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Given the frequency of naming errors in aphasia, a common aim of speech and
language rehabilitation is the improvement of naming. Based on evidence of significant
word recall improvements in patients with memory impairments, errorless learning
methods have been successfully applied to naming therapy in aphasia; however, other
evidence suggests that although errorless learning can lead to better performance
during treatment sessions, retrieval practice may be the key to lasting improvements.
Task performance may vary with brain state (e.g., level of arousal, degree of task focus),
and changes in brain state can be detected using EEG. With the ultimate goal of
designing a system that monitors patient brain state in real time during therapy, we
sought to determine whether errors could be predicted using spectral features obtained
from an analysis of EEG. Thus, this study aimed to investigate the use of individual EEG
responses to predict error production in aphasia. Eight participants with aphasia each
completed 900 object-naming trials across three sessions while EEG was recorded
and response accuracy scored for each trial. Analysis of the EEG response for seven
of the eight participants showed significant correlations between EEG features and
response accuracy (correct vs. incorrect) and error correction (correct, self-corrected,
incorrect). Furthermore, upon combining the training data for the first two sessions,
the model generalized to predict accuracy for performance in the third session for seven
participants when accuracy was used as a predictor, and for five participants when error
correction category was used as a predictor. With such ability to predict errors during
therapy, it may be possible to use this information to intervene with errorless learning
strategies only when necessary, thereby allowing patients to benefit from both the high
within-session success of errorless learning as well as the longer-term improvements
associated with retrieval practice.

Keywords: aphasia, retrieval, errorless learning, EEG, predictive models

INTRODUCTION

Individuals with aphasia commonly demonstrate deficits in lexical retrieval ability, which can
manifest as difficulty naming objects and generating specific words in conversation. The severity
of word retrieval impairment varies widely, and individuals present with unique error patterns;
however, word retrieval impairment is typically observed across all aphasia subtypes. Given the
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pervasiveness of lexical retrieval impairments in persons with
aphasia, improving object naming is a typical focus in speech and
language therapy for this population. Many different treatment
protocols for object naming have shown to effectively improve
naming ability in persons with aphasia. Although the specifics of
each treatment protocol differ, many fall under one of two general
treatment philosophies – the retrieval approach or the errorless
learning approach. Both approaches have evidence to support
their efficacy, but results are mixed as to which works better.
Recent work has suggested that naming improvement occurs
with both approaches (reviewed in Fillingham et al., 2003), but
that retrieval practice is needed for more lasting improvements
(e.g., Middleton et al., 2015).

The errorless learning approach precludes the client from
producing an error response; it provides as much support as
necessary to ensure that the client does not produce an incorrect
response. For example, when the client is presented with a
picture, the clinician may provide the name of the item for the
client to repeat. The errorless learning approach theorizes that by
avoiding error production in the therapy task, only the correct
neural connections will be formed and strengthened (Squires
et al., 1997). Several studies have measured and compared
outcomes from both errorless learning and retrieval approaches
in the context of aphasia treatment. Findings indicate that, at
best, errorless learning provides outcomes equivalent to those of
errorful learning (Fillingham et al., 2003, 2005, 2006; McKissock
and Ward, 2007), although clients tend to prefer the errorless
learning approach (Fillingham et al., 2006).

Generally speaking, treatments based on the retrieval
approach present some stimulus (e.g., a picture of an object),
and the client is asked to provide the object’s name. When
the client produces an error response, the clinician typically
provides some specific feedback and the client attempts to
name the object again. The retrieval approach operates on
very different underlying principles – namely, that individuals
recovering from aphasia will establish neural connections to the
appropriate lexical item by forcing the brain to attempt retrieval
from the lexicon, even if the response results in an incorrect
production. Some have argued that although errorless learning
and retrieval practice may appear to produce similar outcomes,
the long-term benefits of retrieval practice outweigh those of
errorless learning (reviewed in Middleton and Schwartz, 2012).
Despite evidence that individuals with aphasia may inadvertently
learn to produce incorrect responses during retrieval-based
treatment (Middleton and Schwartz, 2013), retrieval practice
may lead to more lasting treatment benefits (Middleton et al.,
2015).

