaching reward
to stimuli through appraisal and tracking previous rewards
(O’Doherty et al., 2001; Kringelbach and Rolls, 2004). We,
therefore, propose that the Neuroesthetic Space is the site of
different variables that constitute this exteroceptive input to
the OFC. In an esthetic judgment, therefore, an observer first
computes each of the variables in this space. The observer then
determines a relationship between them that maximizes the
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reward value in the OFC. This OFC information can then interact
with an internal homeostatic state mediated by the anterior
insula to result in a specific esthetic response (Brown et al.,
2011).

Computation and Dynamics of the
Neuroesthetic Space
In this study, we propose the principle of a Neuroesthetic Space.
This space is composed of complex, interdependent perceptual
variables. Furthermore, the shape of the boundaries of the space
may have complex geometries (Figures 4, 5). Consequently,
we may need to build a computational model to understand
the optimization of fluency variables in this space. Such a
model would help us account for the relationship between these
variables. Thus, the model might make sense of the way in
which an artist optimizes them jointly (not individually) in the
production of art. In particular, wemight be able to use the model
to gain further insights into how different artists modulate the
properties of their work. However, building this model will not
be easy, because to make it work for each artist, we will need free
parameters related to individuality.

Another question that we face about the principle of
Neuroesthetic Space pertains to its temporal dynamics. How
do painters and their paintings evolve across art periods? Art
could move inside a fixed Neuroesthetic Space, or its boundaries
could drift slowly across time or jump abruptly from period
to period. We began our analysis focusing on the period
when portraiture first emerged. This focus allowed uncovering
fundamental fluency variables. By tracking their dynamics over
time, we may effectively measure how this art forms and its
Neuroesthetic Space changes from period to period (Spehr et al.,
2009; Wallraven et al., 2009). Additional such studies could
investigate other types of art throughout history and different
cultures. Therefore, such studies could give us insights on the
universal properties of esthetics and whether our brains differ in
time and region in how we create, process, and appreciate art.
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