Rather than pitting these approaches against each other,
though, it may be more beneficial to combine them and take
advantage of both. One way of achieving this combined approach
would be to develop a means of predicting the accuracy of the
client’s response even before it is produced. Several studies have
shown evidence of a relationship between specific EEG spectral
features and behavioral response. Furthermore, evidence from
unimpaired and epileptic patients suggests that pre-stimulus
brain state can reliably predict performance on memory tasks;
however, the relationship between EEG spectral features and

behavioral performance on language tasks in persons with stroke
and aphasia has not yet been established.

Many studies have provided evidence that brain state,
identified physiologically, can be predictive of behavior. Evidence
from electroencephalography (EEG), magnetoencephalography
(MEG) and electrocorticography (ECoG) have shown significant
correlations between changes in theta, alpha, and gamma
oscillations as well as successful memory encoding and retrieval
after stimulus presentation (Klimesch et al., 1997; Osipova
et al., 2006; Sederberg et al., 2007). Electrical brain activity
occurring during language tasks has also been reported, although
relationships between brain activity and task performance are
unclear and predictive models have not yet been investigated.
Evidence from ECoG studies in patients with epilepsy have
shown significant increases in gamma activity for picture naming,
word reading (Wu et al., 2011), verb generation (Edwards et al.,
2010), and lexical decision tasks (Tanji et al., 2005). These
studies, however, looked solely for gamma activity and did not
measure changes in other frequency ranges. Although these
studies provide some evidence that electrical activity produced by
the brain (in these cases, measured in the gamma frequency band)
can provide some information for cortical mapping of language
processing, they provide no evidence that gamma frequency
changes are related to performance on any of these language
tasks.

The wide range of tasks and results can make interpretation
of these studies challenging, but some have used their findings
to design experiments that more directly test such relationships
between brain activity and performance. Drawing on prior
evidence that changes in alpha and theta waves occurring prior
to stimulus presentation can predict successful memory encoding
and recognition (e.g., Fell et al., 2011; Merkow et al., 2014), Burke
et al. (2015) designed an experiment in which the participant’s
own EEG response was used to trigger stimulus presentation. The
authors hypothesized that if words were only presented when the
participant was in an optimal brain state for learning, memory
encoding and recall would improve. Results were somewhat
mixed, showing better memory performance in this condition for
some participants but not others. Although the response was not
reliable across all participants, results showed that the number
of sessions in which memory performance was enhanced by
this method was greater than chance. In a similar study, Salari
and Rose (2016) found more reliable memory improvements
using the same approach, although these variations in memory
performance were shown to be related to the amount of pre-
stimulus beta activity.

Currently, there is not enough evidence in the literature to
extract a single overarching pattern regarding the relationship
between the brain’s electrical activity and cognitive behavioral
performance or ability; however, from these studies, some
observations can be made that may help to shape future research.
Many of these tasks are lumped together into categories of
“memory” or “language” tasks, but the fact that two different
memory tasks elicit very different brain responses suggests that
EEG response may be specific to the task itself. Furthermore,
these responses may be specific not only to the task but also to the
individual. Results from Burke et al. (2015) and Salari and Rose
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(2016) suggest that electrical activity can and does vary across
individuals but can still result in similar behavioral outcomes.
Research thus far has investigated brain/behavior relationships
in unimpaired individuals and patients with epilepsy, but
the relationship between EEG spectral features and behavioral
performance on language tasks in persons with stroke and
aphasia has not yet been established. If we can identify a
significant relationship between EEG features and behavioral
performance within an individual with aphasia, we can then use
this information to create a tool that would provide client-specific
predictions about task performance during speech and language
therapy.

The aim of this study was to determine if we could generate a
statistical model that would reliably predict participant response
accuracy using the spectral features from EEG. More specifically,
we aimed to determine whether EEG spectral features could
be used to predict (1) accuracy and (2) error correction in
persons with aphasia during a picture naming task. Regarding
accuracy, we hypothesized that (1) EEG spectral power would
significantly correlate with accuracy and (2) scores generated
from the statistical model for each participant would significantly
correlate with observed scores. Regarding error correction, we
hypothesized that (1) EEG spectral power would significantly
correlate with error type and (2) scores generated from the
statistical model for each participant would significantly correlate
with observed scores.

MATERIALS AND METHODS

Participants
This study was approved by the Syracuse University Institutional
Review Board and all participants gave written informed consent
in accordance with the Declaration of Helsinki. For this study,
participants were recruited from the aphasia therapy group at
the Gebbie Speech and Hearing Clinic, the in-house speech
and language clinic at the first author’s academic institution.
Individuals were initially selected for participation based on
their interest in participating and self-reported difficulty with
naming or word-finding following stroke. As this study was
intended to investigate the feasibility of using EEG to predict
errors, we did not administer language testing prior to collecting
EEG data but relied on clinician and client report of naming

difficulty to identify eligible participants. In order to confirm
reported naming difficulties, baseline picture naming accuracy
was obtained for 300 items during the first test session (see
Table 1). Error rates for participants ranged between 5 and 74%
and seven of eight participants demonstrated naming errors for
more than 25% of their responses.

Six males and two females with aphasia completed this
study (see Table 1 for all demographic and language testing
information). One participant (1604) dropped out during the first
EEG session due to extreme frustration with the task. Participants
ranged in age from 33 to 79 years (M = 57.6 years), were all
pre-morbidly right-handed (except for participant 1603), and
minimally completed a high school education (M = 15.8 years,
range 13–19 years). All participants reported having a single,
left-hemisphere stroke (except participant 1603, who had a right-
hemisphere stroke) and time post-onset ranged from 8 months to
9 years, 1 month (M = 3 years, 3 months). The Western Aphasia
Battery-Revised (WAB-R; Kertesz, 2007) was administered to
all participants (except participant 1604) in a single session
either prior to the first EEG session (participants 1501, 1503)
or following the last EEG session (participants 1601, 1602, 1603,
1605, 1606, and 1607). Participants represented a range of aphasia
severities, with a mean Aphasia Quotient of 80 (range 65.5–95.6).
Using the WAB-R aphasia classifications, four participants (1501,
1605, 1606, and 1607) were classified as anomic, two (1503 and
1603) as Broca’s, one (1601) as conduction, and one (1602) as
transcortical motor.

EEG Equipment and Software
EEG was recorded with 9-mm tin electrodes embedded in a cap
(ElectroCap, Inc.) at 16 scalp locations according to the 10–20
system of Jasper (1958). The electrodes were referenced to the
right ear, and their signals were amplified and digitized at 256
Hz by g.USB amplifiers. BCI operation and data collection were
supported by the BCI2000 platform (Schalk et al., 2004). BCI2000
is an open-source framework (Schalk et al., 2004) designed for
real-time signal processing.

Picture Stimuli Selection for Naming
Task
Picture stimuli for this study were obtained from the Bank
of Standardized Stimuli (BOSS; Brodeur et al., 2010, 2014).

TABLE 1 | Participant demographic and language testing information.

Participant Age Years education Sex Handedness Time post-stroke WAB-R AQ WAB-R Classification Baseline picture
naming accuracy

1501 70 17 Male Right 2 years, 6 mo. 90.6 Anomic 82%

1503 46 15 Male Right 3 years, 1 mo. 65.5 Broca’s 26%

1601 56 17 Male Right 4 years, 3 mo. 78.5 Conduction 27%

1602 64 13 Male Right 9 years, 1 mo. 73.9 Transcortical Motor 72%

1603 54 17 Male Left 2 years 46.6 Broca’s 32%

1605 59 15 Male Right 3 years, 8 mo. 94.2 Anomic 78%

1606 33 19 Female Right 8 mo. 95.6 Anomic 95%

1607 79 13 Female Right 1 year, 4 mo. 95.4 Anomic 72%

WAB-R, Western Aphasia Battery-Revised; AQ, Aphasia Quotient.

Frontiers in Human Neuroscience | www.frontiersin.org 3 March 2017 | Volume 11 | Article 140

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00140 March 23, 2017 Time: 15:31 # 4

Riley and McFarland EEG Error Prediction

BOSS is a database of approximately 1,400 photographs of
living and non-living objects, many of which have been normed
on control participants for object name, category, familiarity,
visual complexity, object agreement, viewpoint agreement, and
manipulability. Photograph stimuli in this database are available
in color, grayscale, blurred, or scrambled forms.

From the total of 1,469 items in the database, we excluded
any photographs that received less than 20% naming agreement
or had a mean familiarity rating of less than 75% (3.75 out
of 5). From the remaining 1,064 items, 900 were then selected
by the first author and two research assistants, who examined
and rated them, eliminating any that were determined to be
unclear (e.g., extreme close-ups) or too similar to another in
the set (e.g., two photos of similar-looking jewelry). Each color
photograph in the final set was unique, but some item names
were repeated. For example, an alarm clock and a grandfather
clock were included in the picture set, both of which could be
correctly named as “clock,” but we were careful not to repeat
item names within each session. Each item in the final set
of 900 pictures was assigned a value by a random number
generator, and items were sorted by these values and split into
nine sets of 100 photographs. These sets were then checked
for repeat names, and if a repeat name was discovered within
one of the lists, it was traded with an item from another
list.

Experimental Testing Procedure
Once an individual consented to participate, the participant was
scheduled to come into the Syracuse University Aphasia Lab for
three EEG data collection sessions at his/her convenience. The
amount of time between sessions varied across participants, with
a mean of 11.75 days between sessions 1 and 2 (SD= 12.89) and a
mean of 6.63 days between sessions 2 and 3 (SD = 3.74). During
each EEG data collection session, participants were administered
three of the photo stimuli sets: sets 1, 2, and 3 were administered
in session 1; sets 4, 5, and 6 in session 2; and sets 7, 8, and 9
in session 3. Participants were given opportunities to take two
breaks within each session; the first opportunity was offered after

1/3 of the items had been presented, and the second after 2/3 had
been presented.

At the start of each session, the participant was seated in
a stable chair in front of a computer monitor. In the first
session, a trained research assistant measured the distance
from the nasion to the inion to determine correct placement
for the Fz electrode (i.e., 30% of this measurement, as
standard in the 10/20 system for EEG setup). Once the
electrical signal was stable, the research assistant started
stimulus presentation using BCI2000 software. Participants were
instructed to name the object displayed on the computer
monitor as best they could, even if they were unsure. Each
photograph was displayed for 10 s, followed by a maximum of
5 s between trials. The participant’s response was immediately
scored for accuracy and error type by the research assistant
administering the task. Once the research assistant assigned a
score via buttons pressed on a numeric keypad, the experiment
advanced to the next item. Video recordings of these sessions
were obtained to check scoring reliability. The first author
reviewed and scored one random session for each participant.
Scoring reliability was 98% for accuracy and 89% for error
type.

Scoring System
The scoring system we used for this study was loosely based on
the criteria used by Schwartz et al. (2016) for classifying errors.
Our system consisted of 10 categories, each of which was assigned
a numeric value on the response keypad (see Table 2 for scoring
categories and operational definitions).

Data Analysis
Looking only at the behavioral data, the number and percentage
of correct and incorrect responses were calculated for each
participant and session. For these, the initial accuracy
calculations, no-response and self-corrected responses were
counted as incorrect. Response percentages were then further
broken down into specific error types for each participant and
session.

TABLE 2 | Response classifications and operational definitions.

Classification Operational definition

No response Participant does not respond within the 10 s when the picture is displayed

Correct Noun matches target (allow for incorrect number marking, e.g., mouse/mice, cats/cat)

Self-corrected fragment Self-interrupted response consisting minimally of CV or VC sequence, NOT repeated first sound of target, results in
correct response

Fragment, Incorrect Response Self-interrupted response consisting minimally of CV or VC sequence, NOT repeated first sound of target, results in
INCORRECT response of any type

Semantic Error Noun that conveys conceptual mismatch in form of: Category coordinate (trumpet/tuba), Thematic associate
(pirate/treasure), Incorrect but related superordinate or subordinate (apple/vegetable; shoe/slipper)

Self-corrected semantic error Initial production of semantic error, but correct response produced before 10 s time window elapses

Circumlocution Participant describes the target but does not correctly name it

Phonological/Neologistic Error Error that does not meet criteria for fragment or semantic error, includes non-words and real words of any category
(nouns, verbs, adjectives, etc.)

Self-corrected phonological/Neologistic error Initial production of phonological/neologistic error, but correct response produced before 10 s time window elapses

Perseveration Participant repeats previous words or sound from previous target, results in an incorrect response
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EEG signals from the 16 scalp electrodes were subjected
to a 40th order autoregressive spectral analysis (McFarland
and Wolpaw, 2008). Amplitudes for 4-Hz-wide spectral bands
from 6 to 29 Hz (i.e., 6–9, 10–13, 14–17, 18–21, 22–25, and
26–29 Hz) were computed for 1000 ms sliding windows that
were updated every 62.5 ms. Next, the trial average of each
potential feature (i.e., amplitudes for 4-Hz bands for electrodes
Fz, Cz and Pz; F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4 for
9-channel analysis) for the period between presentation of the
stimulus and immediately prior to the subject’s response served
as the dependent variable in regularized multiple regression
models that predicted naming performance. For the regression
analysis, we used the glmnet package from R (Friedman
et al., 2010) with regularization (elastic net). The elastic net
solves for the vector of regression weights using the formula:

β = argmin (‖y− Xβ‖2
+ λ2‖β‖

2
+ λ1‖β‖

1) (1)

where β is the vector of regression weights, y is the vector
of values of the dependent variable, X is the matrix of
predictors and λ2 and λ1 are penalties on the regression
weights. The λ2 penalty minimizes the sum of the squared
regression coefficients and serves to smooth these values as
in ridge regression. The λ1 penalty minimizes the sum of
the absolute values of the regression coefficients and tends
to force many of the coefficient values to 0 (i.e., a sparse
solution), resulting in single step feature selection. The elastic
net algorithm simultaneously optimizes the value of both penalty
terms using embedded cross-validation of the training set data
(Friedman et al., 2010). The elastic net is preferable to ordinary
least-squares regression since it tends to better generalize to
novel data and produces simpler models (Zou and Hastie,
2005).

The data recorded during sessions 1 and 2 served as
the training set that was used to compute regression
weights. The data from session 3 served as the test set
that was used to evaluate the generalization of the models
based on new data. This generalization was evaluated
by the Pearson’s r-value between predicted and observed
values.

RESULTS

Accuracy and Error Types
Accuracy on the task ranged from 26 to 94% with a
mean of 61.25% across all participants (see Table 3 for
individual participant data). Error patterns differed for individual
participants, although some general error patterns can be
noted. Two of the participants (1501, 1503) produced relatively
equivalent proportions of semantic and phonological/neologistic
errors, whereas the remaining six (1601, 1602, 1603, 1605,
1606, 1607) produced a higher proportion of semantic errors
as compared to phonological/neologistic errors. Successful self-
corrections were rare for all participants (≤7% of all trials), with
the exception of participant 1503, who was able to self-correct
errors approximately 11% of the time.

Although error patterns differed widely across participants,
within-participant accuracy remained consistent across
experimental sessions. A repeated measures ANOVA test
was used to compare the number of pictures named correctly
across the three sessions. Mauchly’s test indicated that the
assumption of sphericity was met, X2(2) = 4.95, p = 0.084,
and results of the ANOVA indicated that accuracy (i.e., total
number correct) did not significantly differ across sessions,
F(2,14) = 0.435, p = 0.656. Repeated measures ANOVA tests
were also conducted for the three most frequent error types:
no-response, semantic errors, and phonological/neologistic
errors. For no-response errors, Mauchly’s test indicated that the
assumption of sphericity was met, X2(2) = 4.09, p = 0.129, and
results of the ANOVA indicated that the number of no-response
trials did not significantly differ across sessions, F(2,14) = 1.85,
p = 0.193. For semantic errors, Mauchly’s test indicated that
the assumption of sphericity was met, X2(2) = 1.35, p = 0.509,
and results of the ANOVA indicated that the number of
semantic error trials did not significantly differ across sessions,
F(2,14) = 1.60, p = 0.237. For phonological/neologistic errors,
Mauchly’s test indicated that the assumption of sphericity was
violated, X2(2) = 8.04, p = 0.018; therefore, Greenhouse–
Geisser corrected tests are reported (ε = 0.575). Results
of the phonological/neologistic error ANOVA indicated
that the number of phonological/neologistic trials did not

TABLE 3 | Frequency of response type for each participant.

Response Type Participant #

1501 1503 1601 1602 1603 1605 1606 1607

Correct 84% 26% 26% 75% 34% 78% 94% 74%

No response 3% 14% 26% 2% 24% 3% 0% 7%

Self-corrected fragment 1% 1% 0% 0% 0% 0% 0% 0%

Fragment, incorrect 0% 6% 1% 0% 1% 0% 0% 0%

Semantic error 5% 20% 19% 15% 26% 8% 3% 11%

Self-corrected semantic error 0% 0% 1% 5% 0% 2% 2% 3%

Circumlocution 0% 2% 23% 1% 1% 0% 1% 2%

Phonological/Neologistic error 6% 20% 2% 0% 11% 3% 0% 1%

Self-corrected phonological/Neologistic Error 1% 11% 1% 1% 1% 5% 0% 2%

Perseveration 0% 0% 0% 0% 1% 0% 0% 0%
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significantly differ across sessions, F(1.15,8.05) = 0.241,
p= 0.670.

EEG Results
Regression coefficients for training and test data for the three-
channel analysis are reported in Table 4 and correlations are
reported in Table 5. As hypothesized, during the naming task,
EEG spectral power correlated significantly with accuracy in most
participants with aphasia. For this first model, we attempted
to predict the classification of responses into two categories:
correct and incorrect. Only responses matching the target on
the first production attempt were scored as correct. For this
model, “incorrect” included all other scoring categories (e.g.,
no-response, semantic errors, self-corrected semantic errors).
When using the three-channel model with penalties, there were

significant correlations between spectral power and accuracy
in the training sessions for all participants except 1602.
Furthermore, the scores generated from the model for all but
one participant (1602) significantly correlated with the observed
scores in the naming task. A subsequent analysis including
nine channels did not significantly improve accuracy prediction
during the test phase.

Similar results were generated when error correction was
added as a predictor, although the correlations were not
as strong as for the accuracy-only model. For this second
model, we attempted to predict the classification of responses
into three categories: correct, incorrect, and self-corrected.
Only responses matching the target on the first production
attempt were scored as correct. For this model, “incorrect”
included only scoring categories that started out as errors

TABLE 4 | Regression coefficients and degrees of freedom for training and test data.

Feature 1501 1503 1601 1602 1603 1605 1606 1607

Intercept 0.5437 −0.0742 −0.8258 0.7295 0.3214 0.6840 0.7284 0.8471

8 Hz Fz 0.0347 0.0001 −0.0092 0.0050 −0.0002

8 Hz Cz −0.0125

8 Hz Pz

12 Hz Fz −0.0284 0.0168 0.0029 −0.0029

12 Hz Cz 0.0101 0.0003 −0.0190 0.0086 −0.0041

12 Hz Pz 0.0962 0.0124 0.0237 0.0003

16 Hz Fz −0.0107 0.0240

16 Hz Cz −0.0029

16 Hz Pz −0.0378

20 Hz Fz −0.0064 −0.0105 −0.0014

20 Hz Cz 0.0649

20 Hz Pz

24 Hz Fz

24 Hz Cz 0.0278 0.0159 0.0352 −0.0058 0.0513

24 Hz Pz −0.0147

28 Hz Fz 0.0060 0.0062 0.0524 −0.0053

28 Hz Cz 0.0428 0.0475 −0.0563

28 Hz Pz −0.1091 −0.0381 −0.0560

df train 3/596 8/590 3/585 1/597 1/596 10/588 4/593 6/592

df test 3/296 8/290 3/295 1/297 1/297 10/288 4/295 6/292

Features with 0 weights are left blank.

TABLE 5 | Correlations for model predicting accuracy and error correction.

Participant Accuracy Error Correction

Train, 3-channel Test, 3-channel Test, 9-channel Train, 3-channel Test, 3-channel

1501 0.2148∗∗∗ 0.2456∗∗∗∗ 0.2535∗∗∗∗ 0.1392∗ 0.1950∗∗

1503 0.4673∗∗∗∗ 0.2589∗∗∗∗ 0.3098∗∗∗∗ 0.4176∗∗∗∗ 0.1607∗∗

1601 0.4710∗∗∗∗ 0.4570∗∗∗∗ 0.5085∗∗∗∗ 0.2296∗∗∗ 0.1234∗

1602 0.0409 −0.0516 NA NA NA

1603 0.2442∗∗∗ 0.1244∗ 0.2037∗∗∗ 0.1531∗ 0.0627

1605 0.3081∗∗∗∗ 0.2588∗∗∗∗ 0.2781∗∗∗∗ 0.2550∗∗∗∗ 0.2113∗∗∗

1606 0.1989∗∗ 0.2044∗∗∗ NA 0.1701∗∗ 0.2142∗∗∗

1607 0.3921∗∗∗∗ 0.2980∗∗∗∗ 0.3433∗∗∗∗ 0.2538∗∗∗∗ 0.1332∗

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.
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FIGURE 1 | EEG topographies for each participant of the correlation (Pearson’s r) between single trial EEG amplitudes in alpha (10–13 Hz) and beta
(22–25 Hz) frequency ranges and response accuracy. Blue indicates higher voltage associated with correct responses; Red indicates higher voltage associated
with incorrect responses.

and were not corrected, including fragment errors, semantic
errors, and phonological/neologistic errors. The classification
“self-corrected” included scoring categories which started
out as errors but were independently corrected by the
participant before the end of the trial. These included
self-corrected fragments, self-corrected semantic errors, and
self-corrected phonological/neologistic errors. Trials with no
response, circumlocutions, and perseverations were not included
in this second model. When using the three- channel model
with penalties, EEG spectral power significantly correlated with
error category in all participants except 1602. Furthermore, the
model’s predicted error classifications for six of the participants
significantly correlated with observed error classifications in the
naming task.

In terms of the topographies for specific frequency ranges,
patterns differed widely across participants (Figure 1). For
participant 1501, correct responses were associated with higher
voltages in beta and alpha frequency ranges in widely distributed
central regions. Participant 1503’s correct responses were
associated with higher voltages in alpha frequency ranges and
were strongest in posterior regions. For participant 1601, correct
responses were paired with higher voltages in alpha frequency
ranges in frontal regions as well as higher voltages in beta

frequency ranges in left anterior areas. Participant 1602 showed
weaker relationships between correct responses and spectral
power, with stronger electrical activity in right anterior beta and
more central regions for alpha frequencies. For participants 1603
and 1605, alpha frequencies demonstrated weaker correlations
with correct responses than beta frequencies, with the strongest
response in left anterior regions in the beta band for 1603
and central beta activity for participant 1605. Participant 1606
demonstrated the strongest correlation with correct responses
within alpha frequencies in frontal/central regions. Participant
1607 showed no strong activity in either alpha or beta frequencies
for correct responses.

DISCUSSION

The aim of this study was to determine whether spectral
features obtained from EEG could be used to predict accuracy
and error correction in persons with aphasia during a picture
naming task. We found that for seven of the eight participants,
EEG spectral features significantly correlated with accuracy
(correct, incorrect) and error correction (correct, incorrect,
self-corrected), although the correlations for error correction
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were weaker when error correction was used as a predictor.
Furthermore, the predictive model was able to generalize (i.e.,
predict) participant responses in seven participants for accuracy
and five for error correction. In terms of specific frequency
bands, patterns of EEG activity varied greatly across individuals,
with some participants showing stronger correlations with alpha
activity, others showing stronger correlations with beta activity,
and some showing weak correlations with both.

Our analyses were mainly concerned with developing models
that could predict participant’s responses on individual trials with
EEG features. Prediction models differ from models designed
to test hypotheses (i.e., explanatory models) in several ways
(Shmueli, 2010). Prediction models should be evaluated by cross-
validation with data independent of that used for estimating
model parameters rather than on the basis of the null hypothesis
testing with the training data. In addition, issues related to
characteristics of the predictors that would impact probability
distributions (e.g., multivariate normality or multicollinearity)
are not of concern for prediction models since the probability
of the null hypothesis is not evaluated with the training data.
Rather the concern is with the correspondence between predicted
and observed data. Finally, interpretation of the coefficients
of predictive models may be difficult due to multicollinearity
(McFarland, 2013) and if explanation is the goal then the
analyst is better advised to develop appropriate hypothesis testing
models. However, in the present study we were concerned with
models that predict participant performance on single trials as
this is an initial step in developing a clinically useful tool.

Collectively, these results demonstrate that EEG spectral
features can be used to reliably predict both the accuracy of
a client’s response on a picture naming task and whether or
not the client will correct the error, although the relationship
between spectral features and error correction is not as reliable.
This finding is in line with other studies that have been able
to predict behavioral response from electrical activity in the
brain (e.g., Klimesch et al., 1997; Osipova et al., 2006; Sederberg
et al., 2007). In our experiment, we did not find a particular
frequency range that was associated with accuracy or error
correction; however, in examining the EEG response across the
entire range of frequencies, the model could predict the response
in a subsequent session. Now that we know that EEG error
prediction is possible, we can use this information to design
future studies that will more directly test this relationship (see,
e.g., Burke et al., 2015; Salari and Rose, 2016). These possibilities
include presenting naming trials only when task-appropriate
activity is present, as in Salari and Rose (2016). Alternatively,
clients could be trained to voluntarily generate task-appropriate
activity in order to initiate naming trials in a manner analogous
to that employed by McFarland et al. (2015) for a simple motor
task.

Even though we were able to find significant correlations for
most participants, one participant (1602) showed no significant
correlations between EEG features and accuracy or error
correction. What was different about this participant? He was
right-handed with moderate transcortical motor aphasia. His
time post-stroke onset was about 9 years, which was longer than
any of the other participants by at least 5 years. Perhaps the

amount of time post-stroke or the specific aphasia classification
affected our ability to predict his responses. When examining
overall accuracy and error patterns, there seemed to be nothing
significantly different or notable. Whether time post-onset or
aphasia classification is relevant variables remains a question for
future studies.

For our initial analyses, we limited the number of EEG
features in order to prevent overfitting. Thus, we included only
three channels and six spectral bins. Although other channels
and frequencies may well contain valuable information, at
this early stage, we sought to be conservative. A subsequent
analysis including nine channels did not improve performance
during the test phase, possibly due to overfitting of the training
data.

The high variability across participants suggests that our
model’s ability to predict errors is limited to individuals and is
unlikely to show the same EEG activity across different clients.
In other words, an error prediction model must be tailored to
the electrical signal of each individual. One could imagine an
application of this statistical model in the therapy room, which
might involve acquisition of an initial EEG “signature” for an
individual by administering a baseline task prior to initiation of
therapy. Using the client’s individualized EEG “signature” of error
production, a clinician could then monitor the EEG signal during
the session and be alerted when the client is likely to produce an
incorrect response.

The impact of such a therapy tool could be great, especially
when considering its potential in the context of errorless learning
and retrieval practice. As briefly reviewed in the introduction,
results from studies investigating outcomes of these two training
approaches are mixed. In general, when these approaches are
applied to naming treatments for persons with aphasia, errorless
learning has been demonstrated to be at least as effective as
errorful learning and tends to be preferred by clients with
aphasia (Fillingham et al., 2006). Others have found that errorless
learning is more effective in the short term, whereas retrieval
practice is more effective in the long term (Middleton et al., 2015).
Development of an individualized error prediction model would
provide a potential way to merge the two treatment approaches.
If clinicians can predict when a client will produce an error
before he/she attempts the production, this may help to avoid
the potentially detrimental effects of error learning while still
receiving the long-term benefits of retrieval practice. Some have
suggested that feedback during therapy is the key to success
(e.g., McKissock and Ward, 2007), and others have shown that
specific types of cueing are more likely to lead to error learning
(Middleton and Schwartz, 2013). Using an error prediction model
in the therapy session would also potentially allow clinicians to
provide cueing that is tailored to the individual to optimize the
learning experience.

Although the findings from this study are encouraging and
provide preliminary evidence that EEG spectral features can be
used to predict response accuracy in persons with aphasia, the
study is not without limitations. The participants in this study
represented a wide range of aphasia severities and subtypes,
which could have limited the strength of our findings. Our
rationale for the inclusion of such variability in our sample was

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2017 | Volume 11 | Article 140

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


fnhum-11-00140 March 23, 2017 Time: 15:31 # 9

Riley and McFarland EEG Error Prediction

that our study was intended to be a preliminary investigation
of future possibilities. Now that we have some evidence that
EEG spectral features can be predictive of response accuracy,
future studies can more carefully control participant selection.
It is possible, for example, that certain aphasia profiles are more
ideal than others for error prediction (e.g., different results
for participant 1602). As is an issue in many aphasia studies,
this study had a relatively small sample size, although our
analysis focused on individual participants, making sample size
less relevant than for studies that examine group differences.
Another area that requires more investigation is the reliability
of error prediction using this model. For this study, we only
compared the model’s predictions with one session of observed
scores for each participant. In order to further refine and test
the prediction model, prediction reliability will need to be tested
more rigorously, particularly before it can be applied in a clinical
setting. While our initial results were largely positive, further
research will likely produce improved prediction performance.
For example, many potential EEG features could be explored.
These include not only amplitude features at additional channels
but also phase effects; however, exploration of these possibilities
awaits larger data samples.

CONCLUSION

We have demonstrated evidence that an individual’s EEG spectral
features can reliably predict response accuracy on a picture
naming task. This is an essential first step toward developing a
clinically useful tool for predicting errors in speech and language
therapy and possibly bridging the gap between errorless learning
and retrieval practice approaches in naming therapy.
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